
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Toward Broad-Spectrum Autonomic Management

Citation for published version:
Smith, E & Anderson, P 2007, Toward Broad-Spectrum Autonomic Management. in Proceedings of ICN
2007, The Sixth International Conference on Networking. Institute of Electrical and Electronics Engineers
(IEEE). <http://homepages.inf.ed.ac.uk/dcspaul/publications/icn2007.pdf>

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of ICN 2007, The Sixth International Conference on Networking

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 23. Apr. 2024

http://homepages.inf.ed.ac.uk/dcspaul/publications/icn2007.pdf
https://www.research.ed.ac.uk/en/publications/f4576050-a912-486f-9dc0-3013affdb9bc


Toward Broad-Spectrum Autonomic Management
Edmund Smith

University of Stirling, UK
edmund.smith@stir.ac.uk

Paul Anderson
School of Informatics,

University of Edinburgh, UK
dcspaul@inf.ed.ac.uk

Abstract— The fields of autonomics and system configuration
share a common goal in decreasing the cost of ownership of
large fabrics. In this paper we present a combined vision in
which the technical advances of autonomics and the usability
advances of system configuration are merged. We present some
early system configuration research that forms the first steps
toward this vision.

Computer fabrics1 are becoming ever more complex and
ever more central to the operation of organisations. The cost of
a single fabric failure can easily dwarf the cost of employing
its administrators [1] but, as for software developers before
them [2], IT managers are discovering that simply adding more
people to a complex problem does not necessarily provide
better results.

Autonomics has as its origin the attempt to improve the
robustness of an infrastructure by enabling the fabric itself
to respond to changes in its environment [3]. But how can
we be sure that the the large-scale properties of the fabric
will be maintained as it attempts to heal itself? Allowing
the fabric to modify itself and evolve its own solutions will
make management more difficult, not less, unless the power
of administrators to understand and control their fabric is not
also increased.

The authors’ background is not in autonomics, but in
system configuration [4], the study of correctly, accurately
and scalably building and maintaining computer fabrics. In
this paper we present our vision of an autonomic fabric, a
fabric which can recover from many errors without human
intervention, yet never be beyond the control or understanding
of its administrators. This, we believe, will be a fabric which
is affordable, both in terms of the effort needed to maintain it
and in terms of its support for critical applications.

I. INTRODUCTION

Much current research focuses on increasing the perfor-
mance of a fabric [5], and on improving the security measures
deployed upon it. But down time due to configuration errors
has a significant effect upon costs [6], [1], while the benefits of
modest performance improvements may be harder to quantify.
Similarly, even the best security tools can be compromised by
errors in the configuration of the machines they are deployed
upon, or by slowly or improperly patched software.

To understand how we can optimise the value a fabric
provides, we must begin by understanding its purpose. A
fabric exists only to provide its owners with some functionality

1We use the term to denote any large, heterogeneous computer installation.

or deliverables. The precise requirements will vary widely
between fabrics and also over time, but they are the only
absolute criterion against which we can judge a fabric’s
performance at any given moment. We will say that a fabric
that is delivering upon its objectives is healthy, one that is not,
is not.

If these objectives include performances bounds, then steps
must be taken to ensure that those bounds are met. A security
policy will need to be enforced on publicly networked fabrics,
although the details of that security policy will vary depending
upon the specific application to which the fabric is put. Our
argument is not that performance and security are unimportant,
it is that they are considerations only as part of the overall
objectives that a fabric is trying to fulfill.

To take the example of autonomic application optimisation,
it cannot be clear from the outset that in every case the
potential gains in terms of response time will, in terms of
raw costs, outweigh even a single failure resulting from
parameter optimisation, and as more parameter sets are tried,
the higher the probability that poorly tested combinations
will be explored. Here the trade-off is seen to be between
robustness and performance, and must be decided in the light
of a fabric’s objectives.

