
Multi-resource Allocation with Unknown

Participants

Ajoy K. Datta, Lawrence L. Larmore

School of Computer Science

University of Nevada Las Vegas

Las Vegas, USA

Firstname.Lastname@unlv.edu

Stéphane Devismes, François Kawala

VERIMAG

Université Joseph Fourier

Grenoble, France

Firstname.Lastname@imag.fr

Maria Potop-Butucaru

LIP6

Université Pierre et Marie Curie

Paris, France

Maria.Potop-Butucaru@lip6.fr

Abstract—We define the problem of multi-resource allocation,
which is an extension of the dining philosophers problem. We
apply this problem to systems where participants (here called
clients) are unknown. We propose a solution for 2-resource
allocation in static networks, then, explain how to modify our
protocol to handle client dynamicity. Extend our solution to
handle larger resource requests is let as a future work.

I. INTRODUCTION

Research in distributed resource sharing problems (both

in static and dynamic networks) has been active for more

than three decades. Variants of the problem include mutual

exclusion, group mutual exclusion, k-exclusion, k-out-of-m ex-

clusion, local mutual exclusion, dining philosophers, drinking

philosophers. (See the book of Nancy Lynch [1].)

All the above problems assume knowledge of one or more

of the following parameters: the number of processes, the

number of resources, the layout of the resources, and the

degree of synchronization. In the recently emerging study of

dynamic large scale networks (e.g. P2P, ad-hoc, sensor or

robot networks) knowledge of these parameters can hardly be

computed. Generally, in these systems, processes have only a

partial view of the network.

In this paper, we consider asynchronous message-passing

systems where a large number of participants (or clients)

want to simultaneously access several resources in mutual

exclusion. Due to the arbitrary large number of participants, we

focus on the design of a resource allocation protocol in which

participants are unknown. That is, each participant only knows

its own identifier and that of the resources it needs. The main

challenge is then to prevent deadlocks, as participants do not

know each other, and may have conflicting requests.

In the following, we refer to the aforementioned problem

as the multiple-resource allocation problem or the k-resource

allocation problem. In this problem, there are m ≥ k resources

in the system, clients know neither all resource identifiers nor

m, and clients can request up to k resources simultaneously.

Actually, clients only know the identifiers of the resources they

need.

This problem is closely related to k-out-of-m exclusion [2],

[3]. In k-out-of-m exclusion, there are m resource units of

the same type and each process (client) can request up to

k units. Conversely, in the k-resource allocation problem,

resources may be of different types and the clients only know

the identifiers of the resources they need. Moreover, resources

are passive in k-out-of-m exclusion, while here, resources are

active in a sense that they cooperate to resolve conflicts.

The k-resource allocation problem can be also compare

to the drinking philosophers problem [4]. In this latter, on

a finite undirected graph G we have two types of processes:

Philosophers on G’s vertex, and Bottles on G’s edges. Initially

every philosopher is tranquil. A tranquil philosopher may

becomes thirsty, then he tries to acquire the (none empty)

set of bottles he needs to becomes drinking. Later, in a

finite time he stops drinking, and again becomes tranquil.

In the k-resource allocation problem, clients have the same

behavior. Likewise, the bottles correspond to the resources. But

while in the drinking philosophers problem, every philosopher

know his neighbors (i.e. on G) and have to exchange bottles

with them (to satisfy every thirsty philosopher), in the k-

resource allocation problem, clients do not know each-other,

and resources are not mobile. Moreover, resources (bottles)

are passive in the drinking philosophers problem, while here,

resources are active in a sense that they cooperate to resolve

conflicts.

The rest of the paper is organized as follows: In Section II,

we formally define the model used throughout the paper. In

Section III, we present a two-resource allocation algorithm for

systems with unknown participants. In Section IV, we explain

how to handle dynamicity of clients. Section V is dedicated

to future works.

For space considerations, proofs have been omitted.

II. MODEL

A. The Problem

We consider an asynchronous message-passing system in

which processes are divided into two classes named clients

and resources, respectively. Each client needs to access some

resource in order to execute a portion of its code called its

critical section. Each access to a resource (that is, the critical

section) is done in finite yet unbounded time and must satisfy

mutual exclusion, i.e., each resource can be used by at most

one client at a time. However, a client may simultaneously

access to up to k resources. Hence, we can specify our problem

as follows:



• Safety: Each resource is used by at most one client at a

time.

