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Abstract — Decision trees have a reputation of being efficient and 
illustrative in classification learning, and majority of the research 
effort has been focused on making classification improvement in 
a head-on style with wide-range research topics, such as tree 
algorithm development and refinement, attribute selection and 
prioritization, sampling technique improvement, and the 
addition of cost matrix and other performance-enhancing factors. 
One less commonly studied topic is about the characteristics of 
classification errors and how they may be associated with specific 
attributes due to correlation or causation, and within what value 
ranges on such attributes when pattern are most likely. This 
research intends to study this dim area in a sort-of reverse and 
forensic style as part of post-classification analysis, to analyze the 
patterns and relationship between errors and attributes, to 
explore how attributes’ risk level in error may play a role in 
leading to more risky, more error-prone decision tree branches 
or decision paths. Possible benefits from this study would include 
raising data stakeholders’ awareness of such specific error-
sensitive attributes and decision paths, to facilitate better 
understanding of possible causes and impact of errors and the 
development of more effective error-reduction measures 
customized to suit the specific patterns and individual datasets.  

Such emphasis on highlighting the specific error-sensitive 
attributes and decision branches within individual datasets is a 
reflection of our observation which shared by others - “additional 
domain-specific knowledge, external to the training set, must be 
employed to estimate the noise level (… and) the underlying 
model’s complexity … (because) knowledge-poor tree induction 
algorithms do not exploit such information.” [2] 

Keywords – decision tree, error-sensitive attribute, error-
sensitive tree branch, feature selection, post-classification analysis 

I.  INTRODUCTION 

The formation of each decision tree branch is different due 
to the variation of attributes and their split-point values, 
therefore, the classification result produced by each branch 
may vary, some branches may have a wider inclusion of 
sample instances than others, and some branches may lead to a 
more significant classification path with higher accuracy than 
others. “How to create a new tree model or modify the current 
one for better performance?”, “What are the most influential 
attributes that have been used in the process?”, and, “What 
other factors, such as feature-selection routine and cost-
sensitive matrix, can be added to enhance the performance?”, 
these are some of forwarding-thinking questions commonly 

asked during post-classification analysis. One less favorite 
question is, “Which tree branch is the weakest and associated 
with more misclassification errors?”, together with another less 
common question, “What attributes are more likely to cause or 
associate with those errors?”, these error-centric questions are 
the focus of this “reverse” study. 

The study of weak branches of a decision tree can be 
considered relating to the tree pruning topic. One typical way 
to handle weak branches is pruning, and a good number of 
decision tree pruning methodologies have been developed and 
re-engineered over the years, such as the Error Reduction 
pruning method [12], the Cost-Complexity pruning method [3], 
and the Minimum Error pruning method [5]. This study is not 
about creating a new pruning technique, but to explore an 
alternative way in achieving the same error reduction objective. 
The starting point of this exploration process is not before, not 
during, but after the fact, that is, after the pre-determined 
feature selection and sub-tree pruning routine have already 
been completed as part of the classification process, so the 
exploration can examine the overall classification result, as 
well as having a particular focus on the most error-prone 
decision tree branches and possible relationship patterns 
between these branches and the most error-sensitive attributes. 

Our proposed exploration is carried out in connection with 
the evaluation process of error-sensitive attributes, an idea has 
recently been discussed [16]. This evaluation idea used three 
specific terms, “ambiguous value range”, “attribute-error 
counter” and “error-sensitive attribute”, to describe how the 
most error-sensitive attributes could be identified by ordering 
the attributes’ risk level which is based on each attribute’s error 
count within its ambiguous value range. In this proposed 
exploration, two new routines have been added onto the 
mentioned evaluation process. The first routine is to rank the 
resulted decision tree branches according to their associated 
predicted error counts, and the second routine is to examine the 
existence of the most error-sensitive attributes and their value 
ranges on the identified risky branches. 

Here is a brief scenario to outline a practical issue. In a 
binary data dataset with 10,000 sample instances and 50 data 
attributes, a classification task has been performed by a 
decision tree model enabled with its own feature selection and 
pruning routine. The result is a pruned tree with 60 nodes, 30 
leaves and 100 misclassification errors. Amongst the 30 root-
to-leaf branches, some have higher error counts than others, so 



our research question is, what may be the relationship patterns 
associated with the most error-prone root-to-leaf branches and 
the most error-sensitive attributes?  

