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Abstract: 
Image classification is a special type of applied machine 

learning tasks, where each image can be treated as an instance if 

there is only one target object that belongs to a specific class and 

needs to be recognized from an image. In the case of recognizing 

multiple target objects from an image, the image classification 

task can be formulated as image segmentation, leading to 

multiple instances being extracted from an image. In the setting 

of machine learning, each instance newly extracted from an 

image belongs to a specific class (a special type of target objects 

to be recognized) and presents specific features. In this context, 

in order to achieve effective recognition of each target object, it 

is crucial to undertake effective selection of features relevant to 

each specific class and appropriate setting of the training of 

classifiers on the selected features. In this paper, a multi-task 

approach of ensemble creation is proposed. The proposed 

approach is designed to first adopt multiple methods of 

multi-task feature selection for obtaining multiple groups of 

feature subsets (i.e., multiple subsets of features selected for 

each class), then to employ the C4.5 algorithm or the KNN 

algorithm to create an ensemble of classifiers using each group 

of feature subsets resulting from a specific one of the multi-task 

feature selection methods, and finally all the ensembles are fused 

to classify each instance. We compare the performance obtained 

using our proposed way of ensemble creation with the one 

obtained using classifiers trained on different feature sets 

prepared through various ways. The experimental results show 

some advances achieved in the overall classification 

performance through using our proposed ensemble creation 

approach, in comparison with the use of existing feature 

selection methods and learning algorithms. 
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1. Introduction 

Image classification is a popular application of machine 

learning. A special type of image classification is referred to 

as image segmentation, where an image involves multiple 

target objects to be detected. In the context of image 

segmentation through machine learning, each target object is 

treated as an instance, which belongs to a specific class. 

In order to achieve effective recognition of a target 

object, it is necessary to make sure that features highly 

relevant to each specific class are selected for training 

classifiers. In general, feature selection can be adopted to 

achieve removal of redundant or irrelevant features for 

improving the classification performance, but the use of a 

traditional (single-task) feature selection method cannot 

guarantee that the performance for each class is improved, 

since the subset of features selected in a single-task manner 

may be relevant for some but not all of the classes [1].  

This has motivated the development of multi-task 

feature selection methods (MTFS) [1], i.e., a feature selection 

task per class. However, the same method of MTFS would 

usually show different suitability for different data sets [2], 

even if these data sets are produced by transforming the same 

original n-class data set into n different binary data sets. In 

this setting, while the same algorithm is used for training of n 

binary classifiers on the n binary data sets, the binary 

classifiers could show varied performance for different 

classes. In order to address the above issues, we propose a 

multi-task ensemble creation approach in this paper, through 

employing different methods of MTFS, leading to multiple 

subsets of selected features being produced for each class, in 

order for the same learning algorithm to create multiple 

ensembles of binary classifiers. 

The organization of the rest of this paper is shown as 

follows. Section 2 provides a review of feature selection 

techniques. In Section 3, we describe the procedure of our 

proposed approach of multi-task ensemble creation (MTEC). 

In Section 4, we describe the details of our experimental 

setting and discuss the results. The conclusions and further 

directions are given in Section 5. 



 

 

2. Related work 

In general, the procedure of feature selection involves 

four main steps, namely, generation, evaluation, stopping 

criterion and validation, as introduced in [3]. The generation 

step aims to generate a subset of features as a candidate ready 

for selection. The evaluation step is designed to employ a 

heuristic function, e.g., information entropy [4], in order to 

evaluate the goodness of each candidate feature subset 

produced at the generation step, i.e., it is to measure how 

important the features in the candidate subset are to be used 

for training high performance classifiers. After the evaluation 

of the features importance, a stopping criterion is used to 

determine whether the features selected so far have been 

good enough. If so, we can stop generating and evaluating a 

further candidate feature subset and thus the current subset of 

selected features is validated at the last step. Otherwise, it is 

needed to repeat the feature selection by generating and 

evaluating another candidate subset of features. Fig. 1 shows 

the whole procedure of feature selection. 

