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HIERT’ALKER: A DEFAULT HIERARCHY OF
HIGH ORDER NEURAL NETWORKS THAT

LEARNS TO READ ENGLISH ALOUD

Z.G. An* , S.M. Mniszewski, Y.C. Lee
G. Papmn, and G.D. Doolen
center for Nonlinear Studies

Los Alamos National Laboratory

Abstract

A new learning al onthrn based on a default hierarchy of high order neural networks
Jhas been develope that is able to generalize as well as handle exceptions. It learns the

“building blocJcs” or clusters of symbols in a stream that appear repeatedly and convey
certain messages. The default hierarchy prevents a combinatonc explosion of ndcs. A
simulator of such a hierarchy, HIERtalker, haa been applied to the convemion of En lish

!words to phonemes. Achieved accuracy is 9970 for trained words and re.ngen fkom 76 0 to
96% for sets of new words.

1. Introduction. It is a problem of general interest to determine the relationships among
two or more sets of discrete symbols. This problem occurs in translating languages (both
com uter lan ages such as Pascal and Fortran, and natural human languages such as~ p.
En sh end hmese), determining the correspondence between genetic codes and their
structural realizations, and in mapping ordinary spelling onto a phonetic transcription
appro~ate to drive a speech synthesizer.

This last problem hen recently been studied by Sejnowski and Rosenbergl using a bac.k-
propagatioa neural network approach.z Thi~ system, known as NETtalk, can recall the cor-
rect pronounciaticm of a co

T
t~~of trainingwords and generalize to novel words. h7ETtalk

is based on an automated earning procedure, in contram to traditional AI approaches
(for example, DJ3Ctalk, a commercial product that converts text to s eech) which rely

Eon highly labor intennive entries of honological rules, Additionally, tanfil and Waltz
Ialso tackled this problem of text top oneme translation using P.memory-based reasoning

approach (MBRtalk) which works directly from a data base c. training set3.

In this paper w present ● new learning procedure, based on a default hierarchy of high
order neural networks, which exhibits an enhanced cupabiliiy of g( neralization and good
dciency. 1 his new architecture is suitable for learning the regularities or “building blocks”
embedded in a stream of information with inherent long range correlations. Moreover, it
is not plagued by a combinatonc explosion of rules in learning. A simulator which applies

‘his letin%pud$?
to the conversion of English words to phonemes wu developed and

M known as IERt er. We will show results uoing HIERtalLer, discuss their implications,
and talk about some future directions for research.

2. The Default Hierarchy, In thh section we describe the default hierarchy in concept and
?~ s type o learning procedure will produce contexual rules for mapping
an input stream of information to an output stream. Both streams must be aligned in
some consistent fashion allowing ● one-to=one mapping between items in the streams.



Figure 1.

A contextual xule focuses on one input item either in null context or in the context of
surrounding input items to determine the appropriate output item.

Rules are partitioned in a hierarchy M shown in Fir 1. Rules at level 1 use a context
window size of one, x=des at level 2 use a context window size of two, rules at !evel 3 u=
a context window size of tk, etc. Within a level L there are L possible context u*indow
orientations possible. For example, at level 3, one window focuses on the first or left-most
of the three items and determines the output item corres onding to that first item, the

Esecond window focuses on the second or middle of the t ree items and determines the
output item corresponding to that middle item, and the third window focuses on the last
or right-most of the three items and determines the output item corresponding to that
last item. All context window orientations may not be required for an a~plicatmn. The
choice of the orientations used, as well as the number of levels req~red, M dependent on
the characteristic of the data-

Each of these context window orientations corresponds to a high order correlation neural
network 4 of order L for level L. The L context window items fmm a level L rule are
correlated by multiplication or concatenation, de ending on whether the in ut stream is

i c?numerical or symbolic. A symbolic rule cannot re unless all context win ow iternn are
present together, In particular, the patterns produced by the window of L letters are used
as in uts to train a neural network of L-th order. We denote the input string of letters by

rIi = ljl,lja,....., ,~ ,/ ) and the output phoneme by Oj. The mean cquare error is

< E2 >=< (0- 0’)2 >

where O = WI, M’ is a matriox~o●be determined, O’ is the desired mswer, and <> indicates
the ensemble ●verage. To rnm.muze the error we must have

W -<0’1><11>-1

where
< IiIi*>=< IjlIi8....Iinlil~IiIin~...Iin~>.

Tdin approximately < II >= 1: we have W,=< 0’{ >. ‘l’his is the Hebbian learning
8rule. bviously in order to optmuze, the Hebbl~ rule Mmore appropriate for high order

networks than /or fist order ones, because for bgh order network < If >= 1 is a better
approximation.

