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Abstract — Decision trees have a reputation of being effiait and

illustrative in classification learning, and majority of the research
effort has been focused on making classification ijpnovement in

a head-on style with wide-range research topics, sh as tree
algorithm development and refinement, attribute setction and
prioritization, sampling technique improvement, and the

addition of cost matrix and other performance-enhaging factors.
One less commonly studied topic is about the charaistics of
classification errors and how they may be associatewith specific
attributes due to correlation or causation, and wihin what value

ranges on such attributes when pattern are most ldy. This
research intends to study this dim area in a sortforeverse and
forensic style as part of post-classification anagis, to analyze the
patterns and relationship between errors and attrilutes, to
explore how attributes’ risk level in error may play a role in

leading to more risky, more error-prone decision tee branches
or decision paths. Possible benefits from this stydwould include
raising data stakeholders’ awareness of such spdcif error-

sensitive attributes and decision paths, to facikite better
understanding of possible causes and impact of em® and the
development of more effective error-reduction meases
customized to suit the specific patterns and indidual datasets.

Such emphasis on highlighting the specific error-seitive

attributes and decision branches within individual datasets is a
reflection of our observation which shared by othes - “additional

domain-specific knowledge, external to the trainingset, must be
employed to estimate the noise level (... and) the derlying

model's complexity ... (because) knowledge-poor treiduction

algorithms do not exploit such information.” [2]

Keywords — decision tree, error-sensitive attributerror-
sensitive tree branch, feature selection, post-sifisation analysis

. INTRODUCTION

The formation of each decision tree branch is diffeé due
to the variation of attributes and their split-poimalues,
therefore, the classification result produced bghearanch
may vary, some branches may have a wider inclusibn
sample instances than others, and some branchekeathio a
more significant classification path with highercacy than
others. “How to create a new tree model or modify ¢urrent
one for better performance?”, “What are the mo#uémtial
attributes that have been used in the process®, ‘a&khat
other factors, such as feature-selection routind aost-
sensitive matrix, can be added to enhance the rpeaifice?”,
these are some of forwarding-thinking questions roomly

asked during post-classification analysis. One I&ssrite
guestion is, “Which tree branch is the weakest assbciated
with more misclassification errors?”, together wattother less
common question, “What attributes are more likelgause or
associate with those errors?”, these error-ceqtristions are
the focus of this “reverse” study.

The study of weak branches of a decision tree @an b

considered relating to the tree pruning topic. ®pécal way
to handle weak branches is pruning, and a good eurab
decision tree pruning methodologies have been dpedland
re-engineered over the years, such as the Erroudied
pruning method [12], the Cost-Complexity pruningtinoel [3],
and the Minimum Error pruning method [5]. This stud not
about creating a new pruning technique, but to arpln
alternative way in achieving the same error reductibjective.
The starting point of this exploration processas lnefore, not
during, but after the fact, that is, after the getermined
feature selection and sub-tree pruning routine halveady
been completed as part of the classification pces the
exploration can examine the overall classificati@sult, as
well as having a particular focus on the most eprone
decision tree branches and possible relationshifierpa
between these branches and the most error-sergtiil®ites.

Our proposed exploration is carried out in conmactiith
the evaluation process of error-sensitive attribuéa idea has
recently been discussed [16]. This evaluation ideed three
specific terms, “ambiguous value range”, “attribateor
counter” and “error-sensitive attribute”, to deberihow the
most error-sensitive attributes could be identifigdordering
the attributes’ risk level which is based on eaithibaite’s error
count within its ambiguous value range. In this posed
exploration, two new routines have been added dhto
mentioned evaluation process. The first routineisank the
resulted decision tree branches according to thssociated
predicted error counts, and the second routine é&xamine the
existence of the most error-sensitive attributes #ueir value
ranges on the identified risky branches.

