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Abstract—Science DMZs are specialized networks that enable
large-scale distributed scientific research, providing efficient and
guaranteed performance while transferring large amounts of
data at high rates. The high-speed performance of a Science
DMZ is made viable via data transfer nodes (DTNs), therefore
they are a critical point of failure. DTNs are usually monitored
with network intrusion detection systems (NIDS). However,
NIDS do not consider system performance data, such as network
I/O interrupts and context switches, which can also be useful
in revealing anomalous system performance potentially arising
due to external network based attacks or insider attacks. In
this paper, we demonstrate how system performance metrics
can be applied towards securing a DTN in a Science DMZ
network. Specifically, we evaluate the effectiveness of system
performance data in detecting TCP-SYN flood attacks on a
DTN using DBSCAN (a density-based clustering algorithm)
for anomaly detection. Our results demonstrate that system
interrupts and context switches can be used to successfully detect
TCP-SYN floods, suggesting that system performance data could
be effective in detecting a variety of attacks not easily detected
through network monitoring alone.

Index Terms—Science DMZ, data transfer node, high-
performance computing, system performance metrics, anomaly
detection, DoS attack, computer security, machine learning,
scientific workflows, DBSCAN, clustering.

I. INTRODUCTION

Modern research often requires the efficient and reliable
movement of vast amounts of data, with some organizations
generating terabytes of data daily [1]. To help facilitate the
movement of petabytes of data, organizations utilize Science
Demilitarized Zone (DMZ) networks - a specialized network
model intended to maximize data transfer efficiency. Through
a combination of network organization, performance tuning,
and dedicated data transfer nodes (DTNs), the Science DMZ
model helps guarantee reliable and high performance data
transfers [1]. This also implies that protecting the performance
of such networks is an important security concern, and
security measures must be considered with this in mind [2].
Therefore, Science DMZs avoid typical firewalls to maxi-
mize network transfer efficiency, instead relying on various
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detection systems and Access Control Lists (ACLs) [2].
Typically, network intrusion detection systems (NIDS), such
as Zeek(Bro) [3] or Snort [4], tend to rely solely on network
metrics to identify abnormal traffic or attacks. However, we
believe system performance metrics can also reveal the type
of traffic being received, including malicious traffic [5] [6].

DTNs can become a critical point of failure in a Science
DMZ if performance becomes compromised due to a denial-
of-service (DoS) attack. Our work evaluates how system
performance metrics might be used to identify a standard
DoS attack such as a TCP-SYN flood attack, directed to-
ward a DTN. In our study, we configured a server with a
10 Gbps backbone link to our campus Science DMZ as a
DTN following the best practices outlined in [7]. Scientific
workloads are emulated on the DTN by transferring files
from the Energy Sciences Network’s (ESnet) test DTNs,
to generate real network traffic and system activity, while
logging system performance metrics such as interrupts, CPU
utilization, memory utilization, context switches as well as
packets received/transferred and bytes transferred/received.
We used an anomaly detection system based on DBSCAN
clustering [8] to analyze these metrics for anomalies. The re-
sults given by the detection system are then evaluated to gauge
the effectiveness of these metrics in detecting TCP-SYN
floods as anomalies. By validating this detection method using
a well-known and heavily studied attack, we establish the
effectiveness of this method and that it can be extended upon
and generalized to detect other types of external network-
based attacks and insider attacks.

II. SCIENCE DMZ

A Science Demilitarized Zone (DMZ) is a network
paradigm designed for enabling large-scale scientific research
by providing a scalable environment for data transfers and re-
liable performance [2]. It has been recognized by the National
Science Foundation (NSF) as a best practice and adopted at a
number of research institutions in the United States to facil-
itate data-intensive scientific research [9]. Although Science
DMZs vary among organizations depending on their purpose
[10], there are some shared features across all DMZs. The
Science DMZ is usually placed at the organization’s network
perimeter, with a border router connecting the site with the
Science DMZ resources and typically has dedicated network



components tuned to maximize data transfer performance.
Figure 1 shows a basic science DMZ setup with its various
components. The most critical component of a Science DMZ

Fig. 1: A typical Science DMZ (from [10]).

is the data transfer node (DTN), servers provisioned for and
dedicated to efficient high-speed data transfers between sites.
As dedicated systems, DTNs do not have general computing
applications installed (e.g. email clients, media players, doc-
ument editors) [2], and are limited to parallel data transfers
tools such as GridFTP, and performance monitoring tools such
as perfSONAR [11] [2] [12].

