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HIERTALKER: A DEFAULT HIERARCHY OF
HIGH ORDER NEURAL NETWORKS THAT
LEARNS TO READ ENGLISH ALOUD

Z.G. An* , SM. Mniszewski, Y.C. Lee
G. Papcun, and G.D. Doolen
Center for Nonlinear Studies

Los Alamos National Laboratory

Abstract

A new learning algorithm based on a default hierarchy of high order neural networks
has been developed that is able to generalize as well as handle exceptions. It learns the
“building blocks™ or clusters of symbols in a stream that appear repeatedly and convey
certain messages. The default hierarchy prevents a combinatoric explosion of rules. A
simulator of such a hierarchy, HIERtalker, has been applied to the conversion of English
words to phonemes. Achieved accuracy is 99% for trained words and ranges from 76% to
96% for sets of new words.

1. Introduction. It is a problem of general interest to determine the relationships among
two or more sets of discrete symbols. This problem occurs in translating languages (both
computer languages such as Pascal and Fortran, and natural human languages such as
English and Chinese), determining the correspondence between genetic codes and their
structural realizations, and in mapping ordinary spelling onto a phonetic transcription
appropriate to drive a speech synthesizer.

This last problem has recently been studied by Sejnowski and Rosenberg! using a back-
propagation neural network approach.? This system, known as NETtalk, can recall the cor-
reci pronounciation of a corprs of training words and generalize to novel words. NETtalk
is based on an automatedrﬁa.rning procedure, in contrast to traditional Al approaches
(for example, DECtalk, a commercial product that converts text to speech) which rely
on highly labor intensive entries of phonological rules. Additionally, Stanfil and Wal:z
also tackled this problem of text to phoneme translation using ». memory-based reasoning
approach (MBRtalk) which works directly from a data base c. training set?.

In this paper we present a new learning procedure, based on a default hierarchy of high
order neural networks, which exhibits an enhanced cupability of gcneralization and good
efficiency. This new architecture is suitable for learning the regularities or “building blocks”
embedded in a stream of information with inherent long range correlations. Moreover, it
is not plagued by a combinatoric explosion of rules in learning. A simulator which applies
this learning paradigm to the conversion of English words to phonemes was developed and
is known uSHIERt er. We will show results using HIERtall.er, discuss their implications,
and talk about some future directions for research.

2. The Default Hierarchy. In this section we describe the default hierarchy in concept and
functionality. This type of learning procedure will produce contexual rules for mapping
an input strearn of information to an output stream. Both streams must be aligned in
some consistent fashion allowing a one-to-one mapping between items in the streams.

® Present Adress.NYNEX Science and Technology, 300 Wastchaster Ave White Plains NY 10604
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Figure 1.

A contextual rule focuses on one input item either in null context or in the context of
surrounding input items to determine the appropriate output item.

Rules are partitioned in a hierarchy as shown in Figure 1. Rules at level 1 use a context
window size of one, rules at level 2 use a context window size of two, rules at level 3 us-
a context window size of three, etc. Within a level L there are L possible context window
orientations possible. For example, at level 3, one window focuses op the first or left-most
of the three items and determines the output item corresponding to that first item, the
second window focuses on the second or middle of the three items and determines the
output item corresponding to that middle item, and the third window focuses on the last
or right-most of the three items and determines the outpn! item corresponding to that
last item. All context window orientations may not be required for an application. The
choice of the orientations used, as well as the number of levels required, 1s dependent on
the characteristics of the data. ;

Each of these context window orientations corresponds to a high order correlation neural
network ¢ of order L for leve] L. The L context window items frcm a level L rule are
correlated by muitiplication or concatenation, depending on whether the input stream is
numerical or symbolic. A symbolic rule cannot fire unless all context window items are
present together. In particular, the patterns produced by the window of L letters are used
as inputs to train a neural network of L-th order. We denote the input string of letters by
I = (li,liay.....,lin), and the output phoneme by O;. The mean square error is

<E’>m<(0-0)>

where O = WI, W is a matrix to be determined, O’ is the desired answer, and <> indicates
the ensemble average. To minimize the error we must have

W =< Ol ><II>!

where
< Ll >m< I.';I.':-.--I‘.I.‘p[.‘r ..... T > .

Taking approximately < II >= 1, we have W m< O >. This is the Hebbian learning
rule. Obviously, in order to optimize, the Hebbian rule is more appropriate for high order
networks than for first order ones, because for high order notwork < I >= 1 is a better
approximation.