Here is a brief scenario to outline a practicaliéssin a
binary data dataset with 10,000 sample instancdss@ndata
attributes, a classification task has been perfdrrby a
decision tree model enabled with its own featutecsi®en and
pruning routine. The result is a pruned tree withneédes, 30
leaves and 100 misclassification errors. Amongst3a root-
to-leaf branches, some have higher error counts dktzers, so



our research question is, what may be the reldtiprnzatterns
associated with the most error-prone root-to-leahbhes and
the most error-sensitive attributes?

Figure-1 is an example of a decision tree withsite as
seven, that is, three nodes and four root-to-leahdhes; in
comparison, the tree structure generated from thevea
scenario would be about 10 times bigger than thasnple.
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Figure 1. A sample C4.5 tree counting root-to-leaf branchemfleft to
right and each branch is showing its predictedreate

The term “tree branch” or “branch” in this papessHzeen
referring to a full branch from the tree root to emd leaf; a
portion of such branch or a sub-tree at a nodeuiside the
scope of this study at this stage. It has also lme¢ed that a
misclassification error with its one or more aftitib values
being inside one or more ambiguous ranges may
necessarily be the sole reason that causes the kutosuch
ambiguity can be assumed to increase the risk lefvékeing
misclassified.

The rest of this paper is organized as follows.tiSed|
reviews some early influential work that inspirendaguided
the current study, and outlines a recent attritestaluation
process which being utilized as a component ofekggoration
proposal, section-Ill describes the explorationcpes details,
section-IV summarizes the experiments on five a@das
section-V compares and analyzes the experimenttsesund
finally, section-VI concludes the proposed expliomat
development and outlines a possible plan for fustudy.

. RELATED WORK

Decision trees have a reputation of being efficiant
illustrative in machine learning and data clasatfin, one
prominent decision tree model is Quinlan’'s C4.5 eldd?2,
15], therefore, C4.5 decision tree has been adoptedhe
underlying classification model for this exploratiprocess.

One key step in conducting decision tree clasgifinais
the attribute selection routine when constructing tree from
root to leaves, and Quinlan’s C4.5 model has apphe
selection method known as gain ratio. This gaiio ratethod
originated from the information gain concept ddsedi in
Shannon’s information theory [14], in which it sstthe
expected information required to classify a laloeld record in
the dataset is the probability for such a recorrgs to its
class label. However, this information gain applodmas a
strong bias for selecting attributes with many ootes. To

address this deficiency, info gain ratio was introed as the
attribute selection criterion in C4.5, to apply tand of
normalization in which the apparent gain attribigato tests
with many outcomes is adjusted”, which means suf gain
is to be divided by the number of possible pamgioutcomes
for attributeA, so it “represents the proportion of information
generated by the split that is useful, i.e., tipgtears helpful for
classification” [12]. As a result, the gain raticethod is to
select an attribute which can maximize its gaiioraglue. A
variety of other attribute selection methodologhes/e also
been developed, such as the Gini index methoduteat in the
CART decision tree model [3], the RELIEF algorithif, the
Sequential Forward Selection (SFS) method and ¢oggiéhtial
Backward Elimination (SBE) method [8].

In order to improve classification accuracy andgitaplify
tree models that have “grown-to-fit" the trainingta in one
particular “shape”, and are later found to be “fittarg” with
the test data in a different “shape”, various pngrniiechniques
have been developed to make decision tree strustmpler
and more efficient. Some of the influential andvam pruning
techniques are, the Cost-Complexity Pruning metfi8
which selects the superior sub-tree branch fromerées of
branches based on comparing the error rate andlegitygn a
bottom-up approach; the Reduced-Error Pruning naefha],
which replaces a branch by selecting a leaf reptegemore
instances but with a lower error rate in a bottgmway; the
Pessimistic Pruning method [11], which applies aistical
“continuity correction” and the comparison of onarglard-

N&rror before making a sub-tree to leaf replacenerd top-

down fashion; and the Critical value pruning metHad],
which replaces a sub-tree when its split-pointdémver value
than a pre-determined critical threshold value ibog&tom-up
approach. After pruning, the tree structure is sgpd to be
more concise and balanced, and accompanied withe mor
accurate classification.

