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Abstract

Wearable biosensors, as a key component of wireless body area network (WBAN) systems, have 

extended the ability of health care providers to achieve continuous health monitoring. Prior 

research has shown the ability of externally placed, non-invasive sensors combined with machine 

learning algorithms to detect intoxication from a variety of substances. Such approaches have also 

shown limitations. The difficulties in developing a model capable of detecting intoxication 

generally include differences among human beings, sensors, drugs, and environments. This paper 

examines how approaching wireless communication advances and new paradigms in constructing 

distributed systems may facilitate polysubstance use detection. We perform supervised learning 

after harmonizing two types of offline data streams containing wearable biosensor readings from 

users who had taken different substances, accurately classifying 90% of samples. We examine 

time domain and frequency domain features and find that skin temperature and mean acceleration 

are the most important predictors.
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I. Introduction

Wearable biosensors are increasingly popular in healthcare, athletics, and among consumers 

in general. New devices, with increasing capabilities and reduced cost regularly come on the 

market. Continuous health monitoring, which enables clinicians to learn how their patients 

are faring outside the office or hospital, is among the most promising aspects of connected 

health (or mHealth) [1]. Wearable biosensors and mobile phones capable of communicating 

to the cloud or performing processing at the edge represent an unprecedented opportunity to 

deliver just-in-time interventions for patients facing behavioral health and substance use 

disorders. Furthermore, this technology empowers patients to take an active role in their self-

care [2].

Like many other Internet of Things (IoT) technologies, implementation of continuous health 

monitoring accelerated during the fourth generation (4G) mobile communications era. Fifth 

generation (5G) network infrastructure as planned will have many features that could 

remove some of the limitations faced by wireless body area network systems (WBANs) in 

terms of ease of use, robustness, throughput, and flexibility for implementers [8]. 5G support 

for software defined networking (SDN) and mobile edge computing (MEC) may be 

important in enabling secure and continuous monitoring, particularly of sensitive conditions 

such as drug or alcohol dependence.

In the past, we have developed classifiers capable of detecting opioid [19], cocaine [24], and 

kratom use [20] in subjects wearing the Empatica E4 wristband. A limitation of this work 

has been the exclusion of individuals who simultaneously ingest multiple substances, which 

is a common scenario is real-world settings. Furthermore, in some cases models trained on 

the data streams of specific patients had difficulty making accurate predictions on previously 

unseen subjects. This issue is not uncommon in machine learning applications but presents a 

particular setback since sustaining reliability across diverse populations is a goal.

For data streams from wearable biosensors, at least three sources of inter-subject variation 

are present. The first is the inherent variation in different individuals’ resting heart rates, and 

rates of metabolizing substances, etc. The second is the differences among sensors, which 

may grow greater over time as wear and tear and lack of calibration take effect [11]. The 

third is difference in environment, where one user may work in an air conditioned office and 

the other outdoors in all weather. These challenges must be overcome for the creation of a 

robust system capable of being a part of the health care decision making process.

Previous studies have shown that wearable biosensors combined with pattern recognition 

algorithms are capable of recognizing the effects of cocaine and other drugs when worn by 

users [7], [19], [24]. Other tests have shown potential for detecting other changed mental 

states such as psychological distress [21]. Previous studies have been limited by their focus 

on a single substance, often excluding individuals using more than one drug simultaneously. 

As continuous health monitoring develops, a key ability will be detecting a wide range of 

health conditions, since having a system for each health problem would result in massive 

duplication of effort.
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In this paper, we harmonize multiple wearable biosensor data streams to create a larger, 

more diverse data stream from which to further develop feature extraction and classification 

techniques. We examine the potential of frequency domain features to improve model 

performance while also considering their implementation on low power systems. By 

summarizing the stream of tens or hundreds of thousands of sensor readings into 43 features, 

we are moving toward a potential system which is capable of detecting polysubstance 

intoxication in previously unseen individuals without burning through batteries, bandwidth, 

and data transfer limits.