 

 

FIGURE 1. Feature selection process [3] 

 

In general, feature selection can be achieved through 

two main approaches, namely, filter and wrapper. The filter 

approach is designed to employ a heuristic to evaluate 

directly the importance of each candidate subset containing 

one or more features, without considering whether the subset 

of selected features fits the nature of the learning algorithm 

that is employed for training a classifier. Some popular 

heuristics used for evaluating the goodness of features 

include distance functions [5], entropy [4], information gain 

[6], correlation coefficient [7] and co-variance [8]. Different 

from the filter approach, the wrapper approach is designed to 

employ a learning algorithm for evaluating the goodness of 

each candidate feature subset by checking the accuracy 

obtained using the classifier trained on the feature subset.  

According to [3], the filter approach generally has low 

computational complexity, but may result in the case that the 

selected candidate feature subset is not really suitable for the 

employed learning algorithm to train a high performance 

classifier [9]. In comparison with the filter approach, the 

wrapper approach can guarantee that the feature subset that 

results in the production of the best performing classifier is 

finally selected. In other words, for a feature set, there are n 

candidate feature subsets, which would finally lead to the 

production of n classifiers through using the n feature subsets. 

It is straightforward to find the best performing one out of the 

n trained classifiers, so the feature subset on which the best 

performing classifier is trained would finally be selected as 

the best candidate [3]. However, since it is needed to check 

all the possible non-empty subsets of the original feature set 

as candidates for selection, the wrapper approach would 

really lead to high computational complexity [3]. 

Furthermore, as introduced in [10], in the setting of 

traditional machine learning, it is a common practice to 

undertake feature selection in a single-task manner, which 

indicates that each candidate feature subset is typically 

evaluated in general to measure how well the use of the 

candidate feature subset can lead to the production of a 

classifier of good overall performance. However, while the 

overall performance of a classifier is good, the performance 

for some classes may be much lower. In order to keep more 

balanced performance over various classes, it has been very 

necessary to achieve effective selection of relevant features in 

a class-specific way. This way of feature selection is referred 

to as multi-task feature selection [1], which aims to undertake 

n feature selection tasks separately for n classes. In other 

words, a feature subset is evaluated in terms of its relevance 

to each specific class, where the n finally selected feature 

subsets are normally different although they may have some 

overlaps, by means of having some common features.  

Both of the two above-mentioned feature selection 

approaches (filter and wrapper) can be used in the setting of 

MTFS, which will be explained in more details in Section 3 

as part of the proposed MTEC approach. 

3. The proposed multi-task approach of ensemble 

creation 

The proposed MTEC approach involves various ways of 

feature selection as shown in Fig. 2, which is presented to 

show the whole procedure in the form of a theoretical 

framework of ensemble learning. In this paper, the MTEC 

approach is designed to involve three parts of ensemble 

creation, i.e., ensemble creation through filter-based MTFS, 

ensemble creation through wrapper-based MTFS and 

ensemble creation using the full set of original features. 

For each of the above three parts, the created ensemble 

consists of n binary classifiers, where each binary classifier ht 

is trained to identify from a new instance the presence or 

absence of features relevant to a specific class ct. In order to  



 

 

 

FIGURE 2. Procedure of the proposed multi-task ensemble creation approach 

achieve such identification, the original data set that involves 

n classes needs to be transformed into n binary data sets in a 

binary relevance manner [2]. For example, while there are 

three classes (A, B and C) in a data set, it is normally needed 

to transform the data set into three new data sets that are 

assigned, respectively, the three pairs of classes: A/¬A, B/¬B 

and C/¬C. Through the above data transformation, a binary 

classifier ht, which is aimed to identify effectively the 

presence or absence of features relevant to class ct from a 

new instance, can be trained on a manipulated data set Dt. 

However, before training each binary classifier ht, feature 

selection needs to be applied to each manipulated data set Dt, 

in order to achieve using only the features relevant for class ct. 

In this way, there are n binary classifiers trained, respectively, 

on the n manipulated data sets (containing subsets of selected 

features), and the n binary classifiers make up an ensemble. 