If fabrics are to heal themselves autonomically, they must
know what it means for them to be healthy, in the same way
that for a system administrator to know what the appropriate
way to fix a fabric is, he must know what it has to do. This is
the same as saying that a fabric must have a notion of what it
is that it is trying to deliver upon, because only in the context
of its objectives can it reliably identify a state as unhealthy
and carry out meaningful recovery strategies. In the course of
this paper, we will outline a vision of goal-directed activity
on the part of an autonomic system, acting continuously to
maintain control, and to restore and enhance compliance with
an overall specificiation.

As many previous papers have noted [7], [8], empowering
a fabric to play a more active rôle in realising its specification
does not, of itself, decrease the cost and difficulty of managing
that fabric. We must be sure that the specification itself can
be maintained and understood, and that it correctly encodes
an organisation’s requirements. The complexity of many real
fabrics is much too high for them to be understood without
abstractions [7]; here we will outline a model of multi-
resolution specification, in which finer and finer detail is
specified in a smaller and smaller context.

But we will need still more than this for large fabrics

v1lfass
Typewritten Text
Smith, E., & Anderson, P. (2007). Toward Broad-Spectrum Autonomic Management. In Proceedings of ICN 2007, The Sixth International Conference on Networking. IEEE Computer Society.



compiler

1

2

3

client

4

3

client

4

3

client

4

Fig. 1. Configuration with LCFG. (1) Administrators create fabric speci-
fications. (2) These are assembled into machine profiles. (3) Each machine
receives its profile. (4) Components act on the profile to configure the machine.

to become truly manageable. Not only must there be many
specifications at many resolutions, it must also be possible
to divide specifications at a particular resolution along the
boundaries of human expertise: there is seldom just one expert
administrator involved in the running of a fabric, and many
people with different skills typically work together. Dividing
a specification in this manner, and merging the different parts
together, is called federation in system configuration.

The remainder of this paper is structured as follows. The
most advanced system configuration systems known to be
in use, two-level systems, are outlined in the next section
as the starting point of our approach. Section III is the
core of our vision, based on extending two-level systems to
many levels, and incorporating more advanced specifications
with autonomic input. Section IV talks about some of the
specification technologies which will be needed to make such
systems possible, and section V discusses some of the research
in this area. Our conclusions are spelled out in section VI.

II. TWO LEVEL SYSTEMS

The current state of the art in the specification and manage-
ment of large fabrics is the two-level system [9], [10], [11]
which is split into two components, one for assembling a
specification of the target state for each node in the fabric,
and one for realising that state separately on each node.
These components operate more or less independently, one
to reassemble the fabric’s specifications whenever administra-
tors change details, the other to reconfigure target machines
whenever they diverge from their specification.

In a typical system, each node is associated with a set of
property declarations. In the simplest case, these are simply
values which can be substituted into the configuration files on
the machine, for example the host name, or the address of a

DNS server. These declarations are often stored in files on a
central server, and several such files may be used to build the
specification for each node. This allows for input from several
different individuals or teams on the correct specification for
a machine, since for fabric of sufficient size, it is usually
desirable to split teams along functional lines.

There will be many property declarations for each node,
and because several individuals, interests, or aspects, may be
responsible for selecting them, some of them may well conflict
with one another. The task of selecting which values will
be passed on to the clients falls to a configuration compiler,
which processes all the declarations for each node and selects
between them, usually by way of a simple rule in current
systems, for example where they occur in the files (order of
lexical occurrence).

A configuration compiler provides one other important
function: it enables the definition of classes of machine,
where machines in the same class share some subset of their
configuration properties. A simple scheme of this kind can
be developed easily, but even such limited implementations
often become the greatest strengths of modern configuration
tools. If the sophistication of the compiler is increased, for
example by allowing nodes to have membership of multiple
classes, even greater rewards can be achieved, at the cost of
selection problems when there are conflicting specifications
for a single machine from each of its classes. We will return
to this problem in more detail later.

The importance of being able to define classes is that it
becomes possible to specify the characteristics of a node
not in terms of its basic properties like its host name and
DNS server, but in terms of the classes which it embodies.
If we think of membership of a class as a boolean property
in a different domain from our basic properties, then by
adding a classing mechanism, we have created a new space of
properties, differing from the first set in terms of resolution2.
The generalisation of this approach is at the heart of multi-
resolution modelling, and will be discussed further in section
III.