The rides, “building blocks” , or connections are created dynamically
,process based OQthe training data. Starting at level 1 with a context

2

during the training
window of’size one,



we go th~ugh the entire tra,inirlg set collecting all the existing one item correspondences
and the number of times each of these comespondences occurs. The most common output
item becomes the rule co~equent. Then we precede to learn ~]es at level 2. The different
context w*indow orientations are learned separately. Once again, the order in which the}’
are most appropriately learned is once again determined by the Aaracteristics of the
application. ‘ro learn rules for the context window orientation of two items which focuses
on the fit item we iterate through the training set once again looking at everything
through a context window of two. Before creating any rules for this context windo~v
orientation, a check is made to see if rules exist for previously trained windows (in this
case level 1) that already have captured this information. Here we collect all the two item
correspondences with a focus on the first item that have not been captured in previously
generated rules. Once again fiquency cants are collected and the most common output
item becomes the consequent for a ride. This type of learning procedure is cent inued
for each context window orieritation at each level. The number of levels is variable and
dependent on the compl-tity of the data. Rules will not be created for huger window sizes
if not needed.

General rules are created with small window sizes while exception roles are created ~vith
larger window sizes. This capability of generalization of a default hierarchy stems from its
logical structure and is independent of details.

fflRtdkw AVOIDS GEOtULWLOSION

Figure 2.
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The ‘default” aspect of the default hierarchy concept becomes more apparent in testing.
Once we have trained this network, we have a hierarchy of high order correlation neural
networks. Each high order correlation network corresponds to a set of rules for a particular
context windov* orientation. 14’ehave trained these context window orientations in some
chosen order from level 1 to level L. Testing is done in the reverse order. Given a stremn
of input items, we want to predict the corresponding stream of output iterns. Testing
starts with the focus on the &st or left-most item of the input stream. The system first
searches the lowest level, L, for an appropriate de. The search through the different
context window orientations occurs in the opposite order than it was trained in. If there
is a match, then an answer at this level of specification is obtained, otherwise the system
defaults to the next level, L-1, to seek a less specified answer. Rules at different levels
and context window orientations will be used to predict the entire cornsponding output
stream. A guess will always be available from level 1 if no other appropriate rules exist.

An outstanding feature of the default hierarchy is that it is not plagued with the difficulty
of combinatorics explosion. This latter point is illustrated in Figure 2., where the number
of indispensable rules n(L) learned in each level L is plotted as a function of L. The reason
that the number n(L) decreases so rapidly ~vith !, is that only a few exceptions are learned
in very low levels.

A simple mathematical argument will show why capturing the “building blocks” brings
about tremendous saving, Suppose we are looking at strings of L items as our cent ext
windows. The total number of combinations in such a window is m~, where m is the
number of different input items. When L is huge, m~ is too large a number to handle, and
this characterizes the so called combinatorics explosion. However, if we can capture the
“building blocks” , and assuming all the “building blocks” are of length less than 1, (1 < L),
then the total number of patterns in a context. window of length L is less than

where n, ~ mi is the number of possible “building blocks” of length i ( 1 < i < /). Therefole
the factor of sa~”ing due to capturing the “building blocks” is (m~/Lm’+’ ), which can be
large.

3. Text to Phoneme Translation. The default hierarchy, as described above, was applied
to the problem o-g-h words by translating the words to their appropriate
phoneme representations. We mapped words (consisting of combinations from the 26 let-
ters of the alphabet) to their phonemes (consisting of combinations of phonemes from Table
1.). The phoneme set that was chown was based on the one letter phoneme translations
used by Digital Equipment’s DECtalk speech synthesizer, thus allowing the output strings
of phonemes to be played back through DECtalk, bypassing the part of the machine that
converts letters to phonemes. Stresses were not used.

The training sets and test sets contained words with their associated phoneme represen-
tations, In assembling these training and tebt sets the question of alignment arises. A
precise and consistent alignment is important to allow general rules of text to phoneme
trnrudation to be captured and used. A lack of alignment leads to the generation of a large
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number of inefficient rules.
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SOUND
tought
fill
seat
men
pet
test
wet
zoo
this
sit
ransom
one
thin
box
cat

Table 1,

Some alignments are straigk.forward. For example, “top” ~ “tap” is already one-to-one.
.4nother example, “cake” ~ “kek.” has a silent “e” which is shown by a “.”. Tilis does
not resent a problem because the alignment is correct until the final silent letter. The
wor f “third” ~ “T-Rd becomes more complicated, We associate “t h“ - + “T-” and
‘ix” -+ “ .R”. The mapping “th” ~ “T-” could ~ well have been “-T”. The first
mapping does appear to be more natural. It is necessary to decide on the type of letter
associations as shown above and then to be consistent in applying them throughout the
data s~’. Il%en there are errors or noise in the data set due to inconsistent alignments or
erroneous phoneme translations, extra exception rules will be generated to compensate.

We collected and assembled a number of different data sets for our work. Some cent ained
different k+ds cf alignmen~. Some contained errors in phoneme translation and alignment,
One cant amecl a very cons~stent alignment and translation. Most of these words were ini-
tially taken from a 250,000 word dictiona~s, which had been translated usin the phoneme
set as described above. A rough alignment was done programmatically. A is dictionary
was used as a resource to selectively obtain the phoneme translations of sets of words,
Clean-up of the phoneme translation and ali nrncnt was done b Phand. .4fter I\’ord Set
# 1 was constr ~cted and cleaned up, it was 3 dso used as source ata for a neural netw~rk
to erform automatic alignment. It did a reasonably good job, but some alignment errors

isti remained.