III. SYSTEM PERFORMANCE METRICS

Predictions about the network activity can be made by con-
sidering the system metrics. For example, increased network
I/O is associated with increased CPU usage [13]. Previous
work has demonstrated that certain features can be used to
identify different types of network traffic, including attacks
such as SYN floods or port scanning [5]. In particular, the
relationship between SYN floods and significant increases in
interrupts has been demonstrated [6]. Interrupts signal to the
CPU that I/O needs to be performed, and each new SYN
request triggers a new interrupt. A large number of interrupts,
coupled with an unexpectedly small increase in other metrics
that indicate meaningful work, such as context switches, can
be used to identify flooding attacks [6].

Because DTNs perform a relatively narrow range of net-
work activities, they generate predictable network and disk
I/O activity [2] [10], and make them ideal environments
for host-based anomaly detection. Therefore, we believe that
SYN floods and other attacks can be detected through anoma-
lous patterns of system metrics. The relationship between
system metrics such as interrupts and the network metrics
such as packets received can also be combined to enhance
detection. For example, abnormal relationships between the
interrupts per second and packets or bytes received per second
could potentially identify malicious traffic. We focus primarily
on three different per-second metrics in our experiments -
interrupts, packets received, and context switches.

IV. MACHINE LEARNING FOR ANOMALY DETECTION

Machine learning algorithms, including clustering, excel at
finding pattern similarities and are thus classically applied to
predictive classification problems [14]. The anomaly detection
problem (also known as the outlier problem) seeks to find new
patterns in data that do not conform to expected behavior [15]
[16]. It too can be modeled as a classification problem with
“normal” and “abnormal” as classes. Sommer and Paxson [17]
argue that the application of machine learning for anomaly
detection must be used with care when using a “closed
world assumption.” Witten et al. [18] defined a closed world
assumption as: The idea of specifying only positive examples
and adopting a standing assumption that the rest are negative
is called the closed world assumption. We address some of
those points of concern here:

• Bridging the Semantic gap: Anomalous activity does not
necessarily translate to an attack, and anomaly detection
might be better suited for known attacks over novel ones.
In our experiments, we carried out both normal baseline
activity and the attacks so that the ground truth is known.

• Narrow Scope: DTNs have limited system functionality,
as discussed in Section II, resulting in predictable net-
work and system activity. This context makes it suitable
for anomaly detection via machine learning.

• Real Data: We generated our own data using a test DTN
and emulated scientific workflows with other test DTNs
(as we were unable to obtain campus-level DTN data).

Anomaly detection systems often give critical, actionable
information, so a good system should provide this information
as soon as possible with the ability to predict anomalies in
real-time with streaming data. DBSCAN clustering is one
such an unsupervised machine learning approach that exhibits
properties ideal for anomaly detection with noisy data streams
in real-time [19]. The next section gives a broad overview of
the algorithm and its derivative anomaly detection system.

V. DBSCAN
DBSCAN, short for density-based spatial clustering of

applications with noise, is a well-established clustering al-
gorithm [8]. Clusters are grouped together based on the
density of the points, with low density points labeled as
noise. Unlike k-means clustering, DBSCAN does not require
you to specify the number of clusters beforehand, and the
clusters can be any shape. DBSCAN only requires two
parameters, ε (the greatest distance allowed between points
in each cluster) and MinPts (the minimum number of points
required for a cluster). Clustering algorithms like DBSCAN
are a form of unsupervised learning, meaning learns without
the need for training nor labeled data, both of which are
needed with supervised approaches. This makes it a strong
choice for monitoring real-time data, since DBSCAN allows
us to differentiate between normal patterns and anomalous
ones despite not knowing the exact thresholds beforehand. In
addition, DBSCAN is designed for clustering noisy data [19],
which makes it well-suited for monitoring the sometimes un-
predictable network and system performance metrics. These



properties make DBSCAN a good candidate for our anomaly
detection system.