One well-established example of a two-level system is
LCFG [12], [9], whose rough architecture is presented in
figure 1. A set of node files and “header” files are created by
administrators. Header files represent data common to classes
of machine, and are bound to node files by C pre-processor
include directives. These are processed by the LCFG compiler
to yield a set of profiles: unambiguous property sets describing
the intended configuration of each machine.

The reason for explicitly introducing LCFG is the inter-
esting properties of its deployment engine, the component
responsible for configuring a machine from its specification.
Once each machine has received its profile, it is processed
by a group of independent components, each of which is
responsible for an orthogonal subsystem (orthogonal in that
no two components try to configure the same OS entity).
Each component is able to determine whether the current

2At higher resolution means in finer detail, lower resolution, broader detail.



Nodes

Aspects

Services

Service classes

Installation

Autonomics Team 1 Team 2

Bindings:

Specifications:

c

b

d

f

a

e

Fig. 2. A sketch of a multi-resolution system. Note that autonomic modules
can provide either specification (as in (d), which might be an application
parameter tuner), or bindings (as in (b) and (e), which might be a fault
tolerance module). (c) might be a separately managed aspect, like hardware
with its own specialists. (a) contains a low-resolution specification of the
whole fabric’s goals, whereas by (f) almost all direct specification is derived
from more general network properties.

specification is consistent with its deployed entities, and take
appropriate action if it is not. This might be as simple as
rewriting a service’s configuration files and then restarting it,
or as complicated as altering kernel parameters and requesting
a reboot.

Components do not need to interact directly because they
all act from a common, unambiguous specification, and thus
have only to interpret the semantics of that specification in the
same way to interoperate seamlessly. This is a powerful and
understandable way to manage these large-scale interactions:
specify a target state, a goal, and work toward it, rather than
trying to manage the fabric in terms of behaviours which might
achieve that goal.

III. MANY LEVEL, MULTI-RESOLUTION, SYSTEMS

Two-level systems make configuring a node from its speci-
fication easy. Current systems are limited instead by the ways
in which such specifications can be created and managed.
A good example is their inability to specify relationships
between nodes or aspects: for a given service, we can specify
most of the configuration of client nodes and server nodes
easily enough, but correlating shared or dependent properties
between them must be done manually (for example, specifying
consistent port numbers and host names).

Because there is no explicit representation of the properties
of the fabric as a whole, that is properties are ascribed only to
the nodes of which it consists, an appropriate low-resolution
specification must be both deduced and manually maintained
by administrators. This makes it difficult to separate logi-
cally distinct elements of the specification, preventing any
automated oversight, and hindering attempts to integrate the

work of system administrators (and, as we shall see later, of
autonomic modules).

Our vision is of a solution in terms of multi-resolution
modelling, in which fabric configurations are specified and
maintained at many different, explicit levels of abstraction.
But what constitutes a well-defined level of abstraction, and
how should more be introduced? Our view is that there should
be two parts to defining a new, lower-resolution view of the
system: the specification of a higher resolution description for
each new lower-resolution property, and then the binding of
lower resolution properties to higher resolution entities.

In the case of the class mechanism of existing systems,
the first part is readily apparent, being the class definition in
which property values shared by all nodes in that class are
listed. The binding of classes to nodes is usually done “upside
down” at present however; each node specifies a list of classes
from which it inherits, rather than our (functionally equivalent)
definition of each class being bound to a list of nodes which
embody it.

But we can take this approach much further. Consider a
potential, lower resolution description of the properties of
a fabric in terms of services which are deployed upon it.
Suppose, for the sake of argument, we consider a service to
consist of a set of clients and a set of servers; the clients
needing to be configured to use the correct servers, and each
server potentially needing a list of its clients. Let us say that
a specification at this resolution is just a server and a list of
clients for each service.

We will need to have separately defined the bindings for
each service in terms of a set higher resolution properties
which must be correlated between the server and the client.
Clients might need their server host name property for that
service to match the server’s host name, and servers might
need a map containing some information for all their clients
(for example, a DHCP server will need a list of all its clients’
MAC addresses). Both clients and servers will need to be
configured to make the service available, which we can model
as them inheriting certain classes3.