In terms of post-classification analysis, an eviidua
process to identify the most error-sensitive latitiés has been
suggested (Wu & Zhang in press). This evaluatiordehds
currently aiming at binary datasets only, to fietate each
attribute’s ambiguous value range which is the laypearea
between its Negative and Positive samples, thecatculate
each attribute’s attribute-error counter whichhie humber of
misclassified samples with attribute values beinthiw its
ambiguous value range, then to rank the countearegatrom
high to low, to identify the possible most erronsitve
attributes because of their association with highresr counts.
Figure-2 is an illustration of three simplified ustions of a
binary attribute’'s value range, two being overlapd a
ambiguous:

Two distinctive value
ranges for negative and
positive class

A small
overlap/ambiguous
value range

A large
overlap/ambiguous
value range

Figure 2. Three situations of a binary attribute’s value &ng



Many works by other researchers have also beerestimt
this exploration idea, only some brief highlights ancluded in
this very limited review section.

have been discussed [16] and are incorporated ftinéo
following pseudocode style process summary.

[ll.  EXPLORATION PROCESS DESCRIPTION

The proposed exploration process can be consideseal
new addition in parallel with the evaluation praced error-
sensitive attributes, these two processes latebirmmto form
a part of the post-classification analysis, whielm be viewed

as a new "4 phase process as illustrated in bold and bluel|iff

Figure-3. Based on a conventional 2-phase claasiic model
[9], in which T'phase is about the pre-process routines, su
as training and test data preparation, attributeation and

prioritization; 2*-phase is about the core classification proces

including tree structure generation and pruningd #ris 3

phase exploration process is about examining tsification
results and with a special focus on errors, ainiindevelop a
more customized and effective error-reduction mesasu

Misclassification
EITOrS

Resulted decision
tree structure

Attributes and errors
evaluation process

Branches and errors
ranking process

Errar-sensitive
attributes

|

Error-sensitive
branches

|

Relationship patterns
exploration process

phase Il

Error reduction
measure development

Reports to
data stakeholders

Input: (1) the serialized decision tree structure from¢lassification
result (2) all ;n + n) test sample instancestddttributes with their
original class labels and their newly classifieslitlabels

Output: (1) a ranking list of all root-to-leaf decisioralnches in the
form of classification rules sorted by each brasgiredicted error rat
(2) a ranking list of theattributes sorted by their attribute-error
ounters (3) highlighting the possible weakest sieoror-sensitive
tree branches and the most error-sensitive ati$banid their value
Cﬁmges on those branches

Ranking process for tree branches in two steps

>SStep-l convert the serialized tree structure into a$etact-match
root-to-leaf classification rules from left to rigleach rule is attached
with its predicted error rate based on the resuteel model

Step-2 sort the error rates from high to low to identifie possible
most error-sensitive branches

Evaluation process for attributes in two steps

Step-1 work out the ambiguous value range and the att#error
counter value for each attribute refer to [16] for more details
Step-2 sort the attribute-error counter values from higlow to
identify the possible most error-sensitive attrésut

Exploration process for connection between error-sesitive
branches and attributes:
Step-1:
for 1 toy most error-sensitive braches
for 1 taz most error-sensitive attributes
find location of this attribute
if the attribute is part of the rule
then compare its split-point value(#him the branch against
the attribute’s ambiguous value range
if a split-point value is within the aiguous value range
then highlight such a split-point gscessible high-risk
connection between the branch and the attribute
end;
Step-2 examine the connection patterns and develop lpessiore
effective error-reduction measures with help fraaksholders and

| |

domain experts

Figure 3 — Error-sensitive branch and attributdiramjoin forces in exploring
specific patterns during®hase in a 3-phase classification model

On the completion of a typical classification taslis post-
classification exploration process would begin. Tindial
ranking process for the resulted decision treedivas can start
simultaneously with the evaluation process for resemsitive
attributes, or one after another, in either order.