Figure-1 is an example of a decision tree with its size as 
seven, that is, three nodes and four root-to-leaf branches; in 
comparison, the tree structure generated from the above 
scenario would be about 10 times bigger than this example. 

 

Figure 1.  A sample C4.5 tree counting root-to-leaf branches from left to 
right and each branch is showing its predicted error-rate 

The term “tree branch” or “branch” in this paper has been 
referring to a full branch from the tree root to an end leaf; a 
portion of such branch or a sub-tree at a node is outside the 
scope of this study at this stage. It has also been noted that a 
misclassification error with its one or more attribute values 
being inside one or more ambiguous ranges may not 
necessarily be the sole reason that causes the error, but such 
ambiguity can be assumed to increase the risk level of being 
misclassified. 

The rest of this paper is organized as follows. Section-II 
reviews some early influential work that inspired and guided 
the current study, and outlines a recent attribute evaluation 
process which being utilized as a component of this exploration 
proposal, section-III describes the exploration process details, 
section-IV summarizes the experiments on five datasets, 
section-V compares and analyzes the experiment results, and 
finally, section-VI concludes the proposed exploration 
development and outlines a possible plan for future study. 

II. RELATED WORK 

Decision trees have a reputation of being efficient and 
illustrative in machine learning and data classification, one 
prominent decision tree model is Quinlan’s C4.5 model [12, 
15], therefore, C4.5 decision tree has been adopted as the 
underlying classification model for this exploration process.  

One key step in conducting decision tree classification is 
the attribute selection routine when constructing the tree from 
root to leaves, and Quinlan’s C4.5 model has applied a 
selection method known as gain ratio. This gain ratio method 
originated from the information gain concept described in 
Shannon’s information theory [14], in which it states the 
expected information required to classify a label for a record in 
the dataset is the probability for such a record belongs to its 
class label. However, this information gain approach has a 
strong bias for selecting attributes with many outcomes. To 

address this deficiency, info gain ratio was introduced as the 
attribute selection criterion in C4.5, to apply “a kind of 
normalization in which the apparent gain attributable to tests 
with many outcomes is adjusted”, which means such info gain 
is to be divided by the number of possible partitions/outcomes 
for attribute A, so it “represents the proportion of information 
generated by the split that is useful, i.e., that appears helpful for 
classification” [12]. As a result, the gain ratio method is to 
select an attribute which can maximize its gain ratio value. A 
variety of other attribute selection methodologies have also 
been developed, such as the Gini index method that used in the 
CART decision tree model [3], the RELIEF algorithm [7], the 
Sequential Forward Selection (SFS) method and the Sequential 
Backward Elimination (SBE) method [8].  

In order to improve classification accuracy and to simplify 
tree models that have “grown-to-fit” the training data in one 
particular “shape”, and are later found to be “overfitting” with 
the test data in a different “shape”, various pruning techniques 
have been developed to make decision tree structure simpler 
and more efficient. Some of the influential and proven pruning 
techniques are, the Cost-Complexity Pruning method [3], 
which selects the superior sub-tree branch from a series of 
branches based on comparing the error rate and complexity in a 
bottom-up approach; the Reduced-Error Pruning method [11], 
which replaces a branch by selecting a leaf representing more 
instances but with a lower error rate in a bottom-up way; the 
Pessimistic Pruning method [11], which applies a statistical 
“continuity correction” and the comparison of one-standard-
error before making a sub-tree to leaf replacement in a top-
down fashion; and the Critical value pruning method [10], 
which replaces a sub-tree when its split-point has a lower value 
than a pre-determined critical threshold value in a bottom-up 
approach. After pruning, the tree structure is supposed to be 
more concise and balanced, and accompanied with more 
accurate classification. 