By creating this lower resolution specification, we have
made the knowledge of the desired fabric services generally
available, facilitating reasoning by both administrators and
tools. We have also created a natural level for a powerful
fault tolerance module, which can now simply manipulate the
choice of nodes for server and client rôles based, for example,
on monitoring information. This fault tolerance module has a
well defined interface for interacting with administrators, and
is thus manageable by them. In essence, it is similar to a junior
member of staff who sleeps at his desk, changing the service
assignments when monitoring detects a problem.

The key point here is not the exact form that service
specifications take, but the idea that specifications at multiple
resolutions, coupled with bindings between lower and higher

3Were we to allow classes to be parameterised, we could make our
correlated data parameters of those classes, and thus deal only with properties
one resolution higher (classes). This detail isn’t essential for the scheme to
work however.



resolution entities can be used to model a fabric in a powerful
and intuitive way. Above services, we might define clusters,
virtual organisations, or sub-fabrics which are largely self
contained with well-defined interfaces and provisioning agree-
ments. In some environments, more tiers would be needed, but
the approach remains the same: the expression of specification
in terms of lower and lower resolution views.

In this outline then, autonomic modules act like administra-
tors with limited scope and authority. We have already seen
one example, changing low resolution properties to provide
fault recovery. Autonomic modules could equally operate at
the highest resolution, tweaking the parameters of an appli-
cation to optimise its performance, as suggested in [3]. By
bounding the authority and scope of the module, we can
be confident that it cannot modify parameters beyond a safe
ranges, and that it can be overridden where necessary by
human controllers.

For autonomic modules operating at lower resolution, the
benefits are also clear. By working as part of a team with
human and other autonomic modules, they can be made much
smaller and simpler, and should need less context than they
might otherwise. With an explicit, visible, overridable and
queryable interface, administrators are more likely to trust an
autonomic module to operate, and guaranteed hard bounds on
what it is possible for the module to do protect the organisation
in the event that it fails.

We believe this vision offers enormous power for autonomic
behaviour. To create a complete automated system adminis-
trator from scratch will remain unrealistic for the forseeable
future, due to the sheer complexity of the systems, their rate
of evolution, and the amount of expertise that is required. By
working with administrators to specify a configuration, and in
turn leveraging their expertise, autonomic systems could much
more rapidly become a useful part of the systems workplace.

IV. WORKING WITH SPECIFICATIONS

In the previous section we presented the multiple resolution
model of fabric specification. The crucial bar, at present, to
the realisation of such a model is the lack of sufficiently
sophisticated tools for working with such specifications. Such
tools, which will be needed to build a coherent network
specification from many sources at many resolutions, are in
their infancy at the time of writing [14]. This may be attributed
both to the slow uptake of two-level systems and to a lack of
vendor engagement [15]. Here we present an overview of some
theoretical problems in this area; the next section summarises
prototypes and current progress.

A. Aspect orientation

In section II we noted that we might wish a node to embody
more than one class. When working with specifications, this
is usually called aspect orientation, to prevent it from being
confounded with multiple inheritance in object-oriented pro-
gramming (specifications do not compose like objects). In the
sketch of a multi-resolution system we presented (see figure 2)

aspects were the first level of abstraction, equivalent to node
rôles.

Because of the significant part aspects play in mediating
between administrators and between concerns, the way in
which it is most useful to compose them is still unknown. If
multiple aspects disagree on the value of some property, are
there meaningful ways to decide between them, for example
can authority be vested in individuals (authors), declarations,
aspects or particular choices of value to make this mediation
automatic? An effective solution to this problem will steer
between providing brittle, inflexible boundaries with too much
negotiation required between concerns, and loose boundaries
in an unpredictable hierarchy, in which it is hard to know
which values will dominate.

B. Authorisation
It will not be sufficient in the systems of the future to

assume that every possible source of specification is entitled
to modify any configuration properties it chooses, at any level
of configuration. Determining which entities a source can
legitimately interact with, and in what ways it can do so, is the
problem of authorisation. Authorisation can occur concurrently
at many different layers and in many different places in the
system, both to force clean boundaries between administrative
teams and to provide protection against software errors.