• Liveness: Each request of at most k different resources

is eventually satisfied.

We refer to this problem as the k-resource allocation

problem. In this paper, we restrict our study to the case where

k = 2, that is, the two-resource allocation problem.

B. Processes

We denote by C the set of clients and by R the set

of resources. We assume that C and R are disjoint and

contain finitely many processes. (In most applications, there

are far fewer resources than clients.) C contains n clients:

{c1, . . . , cn}, and R contains m resources: {r1, . . . , rm}.

However, n and m are unknown to the processes. By a slight

abuse of notation, we will identify a process and its identifier.

Identifiers are ordered, allowing us to compare two processes.

Each process executes a local algorithm and has a finite

sized local memory. Communications between processes are

made by passing messages through asynchronous communi-

cation links. Every process p1 is able to send messages to any

other process p2 through a link, provided that p1 is aware of

the p2’s identifier. Initially, each client only knows its own

identifier. Clients learn the identifiers of the resources they

need thanks to a resource discover oracle [5], [6]. Then, they

can communicate their identifiers to the targeted resources,

and so on.

Conversely, resources are organized along a rooted ring.

“Rooted” means that there is a unique distinguished resource

called root.1 Each resource ri knows whether it is the root

of the ring, thanks to the Boolean function Root(ri). Each

resource ri knows its successor in the ring thanks to the

function Next(ri).
A client can access the output of the resource discover

oracle using the unblocking function getRequest. In absence

of any request getRequest returns {⊥,⊥}. If the application

layer requests the use of one resource ri, getRequest returns

{ri,⊥}. If the application requests the use of two resource ri
and rj , getRequest returns {ri, rj}.

C. Communication Links

All the links are reliable, i.e., a message sent by e through

the link to f is delivered by f within finite time. Links

also satisfy integrity, each message sent is delivered exactly

once, and no unsent message is delivered. However, links are

asynchronous, i.e., there is no bound on the delay to deliver a

message. Finally, there is no assumption on the delivery order:

if a message m′ is sent after a message m using the same link,

then m may arrive before or after m′.

Note that the assumption on link reliability is not that strong

in our setting as any unreliable link can be made reliable

using a repetition mechanism similar to the alternating bit

protocol [7].

1N.b., the only use of the root will be to initiate a perpetual token circulation
in the ring.

R1 R2

C1 C2

owns owns

waiting

Fig. 1. Deadlock involving two clients

.

Each process can receive a message using the non-blocking

function receive(F, {var1, . . . , varn}). If there is no F -type

message available in the process’s reception buffer, the func-

tion returns false. Otherwise, the data of the message of type

F is allocated in variables {var1, . . . , varn}, after that the

receive function will return true and pops the message from

the reception buffer.

III. THE ALGORITHM

Variable 1 for each client c.
Declarations :

Array of RESOURCEID : D
CLIENTID : c

Initialization :

D ← {⊥,⊥}

Algorithm 1 The main loop of each client : c.

1: while True do

2:
3: if D = {⊥,⊥} then

4: D ← RequestProvider.getRequests()
5: if D[1] 6= ⊥ then

6: if D[2] 6= ⊥ then

7: send〈NewRequest, c, 2, D[1]〉 to D[2]
8: else

9: send〈NewRequest, c, 1,⊥〉 to D[1]
10: end if

11: end if

12: end if

13: if receive〈resAllowed〉 from r then

14: 〈CriticalSection〉
15: if D[2] 6= ⊥ then

16: send〈Done〉 to D[2]
17: else

18: send〈Done〉 to D[1]
19: end if

20: end if

21:
22: if receive〈endACK〉 from r then

23: D ← {⊥,⊥}
24: end if

25: end while

Our algorithm is split into two parts: an algorithm for

clients (Variable 1 and Algorithm 1) and another for resources

(Variable 2, Algorithms 2, and 3). Below, we give an informal

description of our solution.

A. Overview

We first present the basic principles used in our algorithm.