The first step of the branch ranking process isotovert all
root-to-leaf branches from the left-most branchthe right-
most branch into a set of decision rules, with rthetact
attributes and split-point value details, as weltlze associated
error count of each branch. These error countshere ranked
and the branches with the highest error counts bban
identified. These highly error-sensitive brancheg #hen
compared with the most error-sensitive attributeshiified by
the attributes evaluation process, of which theuired steps

To verify whether our proposed exploration proceas
actually identify any highly error-sensitive treeabches and
specific relationship patterns between errors, resemsitive
attributes and branches, initial experiments hasenbcarried
out on a number of real world datasets, and tresults are
analyzed and discussed in the next two sections.

V.

Five datasets from the UCI Machine Learning Repogit
[1] have been used to test this exploration idéagu®uinlan’s
C4.5 algorithm-based J48 classifier in WEKA [15}thaall the
default settings, such as, applying its underlyfiegiture-
selection and C.4.5 pruning routine as part ofctassification.
The conversion from a resulted decision tree afracto a set
of classification rules starts from the tree’s -lfbst root-to-
leaf branch to the right-most branch, and the ereduction
measure used in this early stage is simply torfitiet one or

EXPERIMENTS



multiple most or highly error-sensitive attributékhe top-4
ranked error-sensitive attributes, showing withirtlatribute-
error counter values and their ambiguous value esngre
compared with the GainRatio and InfoGain rankinguhes.
These identified attributes are also highlightedthie top-3
ranked error-sensitive tree branches, together thiéh error
count and the number of samples associated with lEanch.

All five datasets in the experiments showed supp®rt
results, although their error-reduction rates aresignificant,
the improvement is consistent across all datagatging from
1.5% to 0.1% accuracy enhancement. This appeareather
encouraging when comparing to the mixed resultdywed by
the earlier evaluation experiments which involvedifferent
group of UCI datasets [16]. Part of the resultssamamarize as
follows.

A. Connectionist Bench (Sonar, Mines vs. Rocks) Dataset

This binary dataset has 208 instances and 60w##8bOne
of the optimal tests showed the accuracy rate ased from

=== Summary === === Summary ===
71.15% to 72-60%. f'md errors reduced from 60 to 57, and a”CorrectIy Classified Instances 188 (Correctly Classified Instances 260
top-3 error-sensitive branches contained the masbr-e 850578 % 85.1735%

sensitive attribute field_11, and its values onsthdranches
were either within or close to its ambiguous vataaege of
0.17~0.29.

Combined-table 1 - Exploration results and performace
comparison for the Sonar data dataset

Combined-table 2 - Exploration results and performace
comparison for the Gamma dataset

Rank| by Attribute-error countel by GainRatio by InfoGain
1 | fAlpha (865): 18.78~43.99 fLength (0.10211) fAlpha (0.1771
2 | fAsym (763): -18.29~3.2] fAlpha (0.06127 fWidth1324)

3 [fM3Long (746): -2.85~17.81 fWidth (0.05037)
4| fwidth (614): 18.59~28.80 fAsym (0.0482)

fLength (0.1158
fM3Long (0.1044

Rank Root-to-leaf decision path Error | Sample|
(classification rule) count| count
1 |branch 132: fLength <= 114.586 an@iAlpha > 151 | 1,130
20.2535 andLength <= 38.5309 ... and fDist <=
217.7938 and fSize <= 2.3133: g
2 |branch 169: fLength <= 114.586 an@iAlpha > 131 874
20.2535 andLength <= 38.5309 ..and fConc <=
0.5742 and fM3Long > -23.6361: g
3 [Branch 62: fLength <= 114.586 anfAlpha <= 130 | 3,950
20.2535 and fM3Long > -67.699 ... and fLength <3
99.1202 and fDist > 124.4584: g