In terms of post-classification analysis, an evaluation 
process to  identify the most error-sensitive attributes has been 
suggested (Wu & Zhang in press). This evaluation model is 
currently aiming at binary datasets only, to first locate each 
attribute’s ambiguous value range which is the overlap area 
between its Negative and Positive samples, then to calculate 
each attribute’s attribute-error counter which is the number of 
misclassified samples with attribute values being within its 
ambiguous value range, then to rank the counter values from 
high to low, to identify the possible most error-sensitive 
attributes because of their association with higher error counts. 
Figure-2 is an illustration of three simplified situations of a 
binary attribute’s value range, two being overlap and 
ambiguous: 

 

Figure 2.  Three situations of a binary attribute’s value range 



Many works by other researchers have also been studied for 
this exploration idea, only some brief highlights are included in 
this very limited review section. 

III.  EXPLORATION PROCESS DESCRIPTION 

The proposed exploration process can be considered as a 
new addition in parallel with the evaluation process of error-
sensitive attributes, these two processes later combine  to form 
a part of the post-classification analysis, which can be viewed 
as a new 3rd phase process as illustrated in bold and blue in 
Figure-3. Based on a conventional 2-phase classification model 
[9], in which 1st-phase is about the pre-process routines, such 
as training and test data preparation, attribute validation and 
prioritization; 2nd-phase is about the core classification process, 
including tree structure generation and pruning, and this 3rd 
phase exploration process is about examining the classification 
results and with a special focus on errors, aiming to develop a 
more customized and effective error-reduction measure.    

 

Figure 3 – Error-sensitive branch and attribute ranking join forces in exploring 
specific patterns during 3rd phase in a 3-phase classification model 

On the completion of a typical classification task, this post-
classification exploration process would begin. The initial 
ranking process for the resulted decision tree branches can start 
simultaneously with the evaluation process for error-sensitive 
attributes, or one after another, in either order.  

The first step of the branch ranking process is to convert all 
root-to-leaf branches from the left-most branch to the right-
most branch into a set of decision rules, with their exact 
attributes and split-point value details, as well as the associated 
error count of each branch. These error counts are then ranked 
and the branches with the highest error counts can be 
identified. These highly error-sensitive branches are then 
compared with the most error-sensitive attributes identified by 
the attributes evaluation process, of which the required steps 

have been discussed [16] and are incorporated into the 
following pseudocode style process summary.  

Input : (1) the serialized decision tree structure from the classification 
result (2) all (m + n) test sample instances of t attributes with their 
original class labels and their newly classified result labels 
 
Output : (1) a ranking list of all root-to-leaf decision branches in the 
form of classification rules sorted by each branch’s predicted error rate 
(2) a ranking list of the t attributes sorted by their attribute-error 
counters (3) highlighting the possible weakest - most error-sensitive 
tree branches and the most error-sensitive attributes and their value 
ranges on those branches 
 
Ranking process for tree branches in two steps: 
Step-1: convert the serialized tree structure into a set of exact-match 
root-to-leaf classification rules from left to right, each rule is attached 
with its predicted error rate based on the resulted tree model 
Step-2: sort the error rates from high to low to identify the possible 
most error-sensitive branches 
 
Evaluation process for attributes in two steps: 
Step-1: work out the ambiguous value range and the attribute-error 
counter value for each attribute … refer to [16] for more details 
Step-2: sort the attribute-error counter values from high to low to 
identify the possible most error-sensitive attributes 
 
Exploration process for connection between error-sensitive 
branches and attributes: 
Step-1: 
    for 1 to y most error-sensitive braches  
        for 1 to z most error-sensitive attributes  
            find location of this attribute 
            if the attribute is part of the rule            
            then compare its split-point value(s) within the branch against 
the attribute’s ambiguous value range 
            if a split-point value is within the ambiguous value range 
            then highlight such a split-point as a possible high-risk 
connection between the branch and the attribute 
    end; 
Step-2: examine the connection patterns and develop possible more 
effective error-reduction measures with help from stakeholders and 
domain experts 
 

To verify whether our proposed exploration process can 
actually identify any highly error-sensitive tree branches and 
specific relationship patterns between errors, error-sensitive 
attributes and branches, initial experiments have been carried 
out on a number of real world datasets, and their results are 
analyzed and discussed in the next two sections. 