To illustrate the first case, consider that some sites will
find it desirable to ensure that the security team is not
overruled without consultation, and that any deviations from
their specifications are cleared with them personally first. More
generally, making sure that teams interact properly at certain
boundaries of authority, rather than simply changing each
others specifications, is likely to be generally desirable, and
can be enforced by an authorisation system.

To see the second case, take the example of our autonomic
application tuner. We can prevent it from damaging the con-
figuration of any other application, and from rendering the
application non-functional by an ill-formed or invalid choice
of parameters. This may allow us both to code the tuner more
simply and generally, and also to trust it to operate (as we
pointed out in section I, without such guarantees some sites
will be wary of deploying such a tuner, given the huge costs of
downtime). More generally, we can enforce boundaries on the
operation of autonomic software, reducing the risk that errors
will compromise service provision.

C. Loose specification and constraints
Once the system has been split into multiple intersecting

aspects, it is often more desirable to use an aspect to express
constraints on what a particular value should be, rather than
choosing a value. Often there are a set of reasonable values for
each property, yet because authority for the value is delegated
between multiple aspects, the writer of each aspect feels
obliged to provide a specific value. This can give rise to many
unexpected, artificial conflicts between aspects.

The obvious solution is to allow values to be specified more
loosly, using constraints. The sheer scale of the fabric immedi-
ately makes this difficult (for example, a mature LCFG fabric



may specify 5,000 properties per node), and has prompted a
search for non-optimal solvers which provide some looseness,
but much more rapidly.

For the two essential configuration property types, maps and
scalars, a variety of useful constraints have been proposed.
For maps these include, partial ordering of elements, and both
key and value inclusion and exclusion (specifying that the
map must contain such a key, or must not, or must contain
a key with such a value, or must not). For scalars, these have
included equality, set membership (the scalar’s value must be
one of a set), regular expression matching, and referencing
(the scalar’s value must be equal to another scalar’s value)
[16].

D. Validation

Related to the concept of constraints on values, is the
idea of validating those values. This can be used to catch
typographical and other simple errors. An easy example is
validating that where an IP address or MAC address has been
entered, the address is valid and reasonable (any degree of
validation from checking it consists of the right format, to
checking it falls within the fabric’s range of addresses, is
reasonable and useful).

Validation can also play a more significant rôle in checking
that large scale properties are maintained, and checking for er-
rors that might have arisen. When a specification is built from
many parts by a complicated process, such an independent
verification can be important, and difficult to impossible to do
by hand. This idea of correctness of the specification is one of
the few metrics of interest. As simply generating the fabric’s
specification from correctness properties is impractical, both in
terms of complexity and in terms of the amount of other data
that must be somehow specified, we suggest instead that it is
significantly cheaper and more practical to test a configuration
for correctness, and reject it if it is not.

For an idea of what such correctness consists of, consider
a network in which there are many servers and consumers of
the services they provide. With many sources of configuration,
and many people involved, it can be hard to know that all
clients are expecting services from servers which are actually
trying provide them. Yet this is something that can be asserted
logically and verified at compile time, before ever reaching
the network. Another example is, when using virtualisation,
to check that redundancy is not compromised by mapping
multiple redundant instances to the same physical machine.
This too can be asserted logically and verified.

E. Workflow

A final problem we consider here is the transition between
specifications, something which occurs regularly and must be
carefully managed. Although we have so far considered a
specification as a static statement of the target of the system,
which is to be achieved as rapidly as possible, in practice,
not all routes between specifications are equal nor acceptable.
Downtime is often intolerable, and migration must be as
transparent as possible.

The workflow problem is to find a path between an existing
specification and a new specification which maintains their
critical shared properties. At a network level, this could entail,
when a service is specified in both specifications, but the
servers which provide it change, finding a path between the
two such that service provision is constant, despite some
servers ceasing provision, and some beginning provision. Such
solutions can be found by hand, but the process is both time
consuming and error prone.

V. RELEVANT IMPLEMENTATIONS

This section provides a brief and incomplete survey of
research in this area which has lead to implementations, both
prototype and well-established.