Original run of J48/C4.5 classificatigRe-run J48/C4.5 without err@ensitive
with all attributes attributes [fAsym]
—== Stratified cross-validation === |=== Stratified cross-validation ===

14.9422 %

Incorrectly Classified Instances 822(Incorrectly Classified Instances 820,

14.8265 %

C. Yeast Dataset

This Multivariate dataset of 1,484 records has been

Rank| by Attribute-error countet] by GainRatio by InfoGain| converted from 10 class labels into a binary fofrtwo labels,
1 field_11 (26): 0.17~0.29]  field 11 (0.2053) field (0.2014) NUC (nuclear) and non_NUC. One of the optimal tebtsved
2 | field 48 (24):0.07~0.11] field 12 (0.1803) fiel® (0.1779)| the accuracy rate increased fr@m20 % to 76.01% and errors
3 _| field_45(23):0.14-0.25  field 9 (0.1634)  field(®1498) |  requced from 368 to 356, all top-3 ranked erroisiame
4 | field 9(21):0.14-021] field 44(0.1589) field 0.143) | pyanches contained at least two top-ranked errsithes
Rank Root-to-leaf decision path Error | Samplgl  attributes, nuc and alm, their values on those dires are
___(classification rule) count| count |  eijther within or close to their ambiguous valueges
1 |oranch 11: field 11> 0.197 and field_27 <= 0.8145| 1 13
and field_54 <= 0.0205 and field_53 <= 0.0166 and Combined-table 3 - Exploration results and performace
<= 0.7867: R - - - :
2 |branch 14: field 11> 0.197 and field_27 <= 0.8145| 1 12 Rink by:}g‘gff)? cr)rcz)rsi(())ugéer b)r:Lia(lg Egtzl()) b:urf(%%zgg
land field_54 <= 0.0205 and field_53 > 0.0166: M — - - r
3 ranch 9 field 11<=0.197 and field_1>00392:M 1 8 2 gvh (102): 0.46-0.52 pox(0.061) alm (0.064)
= — ) ) 3 alm (92): 0.49~0.53 alm (0.042) mcg (0.058
Original run of J48/C4.5 classificaticrﬁe-run J48/CA4.5 without errsensitive 4 mcg (78): 0.45-0.52 mit (0.028) gvh (0.037)
with all attributes attributes field_45 Rank Root-to-leaf decision path Error | Sample
=== Stratified cross-validation === |[=== Stratified cross-validation === (classification rule) count| count
=== Summary === === Summary === 1 |poranch 8: alm > 0.4 anchuc <= 0.24 anchuc > 0.14 | 91 562
Correctly Classified Instances148 |Correctly Classified Instancesl51 landgvh > 0.39: non_NUC
71.1538 % 72.5962 % 2 |oranch 13: alm > 0.4 anchuc > 0.24 and mit<=0.4 | 42 105
Incorrectly Classified Instances60 (Incorrectly Classified Instance§7 land mcg <= 0.58 anauc <= 0.31 anchlm > 0.52:
28.8462 % 27.4038 % NUC _ -
3 |branch 12: alm > 0.4 anchuc > 0.24 and mit<=0.4 | 30 88
land mcg <= 0.58 anguc <= 0.31 andilm <= 0.52 an
B. MAGIC Gamma Telescope Dataset ac > 0946: non NUC -

This relatively large binary dataset has 19,02Qaimses
and 10 attributes. One of the optimal tests shawediccuracy
rate increased froi®5.06% to 85.17% and errors reduced from
2,842 to 2,820, all top-3 ranked error-sensitivanbhes
contained two of the top-ranked error-sensitivelattes, and
their values were either within or close to theimbéguous
value ranges.