In the setting of filter-based MTFS, a heuristic method, 

e.g., the correlation-based feature subset selection method 

(CFS) [11], is applied to each of the n manipulated data sets, 

separately, for evaluating the goodness of each candidate 

feature subset involved in the manipulated data set Dt. 

Therefore, a feature subset ft that is considered as the best 

candidate for class ct can be produced from the manipulated 

data set Dt, and is then taken for training a binary classifier ht  

as a member of the created ensemble. 

In the setting of wrapper-based MTFS, it is essential to 

employ a learning algorithm to train classifiers on various 

feature subsets drawn from each of the n manipulated data 

sets. However, while a rule learning algorithm is used, it is 

not necessary to take data manipulation in a binary relevance 

way but instead to learn a set of rules directly from the 

original data set D for each class ct. In this way, from each set 

of rules having class ct as the rule consequent, we can 

identify which features have been selected to generate rule 

antecedents and these selected features are thus considered to 

be relevant for the class ct. Each feature subset ft (containing 

features extracted from the antecedents of rules trained for 

class ct) will finally be used for training a binary classifier ht 

as a member of the created ensemble. More details can be 

found in [1], which shows in particular how the Prism 

algorithm can be used for MTFS. 

On the basis of the above description, there will be three 

ensembles of binary classifiers, which are referred to as 

primary ensembles. Inside each primary ensemble, the n 

binary classifiers are fused in a selective way. In other words, 

each binary classifier would provide either a positive output 

(e.g., A) or a negative output (e.g., ¬A). Ideally, it would be 

expected that only one of the n binary classifiers provides a 

positive output, such that the positive output would be used 

as the final output of the ensemble for classifying a new 

instance. However, in reality, there could be the two cases: (1) 

multiple binary classifiers provide positive outputs; (2) none 



 

 

of the binary classifiers provides a positive output. For both 

cases, the posterior probability of the positive class ct 

resulting from each binary classifier ht needs to be considered 

in order to measure the confidence of the positive output pt of 

the binary classifier ht and the positive output pbest of the most 

confident classifier hbest is selected as the final output of the 

primary ensemble for classification of a new instance. 

The above three primary ensembles (created through 

three different ways of feature preparation) are finally fused 

to make up a final ensemble, i.e., the outputs of the three 

primary ensembles are fused through majority voting 

(choosing the class that obtains the most votes) to derive a 

final output for classifying each new instance. 

4. Experimental results 

Some experiments on multi-task ensemble creation are 

conducted in this section using an UCI data set on image 

segmentation [12]. This data set contains 2310 instances and 

there are totally 19 features extracted from various instances. 

Each of the 2310 instances belongs to one of the 7 classes, 

namely, brickface, sky, foliage, cement, window, path and 

grass, which essentially represent 7 target regions of outdoor 

images. For the production of the above data set, 7 outdoor 

images were used leading to the 2310 randomly drawn 

instances as indicated in [12]. The frequencies of the 7 

above-mentioned classes are equally distributed over the data 

set, i.e., each class involves 330 instances.   

The experimental study consists of two parts. In 

particular, the first part aims to show the performance of 

various existing methods and find the ones more suitable for 

learning from the data set, whereas the second part is 

undertaken to show the influence of using the proposed 

MTEC approach on the overall classification accuracy and 

the F-measure score for an individual class that obtains a 

lower score than all the other classes.  

In the first part, the four learning algorithms, namely, 

Multi-layer Perceptron (MLP), C4.5, Naïve Bayes (NB) and 

K Nearest Neighbor (KNN), are used separately for building 

classifiers in a single-task manner using either the full set of 

features or the subset of selected features resulting from the 

adoption of the CFS method [11]. The above methods are 

compared in terms of overall classification accuracy. 

In the second part, the C4.5 and KNN algorithms are 

used to build classifiers in a multi-task manner. In other 

words, the original full feature set is manipulated to enable 

multi-task feature preparation and each of the above two 

learning algorithms (C4.5 and KNN) is used to build 

classifiers using different feature sets prepared using various 

methods. The overall classification accuracy obtained using 

the proposed MTEC approach is compared with the one 

obtained through various feature preparation ways, e.g., 

multi-task classification on the full feature set (MTCF), 

filter-based multi-task feature selection (FMTFS) and 

wrapper-based multi-task feature selection (WMTFS). 