The rules, “building blocks”, or connactions are created dynamically during the training
process based on the training data. Starting at level 1 with a context window of size one,
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we go through the entire training set collecting all the existing one item correspondences
and the number of times each of these correspondences occurs. The most common output
item becomes the rule consequent. Then we procede to learn rules at level 2. The different
context window orientations are learned separately. Once again, the order in which they
are most appropriately learned is once again determined by the characteristics of the
application. To learn rules for the context window orientation of two items which focuses
on the first item we iterate through the training set once again looking at everything
through a context window of two. Before creating any rules for this context window
orientation, a check is made to see if rules exist for previously trained windows (in this
case Jevel 1) that already have captured this information. Here we collect all the two item
correspondences with a focus on the first item that have not been captured in previously
generated rules. Once again frequency counts are collected and the most common output
item becomes the consequent for a rule. This type of learning procedure is continued
for each context window orienitation at each level. The number of levels is variable and
dependent on the complaxity of the data. Rules will not be created for larger window sizes
if not needed.

General rules are created with small window sizes while exception rules are created with
larger window sizes. This capability of generalization of a default hierarchy stems from its
logical structure and is independent of details.
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The “default” aspect of the default hierarchy concept becomes more apparent in testing.
Once we have trained this network, we have a hierarchy of high order correlation neural
networks. Each high order correlation network corresponds to a set of rules for a particular
context window orientation. We have trained these context window orientations in some
chosen order from level 1 to level L. Testing is done in the reverse order. Given a stream
of input items, we want to predict the corresponding stream of output items. Testing
starts with the focus on the first or left-most item of the input stream. The system first
searches the lowest level, L, for an appropriate rule. The search through the different
context window orientations occurs in the opposite order than it was trained in. If there
is a match, then an answer at this level of specification is obtained, otherwise the system
defaults to the next level, L-1, to seek a less specified answer. Rules at different levels
and context window orientations will be used to predict the entire corresponding output
stream. A guess will always be available from level 1 if no other appropriate rules exist.

An outstanding feature of the default hierarchy is that it is not plagued with the difficulty
of combinatoric explosion. This latter point is illustrated in Figure 2., where the number
of indispensable rules n(L) learned in each level L is plotted as a function of L. The reason
that the number n(L) decreases so rapidly with !, is that only a few exceptions are learned
in very low levels.

A simple mathematical argument will show why capturing the “building blocks” brings
about tremendous saving. Suppose we are looking at strings of L items as our context
windows. The total number of combinations in such a window is m%, where m is the
number of different input items. When L is large, m” is too large a number to handle, and
this characterizes the so called combinatoric explosion. However, if we can capture the
"building blocks”, and assuming all the “building blocks” are of leagth less than I, (I < L),
then the total number of patterns in a context window of length L is less than

! i
LY n, LY m <Lm™!
=] =]
where n, < m'is the number of possible “building blocks” of length 1 (¥ < i < ). Therefore
the factor of saving due to capturing the "building blocks” is (m*/Lm'*'), which can be
large.

3. Text to Phoneme Translation. The default hierarchy, as described above, was applied
to the problem of reading Enghsh words by translating the words to their appropriate
phoneme representations. We mapped words (consisting cf combinations from the 26 let-
ters of the alphabet) to their phonemes (consisting of combinations of phonemes from Table
1.). The phoneme set that was chosen was based on the one letter phoneme translations
used by Digital Equipment’s DECtalk speech synthesizer, thus allowing the output strings
of phonemes to be played back through DECtalk, bypassing the part of the machine that
converts Jetters to phonemes. Stresses were not used.

The training sets and test sets contained words with their associated phoneme represen-
tations. In assembling these training and test sets the question of alignment arises. A
precise and consistent alignment is important to allow general rules of text to phoneme
trauslation to be captured and used. A lack of alignment leads to the generation of a large
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number of inefficient rules.
PHONEME SOUND PHONEME SOUND PHONEME SOUND

a stop b bet c tought
d done e lake f fill
get h hint i seat
ﬁ Ken 1 let m men
n net o coat P pet
r run 5 sit t test
u lute v vase w wet
x about y yell z z00
A bite C chill D this
E bet G ring I sit
J in L bottle M ransom
N utton 0] boy Q one
R bird S show T thin
U book w shout X boz
Y cute Z azure @ cat
- but
Table 1.

Some alignments are straightforward. For example, "top” — "tap” is already one-to-one.
Another example, "cake” — "kek.” has a silent "e” which is shown by a ".". This does
not present a problem because the alignment is correct until the final silent letter. The
worcr "third" — "T_Rd"” becomes more complicated. We associate "th” -— "T_” and
"it” ~— "_R". The mapping "th” —— "T_" could as well have been "_T". The first
mapping does appear to be more natural. It is necessary to decide on the type of letter
associations as shown above and then to be consistent in applying them throughout the
data s~. When there are errors or noise in the data set due to inconsistent alignments or
erroneous phoneme translations, extra exception rules will be generated to compensate.