II. Methods

In order to more rigorously test our feature extraction and model training process, we 

combined two big data streams. Harmonization proceeded smoothly since the same model 

wearable, the Empatica E4 wristband, recorded sensor data in both groups of subjects. The 

sensor data from each experiment was stored in a similar structure, with a subject and 

session ID number encoded in the folder name and then CSVs corresponding to each of the 

sensor measurements and some features which are derived by the device’s software. There 

were, however, considerable differences in patterns of usage that were recorded.

The process of merging the two datasets was as follows:

Rumbut et al. Page 3

Int Conf Comput Netw Commun. Author manuscript; available in PMC 2021 March 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Algorithm 1:

Data Harmonization Procedure

For a session to be valid, it must have all features present (a small number of sessions had 

features missing for unknown reasons) and the readings must vary at least slightly (one 

session had all EDA readings equal to 0, compared to an overall mean of 2.27 and a standard 

deviation of 1.97).
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Algorithm 2:

Session Validation Procedure

The first dataset described previously [20], consists of sensor data from three adult males in 

Malaysia who were frequent users of a narcotic tea made from a plant called kratom. While 

kratom has a long history of use in locations where the plant naturally occurs, its effects are 

not as well quantified as those of pharmaceutical opioids. Users have reported a variety of 

effects not commonly seen in other μ and κ opioid receptor agonists [23]. The participants 

wore the wristband while going about their routine, pressing an event marker button on the 

sensor to record kratom use. Twenty nine sessions were recorded, but 6 were excluded from 

the dataset: 3 lacked any reports of kratom use, 2 lacked accelerometry readings, and 1 had 

EDA readings which were consistently 0. The etiologies of these data anomalies are 

unknown.

The second dataset was gathered from patients who presented to a single emergency 

department (ED) suffering from an opioid overdose and had recently or were about receive 

naloxone, which is an antidote to opioid toxicity. The Empatica E4 wristband was placed on 

the patient’s wrist as soon as possible after verbal consent was received. The wristband was 

removed when the patient was discharged or admitted, gave indications they may attempt to 

leave with the wristband, were placed on a continuous naloxone drip, or after four hours.

Patients enrolled in the ED were classified into three groups. The first are those who 

experienced an opioid overdose and remained breathing or responsive and a single dose of 

naloxone (non-recurrent). The second group (recurrent) required multiple doses of naloxone 

since its duration of action, estimated by elimination half-life at 60–90 minutes [10], may be 

insufficient for overdoses of long-lasting opioids or very large doses. The third group were 

primarily treated for an opioid overdose but self-reported use of additional substances from 
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other drug classes (polypharmacy). A medical toxicologist reviewed the clinical encounters 

to determine whether they were consistent with the self-reports, to reduce the chance of bias.

Totals for these groups can be seen in Table I. Additionally since there were only two 

samples, we grouped the recurrent and non-recurrent opioid overdose sessions together, 

creating one class for all opioid incidents and another for polypharmacy patients.

See Fig. 1 for a visualization of the relative distances between different sessions projected 

into a two dimensional space by Sammon mapping. We can see most of the opioid and 

polypharmacy sessions are relatively compact and overlapping. A subset of kratom sessions 

and a single opioid session are much more dispersed, with relatively large distances 

indicating they do not much similarity to the others.

A. Feature Extraction

The raw features used were acceleration in the X, Y, and Z dimensions (measured in 1
64

tℎ
 g), 

electrodermal activity (EDA, also called galvanic skin response) measured in microsiemens, 

skin temperature which was measured in degrees Celsius, and heart rate in beats per minute 

which was measured by a photoplethysmograph. Each of the 4 sensors can begin and end at 

different times. The start times, following Unix time format, are integers. Following 

Empatica’s documentation we assumed that recording began at the exact start of the second 

[12]. The ending time (tend) was calculated to be

tend = min tstart + NsTs ∀s ∈ Sensors (1)

where Sensors is the set of all sensors tstart is the latest start time among the sensors, Ns is 

the number of readings for a given sensor, and Ts is the sampling period of the sensor,

T = 1
fs

(2)

where f is the sampling frequency of the sensor in hertz. All readings with timestamps 

outside the interval [tstart,tend] were discarded. In general, the amount trimmed was between 

10 and 20 seconds.