IV.  EXPERIMENTS 

Five datasets from the UCI Machine Learning Repository 
[1] have been used to test this exploration idea using Quinlan’s 
C4.5 algorithm-based J48 classifier in WEKA [15], with all the 
default settings, such as, applying its underlying feature-
selection and C.4.5 pruning routine as part of the classification. 
The conversion from a resulted decision tree structure to a set 
of classification rules starts from the tree’s left-most root-to-
leaf branch to the right-most branch, and the error reduction 
measure used in this early stage is simply to filter out one or 



multiple most or highly error-sensitive attributes. The top-4 
ranked error-sensitive attributes, showing with their attribute-
error counter values and their ambiguous value ranges, are 
compared with the GainRatio and InfoGain ranking results. 
These identified attributes are also highlighted in the top-3 
ranked error-sensitive tree branches, together with the error 
count and the number of samples associated with each branch. 

All five datasets in the experiments showed supportive 
results, although their error-reduction rates are not significant, 
the improvement is consistent across all datasets, varying from 
1.5% to 0.1% accuracy enhancement. This appeared to rather 
encouraging when comparing to the mixed results produced by 
the earlier evaluation experiments which involved a different 
group of UCI datasets [16]. Part of the results are summarize as 
follows. 

A. Connectionist Bench (Sonar, Mines vs. Rocks) Dataset 

This binary dataset has 208 instances and 60 attributes. One 
of the optimal tests showed the accuracy rate increased from 
71.15% to 72.60% and errors reduced from 60 to 57, and all 
top-3 error-sensitive branches contained the most error-
sensitive attribute field_11, and its values on those branches 
were either within or close to its ambiguous value range of 
0.17~0.29. 

Combined-table 1 - Exploration results and performance 
comparison for the Sonar data dataset 

Rank by Attribute-error counter by GainRatio by InfoGain 
1 field_11 (26): 0.17~0.29 field_11 (0.2053) field_11 (0.2014) 
2 field_48 (24): 0.07~0.11 field_12 (0.1803) field_12 (0.1779) 
3 field_45 (23): 0.14~0.25 field_9 (0.1634) field_9 (0.1498) 
4 field_9 (21): 0.14~0.21 field_44 (0.1589) field_10 (0.143) 

 

Rank Root-to-leaf decision path 
(classification rule) 

Error 
count 

Sample 
count 

1 branch 11: field_11 > 0.197 and field_27 <= 0.8145 
and field_54 <= 0.0205 and field_53 <= 0.0166 and 
field_21 > 0.5959 and field_51 <= 0.0153 and field_23 
<= 0.7867: R 

1 13 

2 branch 14: field_11 > 0.197 and field_27 <= 0.8145 
and field_54 <= 0.0205 and field_53 > 0.0166: M 

1 12 

3 branch 9: field_11 <= 0.197 and field_1 > 0.0392: M 1 8 
 

Original run of J48/C4.5 classification 
with all attributes 

Re-run J48/C4.5 without error-sensitive 
attributes field_45 

=== Stratified cross-validation === 
=== Summary === 
Correctly Classified Instances     148               
71.1538 % 
Incorrectly Classified Instances     60               
28.8462 % 

=== Stratified cross-validation === 
=== Summary === 
Correctly Classified Instances    151               
72.5962 % 
Incorrectly Classified Instances   57               
27.4038 % 

 

B. MAGIC Gamma Telescope Dataset 

This relatively large binary dataset has 19,020 instances 
and 10 attributes. One of the optimal tests showed the accuracy 
rate increased from 85.06% to 85.17% and errors reduced from 
2,842 to 2,820, all top-3 ranked error-sensitive branches 
contained two of the top-ranked error-sensitive attributes, and 
their values were either within or close to their ambiguous 
value ranges. 