Original run of J48/C4.5 classificatigRe-run J48/C4.5 without err@ensitive
with all attributes attributes gvh & mcg

—== Stratified cross-validation ===
=== Summary ===

Correctly Classified Instancesl116
75.2022 %

Incorrectly Classified Instances368
24.7978 %

=== Stratified cross-validation ===
=== Summary ===

Correctly Chssified Instances
76.0108 %

Incorrectly Classified Instances 35
23.9892 %
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D. Cardiotocography Dataset

This Multivariate dataset of 2,126 records has bee
converted from three class labels into a binarynfaf two
labels, Normal and Abnormal. One of the optimaistetowed
the accuracy rate increased fréf82% to 98.92% and errors
reduced from 25 to 23, all top-3 ranked error-seresi
branches contained only the most error-sensitiebate
CLASS Code, and its values on those branches wtrer e
within or close to its ambiguous value range.

Combined-table 4 - Exploration results and performace
comparison for the Cardiotocography dataset

Rank| by Attribute-error counter by GainRatio by InfoGain
1 |CLASS_Code (23): 3.39~8.45 CLASS_Code | CLASS_Code
(0.362) (0.68101)
2 ASTV (10): 42.47~62.89 DP (0.2322) ASTV (0.232(6)
3 AC (9): 3.13~3.98 DS (0.2201) MSTV (0.22895)
4 MSTV (9): 0.99~1.43 MSTV (0.1323 AC (0.20366
Rank Root-to-leaf decision path Error | Sample|
(classification rule) count| count
1 |oranch 3: CLASS Code<=7 andCLASS Code> 4 6 532
andCLASS Code> 5 and LB <= 145 and DP <=
0.001485: Normal
2 |pranch 2: CLASS Code<= 7 andCLASS Code> 4 3 72
andCLASS Code<=5: Abnormal
3 |pranch 1: CLASS Code<=7 andCLASS Code<= 2 1097
4: Normal
Original run of J48/C4.5 classificaticrﬁe-run J48/C4.5 without erreensitivg
with all attributes attributes ASTV & AC
=== Stratified cross-validation === |=== Stratified cross-validation ===

with all attributes

Original run of J48/C4.5 classificatidrlﬁe—run J48/C4.5 without errgensitivg

attributes Aluminum & refractive id

X

—== Stratified cross-validation ===
Summary
Correctly Classified Instancesl83
85.514 %

Incorrectly Classified Instances31

14.486 %

=== Stratified cross-validation ===
Summary ===

Correctly Classified Instancesl86
86.9159 %

Incorrectly Classified Instances28

13.0841 %

V.

EXPERIMENT ANALYSIS

It has been acknowledged that the current erraratiah
measure of filtering out the most error-sensititteitautes is a
simplistic one, it does not consider their possilclese
relationship with the remaining attributes, andréifiere such
simple filter-out/removal may introduce unexpectezfjative

impact and inaccuracy to the

re-run of classifaaprocess.

Such implied negative impact may explain why the
improvement from our initial experiments have besrginal;
and even though the improvement on all five dasasee
consistent, they have been based on specific gglect the
most error-sensitive attributes of each datasemeSof the
issues and suggestions can be outlined as follows.

e Filter-out the most error-sensitive attribute magt n

necessarily reduce the misclassification errorspamy
situations, its removal actually increased thersrrigor

example, in the Sonar dataset, field 11 was idedtif

as the most error-sensitive attribute, but it wias ¢he

Summary
Correctly Classified Instances2101
98.8241 %
Incorrectly Classified Instances 25
1.1759 %

Summary ===

Correctly Classified Instances2103
98.9182 %

Incorrectly Classified Instances 23
1.0818 %

E. Glass ldentification Dataset

most significant attribute for GainRatio, the featu
selection method behind the C4.5 decision tree
algorithm, so when field_11 was removed, the errors
increase because the negative impact on the uiragrly
feature selection routine outweighed the possititar-e
reduction measure

This Multivariate dataset of 214 records has bemverted
from seven class labels into a binary form with tlabels,
building_windows and non_building_windows. One @i t
optimal tests showed the accuracy rate increased 6.51%

to 86.92% and errors reduced from 31 to 28, all top-3 ranked

error-sensitive branches contained two or threeraoged
error-sensitive attributes, and their values orsg¢hbranches
were either within or close to their ambiguous ealanges.