The Empatica E4 is capable of streaming realtime sensor readings to a mobile phone or 

other device via the Bluetooth Low Energy protocol [13], which may process the data at the 

edge or forward it to a server in the cloud. Many cell phone carriers offer plans that charge 

$10-$15 per GB of data in the United States currently [25]. When all the sensor readings are 

loaded into an object in the R statistical computing environment, they require 1022.4 MB of 

memory for 57 sessions (18 MB per session). Compression and other techniques could help, 

but over the course of years transferring these large collections of sensor readings would 

become an onerous expense. Sending this stream directly a cloud server for processing 

would be wasteful. Users will benefit from the development of a suitable way to summarize 

the wearable biosensor data in a way that preserves the ability of classifiers to detect 

disturbances in their health.
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With the goal of keeping processing power requirements low, we examined a large set of 

relatively simple to calculate features from the time and frequency domains. Our prior work 

has shown that accelerometer data stream has some predictive power, but there has been 

inconsistency in which dimension is most valuable. In some of our previous work, 

smoothing of the sensor signal has been done by Hilbert transform [9]. This process 

represents a simplification over previous efforts in that sensor readings are taken as is and 

the representation stays the same size regardless of the size of the stream (although 

aggregating more readings naturally takes more time and memory).

When looking exclusively at cocaine use, the z-axis of the accelerometer readings were the 

most predictive. A possible interpretation of this is that users were less likely to remain 

seated for long periods of time while under the influence of a stimulant, since the Z axis 

would often be perpendicular to the floor. We treated the accelerometer values as 

components of a three dimensional vector:

A = Ax
2 + Ay

2 + Az
2 . (3)

For each of the sensor inputs, we calculated the features seen in Table I. The features 

extracted from the time domain signal are straightforward enough, and can all be calculated 

in O(n) time [3]. For the frequency domain, the Discrete Fourier Transform was computed 

using a Fast Fourier Transform (FFT) algorithm, transforming the vector of readings X into 

its frequency domain representation. Different FFT algorithms have been proposed and have 

been used in environments where processing speed and power consumption are constrained, 

however none have are below O(n log n) time complexity [11].

B. Classification

Four different classification algorithms were considered. Two of them produce highly 

interpretable models, logistic regression and naive Bayes, since such a model could have the 

additional value of shedding additional light on polysubstance intoxication if a good fit 

could be found to the data stream. Additionally, we tested two ensemble learning algorithms. 

Ensemble learning works by training many models and performs classification by 

combining their predictions [17]. The first is random forest, which grows large decision trees 

(which are low bias models) and attempts to reduce variance by only considering a subset of 

predictors at each split in the decision tree [5]. Gradient boosting machines (GBM, 

specifically eXtreme Gradient Boosting) creates many small trees, with each seeking to 

reduce the loss of the previously trained models in the ensemble [16].

Parameter tuning was performed by 10-fold cross validation, except for the random forest 

classifier where model selection was performed using out-of-bag error repeated 10 times. 

The original data was split 80%−20% between training and testing with outcome variable 

proportions approximately preserved. Grid search was carried out over a range of parameters 

in order to find good values. Models were trained and tuned using the caret package for R 

[18] on a desktop computer running Windows 10 with a Intel(R) Core(TM) i7–4790K CPU 

@ 4.00GHz and 32 GB of memory.
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III. Results

Training with cross validation took 130 seconds for the GBM model, 2 seconds for the 

random forest model, 1 second for KNN, and less than a second for naive Bayes. While it 

may take longer, it would be feasible to train and tune any of these models on a late model 

smart phone. This application of MEC would create a model accustomed to the pecularities 

of the individual, their sensor, and their accustomed activities and environment. 

Additionally, the user would maintain control of their data. It would, however, require users 

to manually label enough data to train the model and prevent the development of a database 

of sensor recordings that could be useful for other purposes.