‘We cnllected and assembled a number of different data sets for our work. Some contained
different kinds cf alignment. Some contained errors in phonieme translation and alignment.
One contained a very consistent alignment and transiation. Most of these words were ini-
tially taken from a 250,000 word dictionary®, which had been translated using the phoneme
set as described above. A rough alignment was done programmzetically. is dictionary
was used as a resource to selectiveiy obtsin the phoneme translations of sets of words.
Clran-up of the phoneme translation and alignment was done by hand. After Word Set
# 1 was constr 1cted and cleaned up, it was also used as source data for a neural netwnrk
to perform automatic alignment. It did a reasonably good job, but some alignment errors
still remained.

Word Set #1 consisted of 1017 words in alphabetical order from a book containing sets of
words classified by phonetic sound.” The idea behind this "ajninf set was to collect a set
of words which included 1. any different letter representations of all the different phonemes.
This set did not contain all possible combinations.

Word Set #2 consisted of 1718 words, 1017 of which are from Word Set #1, with an
additional 701 words randomly chosen from the dictionary. These 701 words were initially
aligned using the alignment neural network and then corrected manually. This training set
attempted to provide more examples to allow for more letter to phoneme combinations.

Word Set #3 consisted of 1441 words from a book that contained a more systematic word
set, from simple to difficult.® These were left in the order they were presented in the book.
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This training set attempted a systematic presentation of examples, starting with simple
one syllable words, working up to larger words with suffixes such as -tion, -abie, etc. A
more efficient hierarchy with less rules was generated when this set was used as the training
set in its original order than when words were presented alphabetically.

Word Set #4 consisted of 6219 words in alphabetical order. It contained Word Set #2 with
an additional 4501 words randomly taken from the dictionary. The 4501 words were aligned
using the alignment neural network and were not corrected manually. This training set
basically contained a number of random words which contained a larger number of letter to
phoneme combinations than the above sets. It also contained exrrors which brought about
exception rules at the Jower levels in the hierarchy.

Word Set #5 consisted of 1000 random words chosen from the original dictionary that
were not in Word Set #4, but may have been similar.

Word Set #6 consisted of the 100 randomly chosen words used by Stanfil and Waltz for
MBRtalk.? This set serves as a way to compare our results with MBRtalk.
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Figure 3.

The default hierarchy architecture that was used for translating words to phonemes allowed
up to 15 letter windows and used mostly context window orientations which focused on
the center letter as shown in Figure 3. A center orientation was chosen since it has been
shown that a significant amount of the information needed to correctly pronounce a letter
is contained in the surrounding letters.?

The original HIERtalker simulator was writter in the Fortran programming language for
the Cray. Due to the symbolic nature of this application, it lent itself better to a LISP
implementation. A LISP version of the HIERtalker simulator was developed that runs on
the Texas Instruments Explorer.

4. Results. All the performance results are based on the percentage of correct phonemes
chosen by HIERtalker, The system may have come up with acceptable alternatives in some
instances, but these were not counted.
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The number of passes through a training set is dependent on the depth of the hierarchy
and the different context window orientations used. One pass through the training data is
accomplished for each context window orientation at each level.

HIERtalker was trained using Word Set #4. In Figure 4 we see that most rules were
generated using a 5 letter window and the maxirmum size window used was 13. When
tested on the training set an accuracy of 99% was achieved. The default hierarchy was
able to capture the “building blocks” in the training set.

‘When tested on Word Set #3, an accuracy of 83% was achieved. Errors occurred for letter
to phoneme combinations it had not seen before and in some cases acceptable alternati-es
were given.

When tested on Word Set #5 an accuracy of 96% was achieved. This high result was due
to the set containing many of the “building blocks” that had been learned.

When tested on Word Set #6 an accuracy of 76% was achieved. This is lower than the
86% accuracy achieved by MBRtalk? but is good considering it was only trained on a set
of a little over 6200 worgs. A number of the letter to phoneme combinations in this set
had not been seen before.

HIERtalker has no problem distinguishing between vowels and consonants. It does have
trouble occasionally in distinguishing between long and short vowel sounds in letter com-
binations it had not seen dunng training.

We would like to obtain some larger training sets for further study. In the future we would
also like to look at the impact of additional input information such as stress, part of speech,
and syllable or morpheme boundaries in determining a word’s pronunciation.
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5. Conclusion. We have developed a new, efficient, learning algorithm, based on the con-

cepts of a default hierarchy and high order neural networks, and have applied it to the
problem of translating English text to phonemes.

It is illustrated through this application that a default hierarchy is very efficient in learning
the “building blocks” in a stream of information, which are clusters of the basic symbols of
the stream that appear repeatedly, and convey consistent messages. The default hierarchy
captures and utilizes these “building blocks™” in a way similar to “cluster decomposition”
in physics. English text happens to be one of those information streams in which there are
definite “building blocks”, which explains why the default hierarchy works well for it.

This algorithm generalizes readily to other important learning problems such as translating
computer languages, deciphering the genetic code®, and accelerator control. We plan
to report progess on the application o? the default hierachy learning algorithm to these
problems in forthcoming IEEE meetings.
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