VI. EXPERIMENTAL SETUP

For our experiments, we set-up and monitored a machine,
denoted as D, to act as a Science DMZ DTN, like that
shown in Figure 1. D is a PowerEdge T630 server with a
10 Gbps NIC, two Intel Xeon E5-2637 v3 3.5GHz processors,
a RAID-10 set of 8 1TB 7.2K RPM SATA 6 Gbps hard
drives, and 32GB 2133MT/s RDIMM memory capacity. D
has a 10 Gbps backbone link to CENIC, a 100 Gbps wide-
area network, as is true for our campus DTN. As in a true
Science DMZ [2], this machine requests data from other
DTNs and receives files through the 10 Gbps link using
Globus GridFTP [12] transfers. We emulate real scientific
workloads by having D receive test data via GridFTP transfers
from three read-only test DTNs provided by ESnet [20]. For
each day of experiments, we continuously receive randomly
selected files from one of these three test DTNs at randomized
time intervals. The potential file sizes are shown in table I. The
actual workload of a DTN varies significantly depending on
the organization and type of scientific workflow. Therefore we
also consider two additional cases - a large number of small
file transfers, and a small number of large file transfers. This
simulates the different distributions that have been observed
on a real NERSC DTN [21]. In each case, the time between
file transfers has been chosen such that the total expected data
transferred is roughly 750 GB per day.

TABLE I: GridFTP transfer distributions
Distribution Potential File Sizes Interval

Normal 10M, 50M, 100M, 1G, 10G, 50G 1-30 minutes
Large 10G, 50G 60-75 minutes
Small 10M, 50M, 100M, 1G 5-40 seconds

In addition to D, we have a machine designated as the
attacker, denoted as A, with the same specifications as D.
A is connected to D by a 40 Gbps Mellanox ConnectX-3
network adapter. To generate our TCP SYN flood attacks,
we use hping3 [22], a freely available packet generator used
for penetration testing. Using hping3, we have A generate
SYN packets and send them to D over the 40 Gbps link. In
order to determine the point at which unusual patterns of SYN
packets becomes detectable, we vary the attack intensity by
increasing or decreasing the number of microseconds between
SYN packets sent. Each attack lasts for 15 minutes, with the
intensity gradually increasing by reducing the delay between
packets by 5 µs every 90 seconds. At the max intensity,
hping3 just sends a flood of SYN packets with no delays in-
between for 15 minutes. Six different intensities, with varying
inter-packet delay ranges, are used in our experiments − low-
est (150-100 µs), low (125-75 µs), medium (100-50 µs), high
(75-25 µs), higher (50-0 µs), and max (0 µs). We performed
four experiments using this system configuration and set-up as
shown in figure 3. Three of the experiments involved periodic
SYN floods occurring every two hours starting at noon, with
each intensity level used once. The final experiment sends

the medium, higher, and max intensity floods once, each at
random times during the day. While our experiments run, we
log system (interrupts, context switches) and network data
(packets received, bytes received) per second on D using the
proc filesystem.

Finally, we use DBSCAN clustering [8] to detect the
anomalies in each time-series performance data set collected.
First, we used DBSCAN to cluster the 24 hours worth of
logged performance data gathered for each of the experiments
shown in figure 3. The standard method of detecting TCP-
SYN floods is to check whether or not the number of SYN
packets received per second exceeds a predetermined thresh-
old [6]. As figure 2 shows, looking at the packets received

Fig. 2: DBSCAN clustering using packets received per second on the DTN.
The SYN floods here are generally indistinguishable based on packet volume
alone.

alone is likely insufficient on the DTN, particularly for low
volume attacks, as file transfers can be mistaken for TCP-
SYN floods. Instead, we consider the results of clustering
interrupts over context switches vs. time for each of the
four experiments over the entire day. We set the parameters
such that, under normal conditions, there will only be a
single cluster representing the normal range of interrupts over
context switches. Therefore, if another cluster is discovered,
it indicates a period of time where there is a high density
of abnormal behavior. Then, we consider the effectiveness of
a real-time detection system using DBSCAN clustering. The
real-time streaming DBSCAN detection system continually
adds data from the proc filesystem to a pandas dataframe.
Once the dataframe grows large enough for clustering, we
run DBSCAN and count the number of resulting clusters to
check for anomalies. We consider the time required to detect
SYN floods of different rates, and trade-offs associated with
the various parameters.