Word Set #1 consisted of 1017 words in al habetical order from a book containing sets of
$words classified by phonetic sound.’ The i ea behind this trainin set was to collect a set

fof words which included L any different letter representations of al the different phonemes.
This set did not contain all possible combinations.

Word Set #2 consisted of 1’71S words, 1017 of which are from Word Set #1, with an
additional 701 words randomly chosen from the diet ionary. These 701 words were init iall~’
aligned using the alignment neural network and then corrected manually, This training set
attempted to prcwidc more examples to allow for more letter to phoneme combi nat ions,

W’ord Set #3 consisted of 1441 words from a book that contained a more systematic wurd
set, from simple to difficult.8 These were left in the order they were presented in the book.
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‘I%istrain.ing set attempted a systematic presentation of examples, starting with simple
one syllable words, working up to larger words with suffixes such as -tion, -abie, etc. A
more eflicient hierarchy with less rules was generated when this set was used as the training
set in its original order than when words were presented alphabetically.

Word Set #4 consisted of 6219 words in alphabetical order. lt contained Word Set #2 with
an additional 4501 words randomly taken from the dictionary. The 4501 words were aligned
using the alignment neural network and were not corrected manually. This training set
basically contained a number of random -ds which contained a larger number of letter to
phoneme combinations than the above sets. It also contained errors which brought about
exception rules at the lower levels in the hierarchy.

Word Set #5 consisted of 1000 random words chosen from the original dictionary that
were not ~ Word Set #4, but may have been similar.

Word Set #6 consisted of the 100 randomly chosen words used
MBRtalk.3 This set serves as a way to compare our results with

~whtilq

~wbmsJ

by Stanfil and Waltz for
h4BRtalk.

Figure 3.

The default hierarch architecture that was used for translatin~ words to phonemes allowed
c1’up to 15 letter win ON’Snnd used mostly context window omntations which focused on

the center letter as shown in Figure 3, A center orientation was chosen since it has been
shown that a significant amount of the information needed to correctly pronounce a letter
ia contained in the .umounding letters.”

The original HIERtalker simulator was written m the Fkmtranpro~ramming language for
the Cray. Due to the symbolic nature of this application, it lent Itself better to a LISP
implement ation. A LISP version cd the HIERtalker simulator was developed that runs on
the Texas Instruments Explorer.

4, Results. All the perforxrmnceresults are based on the percentage of correct phonemes
chosen by If IERtallier, The system may have come up with acceptable alternatives in some
instances, but these were not counted.
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The number of passes through a training set is dependent on the depth of the hierarcll~
and the different context window orientations used. One pass through the training data 1s
accomplished for each context window orient ation at each level.

EIIER.ta.lker was trained using Word Set #4. In Figure 4 we see that most rules were
generated using a 5 letter window and the mcoimurn size window used N*SS13. \Vhen
tested on the training set an accuracy of 99’i70was achieved. The default hierarchy was
able to captux e the “building bloclw” in the training set,

When tested on M’ord Set #3, an accuracy of 83% was achieved. Errors occurred for letter
to phoneme combinations it had not seen before and in some cases acceptable alternat i~es
were given.

When tested on Word Set #5 an accuracy of 96% was achieved. This high result was due
to the set containing many of the “building blocks” that had been learned.

When tested on Word Set #6 an accuracy of 76% was achieved, This is lower than the
S6% accuracy achieved b hfBRtalk3 but is good considering it was only trained on a set

&of a little over 6200 wor . A number of the letter to phoneme combinations in this set
had not been seen before.

HIERtalker has no problem distinguishing between vowels and consonants. It does ha~~e
trouble occasionally in distinguishing between long and short vowel sounds in Ietter com-
binations it had not seen during training.

We would like to obtain some larger training sets for further study. In the future we would
also like to look at the impact of additional input information such as stress, part of speech,
and syllable or morpheme bound~ies in determining a word’s pronunciation.
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5. Conclusion. W’ehave developed a new, efllcient, learning algorithm, based on the con-
cepts of a default hierarchy and high order neural networks, and have applied it to the
problem of translating English text to phonemes.

It is illustrated through this application that a default hierarchy is very efficient in learning
the “buildin blocks” in a streun of information, which are clusters of the basic symbols of

%the stream t at appear repeatedl , and convey consistent messages. The default hierarchv
Lcaptures and utilizes these “buil “ g blocks” in a way similar to ‘cluster decomposition;’

in hysics. En@sh text happens to be one of those information streams in which there are
de&te ‘building blocks”, which explains why the default hierarchy works well for it.

This dgonthm generalizes readily to other important learning problems such as translating
computer languages, deciphering. the enetic codes, and accelerator control. We km

f [to report progess on the application o the default hierachy learning algorithm to t ese
problems in forthcoming IEEE meetings.
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