Variable 2 for each resource r.
Declarations :

Array of REQUESTQUEUEELEMENT : Qstrong , Qweak , Qtoken

REQUESTQUEUEELEMENT : Request
RESOURCEID : rmin

BOOLEANS : Lock, NewHead, StrongReady ,

WeakReady, HoldingToken, SendingToken
Initialization :

Lock ← false
NewHead← false
StrongReady ← false
WeakReady ← false
HoldingToken← Root(r)
QStrong ← ∅
QWeak ← ∅
Qtoken ← ∅
rmin ← r

1) Queues: In any solution to the two-resource allocation

problem, a resource can only be allocated to one client at

a time. During the time an client uses the resource, other

clients may request the resource. Therefore, requests must be

stored until they are satisfied. Unsatisfied requests are stored

in queues located in targeted resources.

2) Deadlocks: When clients request several resources,

deadlocks may occur. To see this, consider the following

example: (1) Client C1 and Client C2 simultaneously request

both Resources R1 and R2. Assume then that (2) C1’s request

arrives to R1 before C2’s request and (3) C2’s request arrives

to R2 before C1’s request. Assume that the requests of of C1
and C2 respectively for R1 and R2 eventually reaches the top

of the associated queues. In such a situation R1 will not be

released by C1 before it obtains R2. Reciprocally, R2 will not

be released by C2 before it obtains R1. Hence, we obtain a

deadlock configuration similar to the one presented in Figure

1. This situation can be generalized to k client/resource pairs.

3) Two different types of resources: Assume that a client

requests two resources. In our algorithm, we label the first

requested resource as strong and the second one as weak.

According to its status (strong or weak), a request is stored

at the targeted resource in its strong queue or its weak queue,

respectively. If a client only requests one resource, the resource

is labeled strong. A resource requested by a client is allocated

to that client only when it is at the top of the resource’s

strong queue. In particular, when a client requests two different

resources r1 and r2, it can access those resources only when

the associated requests are both at the tops of the strong queues

of r1 and r2. Thus, in order to satisfy a two-resource request,

The weak request must eventually move from the weak queue

to the strong queue of the resource. We use the rule that the

weak request of client c moves from the weak queue to the

strong queue, for that resource, only when the strong request

of c is at the top of the strong queue of the requested resource.

B. Detailed Algorithm

We now give details of our algorithm.

1) Resource discover oracle: Initially, a client obtains from

a resource discover oracle a request of one or two resources.

Identifiers of the requested resources are stored in a two-cell

array named D. When there is no request, the array D is

equal to (⊥,⊥). While D[1] = ⊥, the client periodically calls

the resources discover oracle. After receiving a request, D[1]
contains the strong resource identifier and D[2] contains the

weak resource identifier, if any. Next, according to the number

of requested resources, we consider the two following cases.

2) One-Resource Requests: Assume that an application

requests the use of only one resource. The corresponding

client sends the request to that resource using a message

NewRequest. The resource stores the request in its strong

queue. Later, when that request reaches the top of the queue,

the resource notifies the client (using message resAllowed) that

it is allowed to execute its critical section. The client executes

that section, then notifies the resource, using the message

Done, that it has terminated its critical section. Consequently,

the resource pops the client’s request from the strong queue

and finally informs the client using message endACK that it

can propose a new request to the system.

3) Two-Resource Requests: Assume that an application of

some client c requires the use of two resources, say r1 and

r2. Then, c proceeds as illustrated in Figure 2. That is, c

first sends a request to the weak resource r2 using message

NewRequest. The identifier of r1 and the request type are also

piggybacked onto the message. Upon receiving the message,

the weak resource stores the following information about this

request in its weak queue: the identifier of r1, the identifier of

c, and the request type (here 2, meaning weak ).

After that, the weak resource forwards a message

NewRequest to the strong resource r1. In this message, the

following information is attached: the identifiers of r2 and

c, a variable RequestType set to strong (value 1). When r1
receives this message, the following information is stored in

the strong queue of r1: the identifier of the requester c, the

requested type (here 1, meaning strong ).

Eventually the request of c reaches the top of the strong

queue of r1. Then, r1 notifies this r2, by sending the message

Res1Ready). Upon receiving the message, r2 moves c’s request

from its weak queue to its strong queue.