A. Current production tools
1) LCFG: LCFG is probably both the most advanced two-

level system, and the oldest still in use. It provides a form of
aspect orientation, using C pre-processor include directives to
pull aspect headers into a node’s specification. Declarations
are resolved between using file ordering (the last line in the
node’s specification has the highest priority).

Individual property values can be validated using regular
expressions to ensure well-formedness, also keys in maps can
be specified in terms of their partial ordering, and LCFG will
perform a topological sort to provide the given ordering. This
is used, for example, to manage the order in which init
scripts run.

LCFG also provides an example of a primitive service-
resolution specification in the form of spanning maps which
enable a list of clients and data about them to be automatically
collated for each server, via a publish/subscribe mechanism.
The interested reader is referred to [17].

2) SmartFrog: SmartFrog4 is an advanced fault tolerant
system, focussed primarily on deployment and error recovery.
Experimental work was done to combine it with LCFG to
provide fault tolerant services [18]. Applications and services
are bound together loosely at run-time, and in the event of
failure, a new instance can be deployed from an aspect-like
specification.

3) Alloy: Alloy [19] is an advanced example of a configura-
tion system, which takes specifications in predicate logic, and
uses an advanced solver to efficiently create network transport
configurations. This has many conceptual advantages, however
doubts must remain about its extension to all properties of
all machines in an infrastructure; even if this can be done
efficiently, predicate logic may be too difficult to allow day to
day modifications to be made in it.

B. Recent prototypes
1) mcfg: mcfg5 is an experimental aspect compiler which

takes a specification of a network in terms of any number of
aspects and nodes, each of which may inherit from any number
of aspects in any combination. The properties of all aspects

4Standardised as CDDLM in the Global Grid Forum.
5All prototypes are available from the authors on request.



from which a node inherits are resolved together using rules
of precedence based on the priority of a given constraint and
its locality in the aspect graph of that node.

Its other contribution is to offers two simple constraint
operators for maps: inclusion proposes that the map should
contain a scalar whose value is the given value, exclusion
proposes that the map should not contain a scalar whose value
is the given value. These are resolved using broken resolution
(resolving one property at a time) which is fast but does not
allow all legitimate cases involving references to be resolved.

2) cfgas: cfgas is an experimental authoriser, which acts
to restrict the resources whose value can be “tainted” by
any particular user. The prototype implementation uses the
file system for authentication. It takes a set of specifications
in a standard format [14], and requires that each value be
marked with provenance information regarding the files that
were involved in deciding its value. Each file is examined to
determine which local users could have modified it, and this
is combined with a set of policies specifying which resources
may have been edited by which users in which generated
specifications to decide whether the specification is authorised.

3) cfgw: cfgw can take a group of specifications and a
set of predicates in first order logic detailing correctness
properties, and assert either their truth or falsity. Variables may
be introduced by quantifiers (existential or universal) and have
a domain of either the set of machines specified or a set of
resources in a map. Any predicate that cannot be shown to be
true can trigger either output of a predicate specific warning
or a full truth graph, justifying the decision to reject it.

VI. CONCLUSIONS

This paper presents a framework for the integration of the
best elements of modern autonomics research and system
configuration practice. The objectives of these two areas are
the same, to affordably and effectively control fabrics, yet there
has thus far been little overlap between them.

Our vision is primarily of clear specification of the target
state of the network at all levels, and of goal-directed action
which can always be understood as having this specification
as its objective. When behaviour rather than an objective
is specified, fewer options for delegation, automation and
validation available. Equally importantly, clarity is compro-
mised, and in this environment, the cost of mistakes can be
astronomical. Ensuring that administrators understand their
networks, especially when autonomic systems are operating
on them, will remain the key challenge for designers in the
future [7], [8].

When specifications lie at the centre of the operation of
the network, it becomes possible to integrate the work of
both autonomic tools and system administrators together in
a coherent way. Production implementations in this area lag
well behind research, but we presented a brief survey of the
capabilities available in the field, and some prototypes created
by us to investigate these issues.