Combined-table 2 - Exploration results and performance 
comparison for the Gamma dataset 

Rank by Attribute-error counter by GainRatio by InfoGain 
1 fAlpha (865): 18.78~43.99 fLength (0.10211) fAlpha (0.1771) 
2 fAsym (763): -18.29~3.27 fAlpha (0.06127) fWidth (0.1324) 
3 fM3Long (746): -2.85~17.81 fWidth (0.05037) fLength (0.1158) 
4 fWidth (614): 18.59~28.80 fAsym (0.0482) fM3Long (0.1044) 

 

Rank Root-to-leaf decision path 
(classification rule) 

Error 
count 

Sample 
count 

1 branch 132: fLength <= 114.586 and fAlpha  > 
20.2535 and fLength <= 38.5309 … and fDist <= 
217.7938 and fSize <= 2.3133: g 

151 1,130 

2 branch 169: fLength <= 114.586 and fAlpha  > 
20.2535 and fLength <= 38.5309 … and fConc <= 
0.5742 and fM3Long > -23.6361: g 

131 874 

3 Branch 62: fLength <= 114.586 and fAlpha  <= 
20.2535 and fM3Long > -67.699 … and fLength <= 
99.1202 and fDist >  124.4584: g 

130 3,950 

 

Original run of J48/C4.5 classification 
with all attributes 

Re-run J48/C4.5 without error-sensitive 
attributes [fAsym] 

=== Stratified cross-validation === 
=== Summary === 
Correctly Classified Instances    16,178               
85.0578 % 
Incorrectly Classified Instances    2,842               
14.9422 % 

=== Stratified cross-validation === 
=== Summary === 
Correctly Classified Instances    16,200               
85.1735 % 
Incorrectly Classified Instances    2,820               
14.8265 % 

 

C. Yeast Dataset 

This Multivariate dataset of 1,484 records has been 
converted from 10 class labels into a binary form of two labels, 
NUC (nuclear) and non_NUC. One of the optimal tests showed 
the accuracy rate increased from 75.20 % to 76.01% and errors 
reduced from 368 to 356, all top-3 ranked error-sensitive 
branches contained at least two top-ranked error-sensitive 
attributes, nuc and alm, their values on those branches are 
either within or close to their ambiguous value ranges. 

Combined-table 3 - Exploration results and performance 
comparison for the Yeast dataset 

Rank by Attribute-error counter by GainRatio by InfoGain 
1 nuc (111): 0.25~0.33 nuc (0.062) nuc (0.096) 
2 gvh (102): 0.46~0.52 pox(0.061) alm (0.064) 
3 alm (92): 0.49~0.53 alm (0.042) mcg (0.058) 
4 mcg (78): 0.45~0.52 mit (0.028) gvh (0.037) 

 

Rank Root-to-leaf decision path 
(classification rule) 

Error 
count 

Sample 
count 

1 branch 8: alm > 0.4 and nuc <= 0.24 and nuc > 0.14 
and gvh > 0.39: non_NUC 

91 562 

2 branch 13: alm > 0.4 and nuc > 0.24 and mit <= 0.4 
and mcg <= 0.58 and nuc <= 0.31 and alm > 0.52: 
NUC 

42 105 

3 branch 12: alm > 0.4 and nuc > 0.24 and mit <= 0.4 
and mcg <= 0.58 and nuc <= 0.31 and alm <= 0.52 and 
vac > 0.46: non_NUC 

30 88 

 
 

Original run of J48/C4.5 classification 
with all attributes 

Re-run J48/C4.5 without error-sensitive 
attributes gvh & mcg 

=== Stratified cross-validation === 
=== Summary === 
Correctly Classified Instances    1116               
75.2022 % 
Incorrectly Classified Instances    368               
24.7978 % 

=== Stratified cross-validation === 
=== Summary === 
Correctly Classified Instances    1128               
76.0108 % 
Incorrectly Classified Instances    356               
23.9892 % 

 



D. Cardiotocography Dataset 

This Multivariate dataset of 2,126 records has been 
converted from three class labels into a binary form of two 
labels, Normal and Abnormal. One of the optimal tests showed 
the accuracy rate increased from 98.82% to 98.92% and errors 
reduced from 25 to 23, all top-3 ranked error-sensitive 
branches contained only the most error-sensitive attribute 
CLASS_Code, and its values on those branches were either 
within or close to its ambiguous value range. 