When c is at the head of the strong queue of r2, r2 notifies c

by sending the message resAllowed that it can use both r1 and

r2. c performs its critical section. Once the critical section is

done, c asks r1 and r2 to remove its requests from the queues.

First, it sends the message Done to r2. Then, r2 removes c’s

request from its strong queue and sends the message Done to

r1, causing r1 removes c’s request as well, and then send the

message endACK to c.

C. Deadlock Resolution

Using the aforementioned mechanism, it is (still) possible

to create deadlocks. Figure 3 gives an example of such a

deadlock. We remark that a client can be involved in a

deadlock only after its weak resource request moves from

the weak queue to the strong queue of one of the targeted

resource ri. To solve this problem, we require that ri start

a deadlock detection process at that time. More precisely,

assume that client c requests r1 as a strong resource, and r2
as a weak resource. When c’s strong request has reached the



Algorithm 2 The main loop of each Resource : r. Commons features.

1: while True do

2:
3: if receive〈Token〉 from r′ then

4: for each Request in Qstrong do

5: if Request.RqNo = 1 then

6: Qtoken ← Qtoken ⊕ Request
7: end if

8: end for

9: HoldingToken← True
10: end if

11:
12: if SendingToken then

13: HoldingToken← False
14: SendingToken← False
15: send〈Token〉 to RingNextResId
16: end if

17:
18: if ¬Lock then

19: if receive〈NewRequest, c,
20: RequestNo,NextResId〉 from r′ then

21:
22: if RequestNo = 1 then

23: if Head(QStrong) = ⊥ then

24: NewHead← True
25: end if

26: QStrong ← QStrong ⊕

27: 〈c, RequestNo,NextResId, 1〉
28: else

29: QWeak ← QWeak ⊕
30: 〈c, RequestNo,NextResId, 0〉
31: send〈NewRequest, c, 1, r〉 to NextResId
32: end if

33: end if

34: end if

35:
36: if NewHead then

37: if Head(QStrong).RqNo = 1 then

38: if Head(QStrong).NextResId= ⊥ then

39: send〈resAllowed〉 to Head(QStrong).ClId

40: else

41: send〈NewStrong, Head(QStrong).ClId〉 to

42: Head(QStrong).NextResId

43: end if

44: else

45: WeakReady ← true
46: end if

47: NewHead← false
48: end if

49:
50: if receive〈NewStrong, c〉 from r′ then

51: if QStrong = ∅ then

52: NewHead← True
53: end if

54:
55: QStrong ← QStrong ⊕ search(QWeak, c)

56: QWeak ← QWeak ⊖ search(QWeak, c)
57: send〈newStrongACK〉 to r′

58: end if

59:
60: if receive〈StrongReady〉 from r′ then

61: StrongReady ← true
62: end if

63:
64: if StrongReady and WeakReady then

65: send〈resAllowed〉 to Head(QStrong).ClId

66: StrongReady ← false
67: WeakReady ← false
68: end if

69:
70: if receive〈Done〉 from r′ then

71: if Head(QStrong).RqNo = 1 then

72: c← Head(QStrong).ClId

73: QStrong ← QStrong.pop

74: if HoldingToken then

75: Qtoken ← Qtoken.pop
76: end if

77: send〈EndACK〉 to c
78: else

79: QStrong ← QStrong.pop

80: send〈Done〉 to Head(QStrong).NextResId

81: end if

82: NewHead← (QStrong 6= ∅)

83: SendingToken← (Qtoken = ∅)
84: end if

Clients

Root

c

r1 r2

{r2, r1}

Resource 

Discover 

Oracle

g
e
tR

e
q
u
e
st

NewRequest(c,2,r1)

NewRequest(c,1,r2)

Fig. 2. Two-resource request

top of r1’s strong queue, r1 notifies r2 using the message NewPriority. Consequently, r2 moves c’s weak request from



Algorithm 3 The main loop of each Resource : r. Features related to the loop breaking.