Based on the results obtained in the above two parts of 

the experimental study, for each of the two learning 

algorithms (C4.5 and KNN), the feature preparation method 

that leads the learning algorithm to produce the best 

performing classifier is selected for further comparison with 

the proposed MTEC approach, in terms of the lowest 

F-measure score among all the scores obtained for the 7 

classes. In other words, while a method obtains the best 

overall performance, the performance for an individual class 

could be considerably worse than the one for all the other 

classes and thus we make the worst case comparison between 

the best performing method and the second best performing 

one, in order to see whether the best performing method 

obtains a higher valley than the second best performing 

method, among the performance obtained for all the classes. 

10-fold cross validation is taken for all the experiments 

on the KNIME platform. In terms of setting the parameters 

for some of the parametric learning algorithms, the KNN 

algorithm is set to involve 5 nearest neighbors (weighted by 

Euclidean distance) for instance-based classification of new 

instances, i.e., the value of K is set to 5 and the Euclidean 

distance function is used to calculate the distance between a 

new instance and each of the training instances; The MLP 

algorithm is set to involve up to 100 training iterations and 10 

units in each of the 2 hidden layers provided for training 

neural networks as the classifiers.  

In the setting of MTFS, the original data set is 

transformed into 7 binary data sets that involve the 7 pairs of 

class labels as follows: the ‘brickface’/‘¬brickface’ labels, the 

‘sky’/‘¬sky’ labels, the ‘foliage’/‘¬foliage’ labels, the 

‘cement’/‘¬cement’ labels, the ‘window’/‘¬window’ labels, 

the ‘path’/‘¬path’ labels and the ‘grass’/‘¬grass’ labels, in 

order to enable multi-task classification in the form of both 

single-classifier training and ensemble creation, following the 

procedure of the proposed MTEC approach as described in 

Section 3. In particular, feature preparation through taking 

the MTCF approach is designed to simply enable 7 binary 

classifiers to be trained on the 7 full sets of original features 

(i.e., each of the 7 full feature sets is identical to the original 

full feature set but is assigned a specific one of the 7 pairs of 

class labels shown above), using C4.5 or KNN. Moreover, for 

selection of relevant features in a class-specific manner, the 

FMTFS approach is based on the CFS method through data 

transformation in a binary relevance way [2] and the WMTFS 

approach is based on the Prism algorithm through learning a 

set of rules for class ct towards the extraction of the features 

(relevant for ct) from the antecedents of the rules [1]. The 

combination of MTCF, FMTFS and WMTFS essentially 



 

 

constitutes MTEC. 

The experimental results for the first part are shown in 

Table 1, for comparison of the classification accuracy 

obtained using various existing learning algorithms alongside 

different ways of feature preparation (i.e., using the full set of 

original features or a reduced set of selected features).  

TABLE 1. Single-task classification accuracy on segment data 

Methods Full feature set Reduced feature set obtained 

using CFS [11] 

MLP [13] 0.831 0.788 

C4.5 [14] 0.959 0.965 

NB [15] 0.763 0.816 

KNN [16] 0.960 0.927 

  

The results shown in Table 1 indicate that the adoption 

of the CFS method [11] in a single-task manner may fail to 

achieve advances in the performance, i.e., the performance is 

improved when using the C4.5 and NB algorithms for 

training classifiers, but the performance is dropped when 

using the MLP and KNN algorithms. This phenomenon 

indicates that the nature of the CFS method leads to the 

production of a feature subset that is more suitable for C4.5 

and NB but less suitable for MLP and KNN. However, the 

performance change resulting from the adoption of feature 

selection would indicate the likelihood of the creation of 

diversity between two classifiers trained on two different 

feature sets using the same algorithm, which shows the 

necessity to adopt both the full set of original features and 

different subsets of selected features produced using various 

methods of feature selection. Through the various ways of 

feature preparation, the final fusion of the primary ensembles 

created using various feature sets is likely to achieve further 

advances in the overall performance. 