The random forest and GBM classifiers achieve the best performance on these data in terms 

of accuracy, sensitivity, and specificity, see Table II. Both models made the same 

predictions, which are shown in Table III. The ensemble classifiers were able to differentiate 

kratom users from those in the ED overdose dataset, but struggle to separate a pure opioid 

overdose from the polypharmacy patients (see Table II). KNN and naive Bayes were not able 

to do either.

As has occurred in our previous work, acceleration and temperature are highly important 

predictors [6], [19]. This has become a consistent pattern, although in the past it was 

accompanied by EDA [14], while that did not occur this time. A possible interpretation of 

this is that the different substances do not have readily detectable differences in the way they 

affect EDA, and so it cannot be used to differentiate different substances the way that it can 

be used to determine when a user is intoxicated. Given that EDA failed to record during one 

of the sessions, there is a possibility that one of the devices or the way that a user wore it 

interfered with the sensor and reduced the utility of EDA as a feature. Detecting and 

compensating for the failure or miscalibration of a sensor, as is certain to occur over longer 

usage, is a challenge that will be faced by all continuous health monitoring projects. 

Expanded variable importance scores for both random forest and GBM can be seen in Table 

IV.

IV. Conclusion

Although merging the datasets allowed for a broader population, this work remains limited 

by small sample sizes and lack of long term observation. Additionally, drug use was 

recorded differently in the two samples. The kratom user data may include time before 

taking the drug or after it worn off. We have estimated that kratom begins affecting the user 

5 minutes after consumption and remains in effect for 2 hours, but this may vary among 

different users. For the ED patients, the timing of the dose and the exact opioid or other drug 

taken are unclear, complicating efforts to quantify the extent to which users were intoxicated 

throughout their recording sessions. Future work will continue to more closely analyze the 

individual’s response to ingestion of opioids and exploring how emerging wireless 

communication technology can enable continuous health monitoring.
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Fig. 1. 
All values projected into a 2-dimensional space via Sammon mapping.
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Fig. 2. 
Frequency domain representation of accelerometer data.
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TABLE I

Summary of Combined Dataset

Data Source Features Extracted Description

Mean Mean value of signal

Median Median value of signal

Max Max value of signal

Accelerometry Min Min value of signal

First Peak Amplitude of first peak

EDA after DC

Second Peak Amplitude of second peak

Heart Rate after DC

First Peak Ord Frequency of first peak

Temperature after DC

First Peak Ord Frequency of first peak
after DC

FreqInt Integral of the spectrum estimated by trapezoid method

Opioid: 24
a

Drug Consumed Count Polypharmacy: 10
Kratom: 23

a
22 non-recurrent and 2 recurrent
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TABLE II

Model Results

Algorithm Accuracy (95% CI) Sensitivity (Kratom, Opioid, Poly) Specificity (Kratom, Opioid, Poly)

KNN 0.7 (0.35, 0.93) 0.75, 1, 0 1, 0.5, 1

Naive Bayes 0.5 (0.18, 0.81) 0.25, 1, 0 1, 0.5, 0.75

Random For. 0.90 (0.56, 0.998) 1, 1, 0.5 1, 0.8, 1

GBM 0.90 (0.56, 0.998) 1, 1, 0.5 1, 0.8, 1
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TABLE III

Predicted Versus Actual Classes in Test Set

Reference

Predicted Kratom Opioid Polypharmacy

Kratom 4 0 0

Opioid 0 4 1

Polypharmacy 0 0 1
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TABLE IV

Variable Importance

Random Forest GBM

Name Score Name Score

Acc. Mean 100 Temp. Min. 100

Temp. Min. 97.8 Acc. Mean 51.6

Acc. FreqInt 84.1 Acc. FreqInt 39.1

Acc. SD 75.1 HR Min. 32.8

Acc. Median 56.3 Temp. Mean 25.8

Acc. Second Peak 42.6 Acc. SD 24.6

Acc. Max 39.4 HR First Peak 21.6

Temp. Mean 37.5 Acc. Min. 19.9

EDA Median 37.1 Acc. Second Peak 17.4

HR First Peak 36.3 EDA Median 15.9
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