85: if receive〈newStrongACK〉 from r′ then

86: if HoldingToken then

87: rmin ←∞
88: end if

89: send〈seekLoop, rmin, r〉 to Head(QStrong).NextResId

90: end if

91:
92: if receive〈seekLoop, rmin, rinit〉 from r′ then

93: if r = rinit then

94: if r 6= rmin then

95: send〈RemoteKillLoop〉 to rmin

96: else

97: Lock ← True
98: send〈KillLoop, Head(QStrong).ClId〉 to Head(QStrong).NextResId

99: end if

100: else

101: if (QStrong) = ∅ or Head(QStrong).NextResId= ⊥ or Head(QStrong).RqNo = 2 then

102: send〈NoLoop〉 to rinit

103: else

104: if ¬HoldingToken and then rmin > r then

105: rmin ← r
106: end if

107: send〈seekLoop, rmin, rinit〉 to Head(QStrong).NextResId

108: end if

109: end if

110: end if

111:
112: if receive〈NoLoop〉 from r′ then

113: send〈Res1Ready〉 to Head(QStrong).NextResId

114: end if

115:
116: if receive〈RemoteKillLoop〉 from r′ then

117: Lock ← True
118: send〈KillLoop, Head(QStrong).ClId〉 to Head(QStrong).NextResId

119: end if

120:
121: if receive〈KillLoop, c〉 from r′ then

122: Lock ← True
123: QWeak ← QWeak ⊕ search(QStrong, c)

124: QStrong ← QStrong ⊖ search(QStrong, c)

125: send〈KillACK1〉 to r′

126: end if

127:
128: if receive〈KillLoopACK1〉 from r′ then

129: Head(QStrong).Score←Head(QStrong).Score + 1

130: HeadToTail(QStrong)

131: send〈KillACK2〉 to r′

132: NewHead← true ; Lock ← false
133: end if

134:
135: if receive〈KillLoopACK2〉 from r′ then

136: Lock ← false
137: end if

138:
139: end while

its weak queue to its strong queue and then sends the message

newPriorityACK to r1. Upon receipt of that message, r1 starts

a deadlock detection process.

1) Deadlock detection: A deadlock occurs when depen-

dencies between resources form a cycle. For example, the

deadlock described on Figure 3 produces the logical cycle

described on Figure 4. The dependencies can be defined as

follows. Let Strong(r) denote the strong queue of resource r

and Head(Q) denotes the head of queue Q. Let c ∈ C be a

client, rqstrong
c its strong request and rqweak

c its weak request,

then:

c1

c3

S
tr

o
n
g

W
e
a
k

R1

c2

c1

S
tr

o
n
g

W
e
a
k

R2

c3

c2

S
tr

o
n
g

W
e
a
k

R3

C1 C2 C3

Fig. 3. Deadlock involving three clients and resources.

Definition 3.1:

Dependency ri 7→ rj ⇔











Head(Strong(ri)) = rqstrong
c

and

rqweak
c ∈ Strong(rj)

(1)



C1 R2

C3 ⊥

R1

C2 R3

C1 ⊥

R2

C3 R1

C2 ⊥

R3

Fig. 4. Logical view of a dependency loop, involving three clients.

According to this definition, a dependencies cycle is defined

as a sequence of resources r0, . . . , rk such as ∀i < k, ri−1 7→
ri and rk 7→ r0.

Hence to detect a cycle, the deadlock detection started by

the resource ri consists of sending a message SeekLoop to

the resource rj satisfying ri 7→ rj . The message is routed

along the dependencies and if it comes back to ri, then

there exists a cycle and consequently there is a deadlock to

break. Otherwise, the message reaches a resource rk with no

dependency, then there does not exist any cycle, and rk sends

a NoLoop message to the SeekLoop message’s initiator (here

r1) in order to inform it of that fact.

If the cycle detection process finds a cycle, then the initiator

of the detection is eventually aware of this fact. Consequently

it starts the unloop process. Otherwise, the initiator is eventu-

ally informed that it is not involved into a cycle by message

NoLoop. The reception of this message is now required before

a resource sends the message resAllowed.

2) The Unloop Process: Assume that there is a cycle. This

cycle is eventually detected thanks to the deadlock detection

process presented above. Then, an unloop process is started.