VII. EVALUATION AND DISCUSSION

In figure 3, we show the results of DBSCAN clustering on
24 hour DTN experiments. In these figures, the interrupts over
context switches values have been normalized by multiplying



(a) Experiment 1 (periodic floods, random file transfers) (b) Experiment 2 (periodic floods, large file transfers)

(c) Experiment 3 (periodic floods, small file transfers) (d) Experiment 4 (random floods, random file transfers)

Fig. 3: DBSCAN clustering results for the normalized interrupts over context switches vs. time (in seconds). In each subfigure, the largest
cluster represents standard activity, while the green dots represent un-clustered noise. The other small clusters occur during SYN floods. In
all cases, the SYN floods can be distinguished from ordinary traffic.

them by 10,000 to improve the readability of the charts and
simplify the choice of the DBSCAN distance parameter ε.
To obtain these figures, we set ε to 910, and MinPts to
200. During ordinary conditions on the DTN (file transfers
or inactivity), we found that the interrupts over context
switches remained fairly consistent around 0.5 (5000 in the
figure 3), with some noise occurring throughout the day.
However, ordinary spikes occur infrequently, compared to
densely packed clusters which appear during the attacks. The
small clusters shown in figure 3 occur only during the hping3
SYN floods. A large number of interrupts coinciding with a
relatively low number of context switches generally indicates
that less meaningful work is being performed [6]. Therefore,
it is sensible that this is a good indicator of SYN floods, where
a large amount of ”useless” packets are handled within a short
time frame. As expected, the higher intensity floods showed
significantly higher interrupt over context switch ratios.

A. Real-time Anomaly Detection

Following the analysis of the full days worth of traffic, we
consider how DBSCAN could be applied to detect attacks in
real-time. A streaming anomaly detection system was created
using Python, which gathers performance data and creates
new clusters every 10 seconds. If an unexpected number of
clusters is detected during a time slice, then an anomaly is
reported. In our experiments, we found that accurate detection
could be performed even clustering a small number of points.
The recommended number for DBSCAN’s MinPts parameter
is one more than the number of dimensions [23]. In our
case, the number of dimensions is two − the interrupts over
context switches ratio and the time. Since there are only
two dimensions, we don’t need a large sample to perform
reliable clustering. We found that the minimum recommended
value of three points per cluster was sufficient to detect the
attacks without false positives. Random spikes caused by
noise never occurred closely enough together in a short time



frame to trigger false alerts. The minimum time for detection
is determined by how many points we choose to gather
before re-clustering. Our experiments used 10 data points,
making 10 seconds the minimum detection time. Figure 4
shows that most attacks were detected in 10 seconds using
the minimum number of points, even at very low rates. In
our experiments, we managed to detect SYN flooding at as
low as 4,800 packets per second. Although we detected all
attacks with no false positives, the bandwidth measuring tool
iperf produces a similarly high interrupts over context switch
ratio. As a common application used to test DTN performance
[1], this could result in false positives. However, even if the
scheduled iperf tests are not recognized beforehand, we can
eliminate any false positives by also considering the number
of bytes received per second in our analysis. We found that
the bytes per second during an iperf test is at least one order
of magnitude higher than during the SYN floods we tested.
Therefore, we can improve detection further by combining
network and performance metrics.

Fig. 4: Time spent before detection during low intensity TCP-SYN floods.
Over the course of an attack, the number of interrupts gradually increases,
until it becomes detectable. All but the lowest rate attacks were detected after
the minimum 10 seconds required to gather data for clustering.

VIII. CONCLUSIONS AND FUTURE WORK

Our work demonstrates that system performance data can
be effective in detecting TCP-SYN floods, an attack tradi-
tionally detected by a network IDS, on a Science DMZ DTN.
The limited variety of tasks typically performed on a DTN
helps us use system performance metrics to reliably detect
threats. Interrupts over context switches consistently detected
the SYN floods, even at very low intensities. Combining
this with network metrics such as the number of packets or
bytes received per second can improve detection. DBSCAN
can applied in a real-time detection system, clustering per-
formance metrics over time to detect attacks. Successfully
detecting SYN floods on the DTN suggests that this system
could be generalized for other threats, such as port scanning or
insider attacks which are unlikely to be detected with network
activity alone. With that in mind, these metrics could be
valuable being incorporated into an intrusion detection system
such as Zeek (Bro). Future work could also involve using

both network and system performance metrics (e.g. context
switches, etc.) to detect insider attack scenarios on a DTN.
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