Combined-table 5 - Exploration results and performace
comparison for the Glass ID dataset

* When the highly error-sensitive attributes are dlso
highly ranked GainRatio attributes, it is an intiggtask
to select the right attribute to remove, to ensine
right balance between the intend of error-reductind

routine. The Sodium attribute in the Glass |d deités
the most error-sensitive attribute and®-ranked
significant attribute for GainRatio, its removalusad
the errors to increase, and it shared the samemnress
the previous point; in contrast, the fAsym attribois

the negative impact on the underlying feature-$ielec

Rank| by Attribute-error countel

by GainRatio by InfoGain

1 | Sodium (17): 13.17-13.91L

Magnesium (0.333A9tassium (0.290%)

2 | Aluminum (15): 1.29~1.76 Barium (0.3241) Magnesium
(0.2889)
3 | Magnesium (6): 1.44~3.27 Sodium (0.2658) Bari0rtig473)

4 refractive_index (5): | Aluminum (0.2658)| Aluminum (0.197pR)
1.518~1.519
Rank Root-to-leaf decision path Error | Sample|
(classification rule) count| count

1 |branch 5: Magnesium> 2.68 andSodium <= 13.31: 5 92
building_windows

2 |pranch 8: Magnesium> 2.68 andSodium> 13.31an{ 5 27
Barium <= 0.11 and Calcium > 8.31 and
refractive_index > 1.518: building_windows

3 |branch 1: Magnesium<= 2.68 andefractive index 2 45
<= 1.5241 and Iron <= 0.07: non_building_windows

the 29 most error-sensitive attribute in the Gamma
dataset, and it also ranked' 4 GainRatio, but its
removal enhanced the accuracy rate and the errors
reduced from 2,842 to 2,820

Highly ranked error-sensitive attributes may be
associated with higher risk level of errors merely
because their wide and inclusive ambiguous value
ranges and other factors, such as dependence and
correlation, and they should not be considerechas t
main contributor or influencer of the errors; tHere

their removal would not guarantee reduction of rstro
One such example is the field_48 attribute in thea®
dataset, it is the"? most error-sensitive attribute so it

is considered highly risky, and is ranked™1ébr



GainRatio and is supposed to be less influential fo

GainRatio and C4.5, however,
difference to the accuracy

It is natural to assume that the most error-senesitecision
tree branches are closely related to the most -sensitive
attributes. The effort of this study has been tghhght the
links between these high-risk branches and the -tiégh
attributes, to explore any specific relationshiftgras between
them. Experiment results appeared to have veriBedh
obvious assumption but only at a vague level; foeee the
exploration process should be enhanced to provigther
details on such vague level of patterns informatiBome
related thoughts are outlined below:

e The proposed identification method of the mostrerro
sensitive tree branches is only based on the peetic

error-rate produced when the tree structure wanddr
based on training data, but the identification loé¢ t
most error-sensitive attributes is based on thedtts.

VI. CONCLUSION

its removal made N0 Tpig stdy has provided a systematic way to explore

identify the most error-sensitive decision treeniotees and
attributes, despite its simplicity and still at gsrly stage,
results from initial experiments appeared to bepsugve for
such an exploration process. Further study has ple@med to
refine the error-sensitive evaluation components e tree
branch ranking routine, to take on a risk level ghting
approach rather than the removal of the most aeositive
attributes as an error-reduction test measure,et@ldp the
current exploration process into a more sophigitaand
creditable model.
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Depending on the level of similarity between thst te
data and training data, the reliability level of
relationship patterns highlighted in the currerdgesss
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