This process consists of removing a dependency to break the

cycle. Assume that the unloop process decides to break the

dependency ri 7→ rj , which is due to client c. To break ri 7→
rj , the unloop process will reorganize the queues of ri and

rj . A way to break this dependency is to:

• move c’s weak request to rj’s weak queue, and

• move c’s strong request to ri’s strong queue’s tail.

With this reorganization the algorithm guarantees that the

dependency between ri and rj is broken. For sake of co-

herency, this reorganization is made atomically: during the

reorganization of a resource’s queue, no client’s request can be

added to it. Otherwise, new cycles could be created between

the newly added requests and ri or rj .

The atomic reorganization occurs as follows: ri stops to

add elements in its strong queue, and sends rj the message

killLoop, containing the identifier of the involved client, (i.e.

c1

c3

S
tr

o
n
g

W
e
a
k

R1

c2

c1

S
tr

o
n
g

W
e
a
k

R2

c3

c2

S
tr

o
n
g

W
e
a
k

R3

C1 C2 C3

Fig. 5. A deadlock situation.

c1 c3

S
tr

o
n
g

W
e
a
k

R1

c2

c1

S
tr

o
n
g

W
e
a
k

R2

c2

c3

S
tr

o
n
g

W
e
a
k

R3

C1 C2 C3

Fig. 6. Result of a reorganization.

here c). Upon reception of killLoop, rj also stops adding

requests to its strong queue, after which rj moves c’s request

from its strong queue to its weak queue. Finally rj sends

an acknowledgment to ri using the killLoopACK1. When

ri receives killLoopACK1, it moves c’s request from the

top to the tail of its strong queue. Finally ri sends an

acknowledgment to rj using a killLoopACK2 message, and

again authorizes adding clients’ requests to its queue. Upon

the reception of killLoopACK2, rj also authorizes adding

new requests to its queue.

An example of reorganization is given in Figures 5 and 6,

this reorganization concerns the client c3’s requests.

3) Reorganization: Once a resource ri has discovered a

dependency loop, it has to choose which dependency the

unloop process must break. A possible choice is to break the

dependency rk 7→ rk+1 where rk is the resource in the cycle

with the lower identifier. However, this solution is not fair.

Indeed, it is possible that rk is involved in cycles infinitely

many times, and that each time the request of some client c is

at the top of the strong queue of rk, the queue is reorganized.

As a consequence, the request of c is never satisfied.

To avoid this problem, we define priorities according to a

token that circulates in the rooted ring defined among the

resources. The priorities are given by the order relation ≺
defined below. In this definition, Token(ri) is true when ri
holds the token, and false otherwise. The resource chosen to

break a cycle is the minimum one according to ≺.



Definition 3.2:

ra ≺ rb ⇔











Token(rb) and ¬Token(ra)

or

Token(rb) = Token(ra) and ra < rb

(2)

The resource that holds the token is always maximal accord-

ing to ≺. Hence to guarantee fairness, we must ensure that if

a request is in a resource for a long time, then the request

must eventually have the highest priority thanks to the token.

To do that, we manage the token circulation as follows. A

token is created by the root resource at its initialization. Then,

when a resource ri receives the token, ri stores a copy of all

its current strong requests in a specific queue Qtoken. Then,

each time a request is satisfied, if a copy exists in Qtoken, it is

removed. When this queue is empty (i.e. all requests in it have

been satisfied), ri releases the token and sends it to Next(ri).
Thank to the token, each resource periodically flushes its “old”

strong requests, ensuring then the fairness of the algorithm.

Finally, note that the algorithm must store information in

the SeekLoop message during the deadlock detection process

to know which resource is minimum according to ≺. For each

resource ri, the priority level is ∞ if ri holds the token, its

identifier otherwise. When a resource initiates a new SeekLoop

message, it stores its priority level in the SeekLoop message.

Then, each time the message is received by some other

resource, the minimum encountered priority level stored in the

message is updated. Thereby a resource ri which receives it

own SeekLoop message, in addition to knowing the existence

of a cycle, will also know the target on which initiate the

unloop process. 2 If the target is not the SeekLoop initiator ri,

then ri sends the message RemoteKillLoop to the targeted

resource. Upon receiving this message, the resource executes

the unloop process.