TABLE 2. Multi-task classification accuracy on segment data 

Methods 
Using C4.5 for training 
classifiers 

Using KNN for training 
classifiers 

MTCF [2] 0.960 0.961 

FMTFS [2] 0.955 0.940 

WMTFS [1] 0.958 0.964 

MTEC 0.968 0.965 

 

Since the use of the KNN algorithm leads to the best 

performing classifier resulting from the full set of original 

features and the use of the C4.5 algorithm leads to the best 

performing classifier resulting from the reduced set of 

selected features, in the second part of the experimental study, 

we investigate further the influence on the performance of 

C4.5-driven classification and KNN-driven classification, by 

using our proposed MTEC approach through combining 

various ways of feature preparation. The results on the overall 

performance for the second part are shown in Table 2. 

Table 2 shows that the adoption of the MTEC approach 

leads to slight advances in the performance on the overall 

classification accuracy, for both C4.5 and KNN that are used 

separately for training classifiers, in comparison with the 

other ways of feature preparation. Also, in comparison to the 

results shown in Table 1, the MTEC approach also achieves 

to advance slightly the performance of both C4.5 and KNN. 

According to the results shown in Table 1 and Table 2, 

when C4.5 is used for building classifiers, the second best 

performing classifier results from the reduced set of selected 

features prepared using the CFS method. In particular, the 

overall classification accuracy obtained using the second best 

performing classifier is 0.965, while the lowest F-measure 

score among all the scores obtained for the 7 classes is 0.906, 

i.e., the F-measure score for the ‘window’ class is 0.906, 

which is lower than the F-measure scores obtained for all the 

other 6 classes. However, the adoption of the proposed 

MTEC approach results in a higher score (0.921) of 

F-measure for the ‘window’ class. 

When using the KNN algorithm, the second best 

performing classifier results from using the WMTFS method 

for feature preparation, i.e., the overall classification accuracy 

obtained using the second best performing classifier is 0.964, 

while the lowest F-measure score among all the scores 

obtained for the 7 classes is 0.899 and the class 

corresponding to the lowest F-measure score is again 

‘window’. However, the adoption of the proposed MTEC 

approach also achieves to obtain a higher score (0.905) of 

F-measure for the ‘window’ class. 

Overall, the adoption of the proposed approach leads to 

effective creation of multiple ensembles that are diverse and 

complementary to each other, while C4.5 and KNN 

classifiers are trained on multiple feature sets obtained 

through various ways of feature preparation. Moreover, 

through using the MTEC approach, the results show that the 

overall performance is improved, in comparison with taking a 

single way of feature preparation, and the valley among the 

performance scores obtained for all the classes is also higher, 

in comparison with the adoption of another method that 

results in the second best overall performance. 

5. Conclusions 

In this paper, the MTEC approach has been proposed to 

create multiple ensembles on various feature sets for 

advancing the performance of image segmentation. Also, 

some experiments have been conducted to compare the 

performance obtained using our proposed MTEC approach 

with the performance obtained using C4.5 or KNN alongside 

various feature preparation methods in both single-task and 

multi-task manners. The experimental results show that the 

adoption of the proposed MTEC approach leads to an 



 

 

improvement of the overall classification accuracy and also 

achieves a higher valley among the F-measure scores 

obtained for all the classes in comparison with the method 

achieving the second best overall performance. Therefore, the 

results can indicate the effectiveness of MTEC in dealing 

with image segmentation. 

In the future, it is worth to investigate possible ways that 

can be taken to achieve effective extraction of image features 

of multiple levels [17]. This way of feature extraction can 

enable the operations of both feature selection and ensemble 

creation in multiple levels of granularity towards deep 

processing of image data. We will also explore the use of 

fuzzy approaches [18], [19] based on fuzzy sets [20], such 

that fuzzy image segmentation can be achieved to deal with 

ambiguous cases. 
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