Combined-table 4 - Exploration results and performance 
comparison for the Cardiotocography dataset 

Rank by Attribute-error counter by GainRatio by InfoGain 
1 CLASS_Code (23): 3.39~8.45 CLASS_Code 

(0.362) 
CLASS_Code 

(0.68101) 
2 ASTV (10): 42.47~62.89 DP (0.2322) ASTV (0.23206) 
3 AC (9): 3.13~3.98 DS (0.2201) MSTV (0.22895) 
4 MSTV (9): 0.99~1.43 MSTV (0.1323) AC (0.20366) 

 

Rank Root-to-leaf decision path 
(classification rule) 

Error 
count 

Sample 
count 

1 branch 3: CLASS_Code <= 7 and CLASS_Code > 4 
and CLASS_Code > 5 and LB <= 145 and DP <= 
0.001485: Normal 

6 532 

2 branch 2: CLASS_Code <= 7 and CLASS_Code > 4 
and CLASS_Code <= 5: Abnormal 

3 72 

3 branch 1: CLASS_Code <= 7 and CLASS_Code <= 
4: Normal 

2 1097 

 

Original run of J48/C4.5 classification 
with all attributes 

Re-run J48/C4.5 without error-sensitive 
attributes ASTV & AC 

=== Stratified cross-validation === 
=== Summary === 
Correctly Classified Instances    2101               
98.8241 % 
Incorrectly Classified Instances      25                
1.1759 % 

=== Stratified cross-validation === 
=== Summary === 
Correctly Classified Instances    2103               
98.9182 % 
Incorrectly Classified Instances      23                
1.0818 % 

 

E. Glass Identification Dataset 

This Multivariate dataset of 214 records has been converted 
from seven class labels into a binary form with two labels, 
building_windows and non_building_windows. One of the 
optimal tests showed the accuracy rate increased from 85.51% 
to 86.92% and errors reduced from 31 to 28, all top-3 ranked 
error-sensitive branches contained two or three top-ranked 
error-sensitive attributes, and their values on those branches 
were either within or close to their ambiguous value ranges. 

Combined-table 5 - Exploration results and performance 
comparison for the Glass ID dataset 

Rank by Attribute-error counter by GainRatio by InfoGain 
1 Sodium (17): 13.17~13.91 Magnesium (0.3351) Potassium (0.2905) 
2 Aluminum (15): 1.29~1.76 Barium (0.3241) Magnesium 

(0.2889) 
3 Magnesium (6): 1.44~3.27 Sodium (0.2658) Barium (0.1973) 
4 refractive_index (5): 

1.518~1.519 
Aluminum (0.2658) Aluminum (0.1972) 

 

Rank Root-to-leaf decision path 
(classification rule) 

Error 
count 

Sample 
count 

1 branch 5: Magnesium > 2.68 and Sodium <= 13.31: 
building_windows 

5 92 

2 branch 8: Magnesium > 2.68 and Sodium > 13.31 and 
Barium <= 0.11 and Calcium > 8.31 and 
refractive_index > 1.518: building_windows 

5 27 

3 branch 1: Magnesium <= 2.68 and refractive_index 
<= 1.5241 and Iron <= 0.07: non_building_windows 

2 45 

 

Original run of J48/C4.5 classification 
with all attributes 

Re-run J48/C4.5 without error-sensitive 
attributes Aluminum & refractive_idx 

=== Stratified cross-validation === 
=== Summary === 
Correctly Classified Instances    183               
85.514 % 
Incorrectly Classified Instances    31               
14.486  % 

=== Stratified cross-validation === 
=== Summary === 
Correctly Classified Instances    186               
86.9159 % 
Incorrectly Classified Instances    28               
13.0841 % 

 

V. EXPERIMENT ANALYSIS 

It has been acknowledged that the current error-reduction 
measure of filtering out the most error-sensitive attributes is a 
simplistic one, it does not consider their possible close 
relationship with the remaining attributes, and therefore such 
simple filter-out/removal may introduce unexpected negative 
impact and inaccuracy to the re-run of classification process.  

Such implied negative impact may explain why the 
improvement from our initial experiments have been marginal; 
and even though the improvement on all five datasets are 
consistent, they have been based on specific selection of the 
most error-sensitive attributes of each dataset. Some of the 
issues and suggestions can be outlined as follows. 