IV. EXTENSIONS

To be used in peer-to-peer systems, we need to modify our

algorithm to handle client arrivals or departures. Client arrivals

are not a problem providing that each new client arrives with

an identifier that was never used before. If we assume that

each time a client leaves the system, it sends a message

announcing its departure, then client dynamicity can be easily

handled. Finally, if a client can leave the system without

informing any other process, we need an additional mechanism

to handle such dynamicity. Participant detector [8], [9] is such

a mechanism. Basically, a participant detector is a function

that gives information to a process about the presence of

some other processes in the system. In our context, we need

resources to watch the clients currently in their queues. If a

client leaves the system, any resource having the client in

its queue must be eventually notified, and will then remove

that client’s request from its queue. Moreover, all information

given by the participant detector must be accurate: a resource

must not remove the request of any client still in the system.

2Note that if there is a cycle, then the minimum priority level is different
from ∞ because there is only one token.

Hence, we need a perfect participant detector, that is, a detector

that satisfies: (strong completeness) every client that leaves

the system is eventually removed from the participant lists

and (strong accuracy) no client can be removed from a list

of participants before it leaves the system. Essentially, such

a participant detector is a straightforward adaptation of the

work in [10] to our problem. We leave the implementation as

an exercise for the reader.

V. PERSPECTIVES

The immediate perspective of this work is to find a k-

resource allocation protocol that works for all value of k.

However, the generalization of your current solution seems to

be difficult. Indeed, the larger k is, the harder the deadlock de-

tection and resolution is. So, instead of an optimistic solution

where queues evolve independently until a deadlock occurs

and is treated, we propose to consider a pessimistic solution,

that is, a solution where we prevent deadlock creation. For

example, when a client c requests the use of several resources,

a request is stored in the weak queues of each resource

requested by c. Then, we use a token circulation to atomically

move the requests of a client from the weak queues to the

strong queues. Such a solution works for all value of k, but

allow far less concurrency than our solution for k = 2.

ACKNOWLEDGMENT

This work has been partially supported by the ANR project

ARESA2.

REFERENCES

[1] N. Lynch, Distributed algorithms. Morgan Kaufmann, 1996.
[2] M. Raynal, “A distributed solution to the k-out of-m resources allocation

problem.” in ICCI, 1991, pp. 599–609.
[3] A. K. Datta, S. Devismes, F. Horn, and L. L. Larmore, “Self-stabilizing

k-out-of-; exclusion in tree networks,” Int. J. Found. Comput. Sci.,
vol. 22, no. 3, pp. 657–677, 2011.

[4] K. M. Chandy and J. Misra, “The drinking philosopher’s problem,” ACM

Trans. Program. Lang. Syst., vol. 6, no. 4, pp. 632–646, 1984.
[5] I. Abraham and D. Dolev, “Asynchronous resource discovery,” Computer

Networks, vol. 50, no. 10, pp. 1616–1629, 2006.
[6] P. Trunfio, D. Talia, H. Papadakis, P. Fragopoulou, M. Mordacchini,

M. Pennanen, K. Popov, V. Vlassov, and S. Haridi, “Peer-to-peer
resource discovery in grids: Models and systems,” Future Generation

Comp. Syst., vol. 23, no. 7, pp. 864–878, 2007.
[7] K. A. Bartlett, R. A. Scantlebury, and P. T. Wilkinson, “A note on reliable

full-duplex transmission over half-duplex links,” Commun. ACM, vol. 12,
no. 5, pp. 260–261, 1969.

[8] F. Greve and S. Tixeuil, “Knowledge connectivity vs. synchrony re-
quirements for fault-tolerant agreement in unknown networks,” in Pro-

ceedings of IEEE International Conference on Dependable Systems and

networks (DSN 2007). IEEE, June 2007, pp. 82–91.
[9] E. A. P. Alchieri, A. N. Bessani, J. da Silva Fraga, and F. Greve,

“Byzantine consensus with unknown participants,” in OPODIS, 2008,
pp. 22–40.

[10] C. Fetzer, “Perfect failure detection in timed asynchronous systems,”
IEEE Trans. Computers, vol. 52, no. 2, pp. 99–112, 2003.