Autonomic systems have yet to find their rôle in the day to
day workplace of the system administrator. Although many
aspects of our story are still incomplete, we believe our
core vision of a multi-resolution autonomic fabric, in which
autonomic modules and system administrators interact through
explicit specifications, is both a powerful and a realisable one,
and offers a way forward for the integration of autonomics
with existing staff and systems.

REFERENCES

[1] D. A. Patterson, “A simple way to estimate the cost of downtime,” in
Proceedings of the Sixteenth Systems Administration Conference (LISA
’02). Usenix, 2002, pp. 185–188.

[2] J. Frederick P. Brooks, The Mythical Man-month: Essays on Software
Engineering. Addison-Wesley Longman Publishing Co., Inc., 1978.

[3] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer Magazine, January 2003.

[4] P. Anderson, System Configuration, ser. Short Topics in System Admin-
istration, R. Farrow, Ed. SAGE, 2006, vol. 14.

[5] Y. Diao, J. L. Hellerstein, S. Parekh, and J. P. Bigus, “Managing
web-server performance with auto-tune agents,” IBM Systems Journal,
vol. 42, no. 1, 2003.

[6] D. Oppenheimer, “The importance of understanding distributed system
configuration,” in Proceedings of the 2003 Conference on Human
Factors in Computer Systems workshop, April 2003.

[7] R. Barrett, E. Kandogan, and J. Bailey, “Usable autonomic systems: The
administrator’s perspective,” in Proceedings of the First International
Conference on Autonomic Computing (ICAC’04), 2004, pp. 18–26.

[8] D. Russell, P. P. Maglio, R. Dordick, and C. Neti, “Dealing with ghosts:
managing the user experience of autonomic computing,” IBM Systems
Journal, vol. 42, no. 1, 2003.

[9] P. Anderson and A. Scobie, “LCFG: the next generation,” in UKUUG
winter conference, 2002.

[10] R. G. Leiva, M. B. López, G. C. Meliá, B. C. Marco, L. Cons,
P. Poznański, A. Washbrook, E. Ferro, and A. Holt, “Quattor: tools
and techniques for the configuration, installation and management of
large-scale grid computing fabrics,” Journal of Grid Computing, vol. 2,
no. 4, December 2004.

[11] N. Desai, A. Lusk, R. Bradshaw, and R. Evard, “BCFG: A configuration
management tool for heterogeneous environments,” in Proceedings of
the 5th IEEE Conference on Cluster Computing, 2003, pp. 500–503.

[12] P. Anderson, “Towards a high-level machine configuration system,” in
Proceedings of the Eighth Systems Administration Conference (LISA
’94). Usenix, 1994, pp. 19–26.

[13] M. Burgess, “Computer immunology,” in Proceedings of the Twelfth
Systems Administration Conference (LISA ’98), 1998, p. 283.

[14] P. Anderson and E. Smith, “Configuration tools: working together,” in
Proceedings of the Nineteenth Systems Administration Conference (LISA
’05). Usenix, 2005, pp. 31–37.

[15] R. Barrett, E. Kandogan, P. P. Maglio, E. M. Haber, L. A. Takayama, and
M. Prabaker, “Field studies of computer system administrators: analysis
of system management tools and practices,” in Proceedings of the 2004
ACM conference on computer supported cooperative work, 2004, pp.
388–395.

[16] A. Holt and J. Hawkins, “Making collaborative system administration
easier: constraints and declarative aspect precedence,” in Proceedings of
SAICSIT 2004, Stellenbosch, South Africa, 4–6 October 2004, 2004, pp.
249–253.

[17] P. Anderson, The complete guide to LCFG. [Online]. Available:
http://www.lcfg.org/doc/guide.pdf

[18] P. Anderson, P. Goldsack, and J. Peterson, “SmartFrog meets LCFG:
autonomous reconfiguration with central policy control,” in Proceedings
of the Seventeenth Systems Administration Conference (LISA ’03).
Usenix, 2003, pp. 213–222.

[19] S. Narain, “Network configuration management via model finding,” in
Proceedings of the Nineteenth Systems Administration Conference (LISA
’05). Usenix, 2005, pp. 155–168.