• Filter-out the most error-sensitive attribute may not 
necessarily reduce the misclassification errors; in many 
situations, its removal actually increased the errors. For 
example, in the Sonar dataset, field_11 was identified 
as the most error-sensitive attribute, but it was also the 
most significant attribute for GainRatio, the feature 
selection method behind the C4.5 decision tree 
algorithm, so when field_11 was removed, the errors 
increase because the negative impact on the underlying 
feature selection routine outweighed the possible error-
reduction measure 

• When the highly error-sensitive attributes are also the 
highly ranked GainRatio attributes, it is an intrigue task 
to select the right attribute to remove, to ensure the 
right balance between the intend of error-reduction and 
the negative impact on the underlying feature-selection 
routine. The Sodium attribute in the Glass Id dataset is 
the most error-sensitive attribute and 3rd-ranked 
significant attribute for GainRatio, its removal caused 
the errors to increase, and it shared the same reason as 
the previous point; in contrast, the fAsym attribute is 
the 2nd most error-sensitive attribute in the Gamma 
dataset, and it also ranked 4th in GainRatio, but its 
removal enhanced the accuracy rate and the errors 
reduced from 2,842 to 2,820 

• Highly ranked error-sensitive attributes may be 
associated with higher risk level of errors merely 
because their wide and inclusive ambiguous value 
ranges and other factors, such as dependence and 
correlation, and they should not be considered as the 
main contributor or influencer of the errors; therefore 
their removal would not guarantee reduction of errors. 
One such example is the field_48 attribute in the Sonar 
dataset, it is the 2nd most error-sensitive attribute so it 
is considered highly risky, and is ranked 10th for 



GainRatio and is supposed to be less influential for 
GainRatio and C4.5, however, its removal made no 
difference to the accuracy 

It is natural to assume that the most error-sensitive decision 
tree branches are closely related to the most error-sensitive 
attributes. The effort of this study has been to highlight the 
links between these high-risk branches and the high-risk 
attributes, to explore any specific relationship patterns between 
them. Experiment results appeared to have verified such 
obvious assumption but only at a vague level; therefore, the 
exploration process should be enhanced to provide further 
details on such vague level of patterns information. Some 
related thoughts are outlined below: 

• The proposed identification method of the most error-
sensitive tree branches is only based on the predicted 
error-rate produced when the tree structure was formed 
based on training data, but the identification of the 
most error-sensitive attributes is based on the test data. 
Depending on the level of similarity between the test 
data and training data, the reliability level of 
relationship patterns highlighted in the current process 
may vary widely. One such example is in the Sonar 
dataset, all top-3 most error-sensitive tree branches 
each has only one error reported; when using the test 
data under stratified cross-validation, these top-3 
branches yielded six, five and one error(s) respectively, 
only 3rd ranked branch maintained the same error-rate 

• Value ranges of some most error-sensitive attributes on 
the error-sensitive branches appeared less specific than 
expected; such relationship patterns are too vague and 
uninformative. One such example is in the Glass Id 
dataset, Sodium is the most error-sensitive attribute 
with ambiguous value range as 13.17~13.91, and 
Magnesium is 3rd most error-sensitive with ambiguous 
value range as 1.44~3.27, they both have been 
correctly highlighted in the most error-sensitive tree 
branch of “branch 5: Magnesium > 2.68 and Sodium <= 
13.31: building_windows”, but their value ranges on the 
branch appeared to be open-ended and uninformative 

Much work is required to make the current tree branch 
exploration process more sophisticated and more specific, and 
on this note, the importance of having domain expertise joining 
this post-classification analysis has to be reiterated. Only the 
stakeholders of the data and the domain experts can genuinely 
examine and advise on the correctness and effectiveness of the 
proposed findings, and can eventually make practical use of the 
proposed processes. Without close collaboration with the 
stakeholders and in-depth field knowledge, such a study can be 
seemed as only playing with numbers, and building a “white 
elephant” or a “pet project”. 

VI.  CONCLUSION 

This study has provided a systematic way to explore and 
identify the most error-sensitive decision tree branches and 
attributes, despite its simplicity and still at its early stage, 
results from initial experiments appeared to be supportive for 
such an exploration process. Further study has been planned to 
refine the error-sensitive evaluation components and the tree 
branch ranking routine, to take on a risk level weighting 
approach rather than the removal of the most error-sensitive 
attributes as an error-reduction test measure, to develop the 
current exploration process into a more sophisticated and 
creditable model. 
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