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Abstract- We address pruning and evaluation of 
Tapped-Delay Neural Networks for the sunspot bench- 
mark series. It is shown that the generalization ability 
of the networks can be improved by pruning using the 
Optimal Brain Damage method of Le Cun, Denker 
and Solla. A stop criterion for the pruning algorithm 
is formulated using a modifled version of Akaike's Fi- 
nal Prediction Error estimate. With the proposed stop 
criterion the pruning scheme is shown to produce suc- 
cesful architectures with a high yield. 

I. INTRODUCTION 

Needless to say, processing of time series is an important 
application area for neural networks, and the quest for 
application-specific architectures penetrates current net- 
work research. While the ultimate tool may be fully re- 
current architectures, many problems arise during adap- 
tation of these. Even worse, the generalization proper- 
ties of recurrent networks are not well understood, hence, 
model optimization is difficult. However, the conventional 
Tapped-Delay Neural Net (TDNN) [ll] may be analysed 
using statistical methods and the results of such analysis 
can be applied for model optimization. Here we demon- 
strate the power of this strategy within time series predic- 
tion. We aim at designing compact TDNN's using the sx+ 
called Optimal Brain Damage (OBD) method of Le Cun 
et al. [5]. The benefits from compact architectures are 
three-fold: They generalize better, they carry less com- 
putational burden, and they are faster to adapt if the 
environment changes. Further we show that the general- 
ization ability of the network may be estimated, without 
extensive cross-validation, using a modification of Akaike's 
Final Prediction Error (FPE) estimate [l]. 

11. TIME SERIES PREDICTION 
The possibility of predicting the future fascinates. The 
techniques invoked through history cover oracles, crys- 
tal balls, feed forward neural networks and many more. 
While we can rule out long time predictions for chaotic 

systems; short time predictions may still be viable. Re- 
cent work by Priestly [9], and Weigend et al. [ll] have 
established the sunspot ser ies  as a benchmark for time se- 
ries prediction algorithms. The series is a scaled record of 
the yearly average sunspot activity for the period 1700- 
1979. The sunspot series is believed to be generated by a 
noisy, chaotic, dynamical system, The spectrum is dom- 
inated by a frequency corresponding to a 12 year period. 
Weigend et al. applied a weight decay scheme to design 
feed-forward networks that generalize better than conven- 
tional algorithms from the training set to an independent 
test set. In this work the OBD pruning method is shown 
to produce very compact networks for this problem, hav- 
ing only around 15 free parameters. The networks that 
we obtain use around one third of the parameters of the 
network published by Weigend et al. while having compa- 
rable performance. 

We start the pruning procedure from the same ini- 
tial network configuration as in [ll]. The network is a 
tapped delay line architecture with 12 input units, 8 hid- 
den sigmoid units and a single linear output unit, see Fig. 
1. The initial network is fully connected between lay- 
ers and implements a non-linear mapping from lag space 
z(k) = [ z ( k  - l) ,  ..., z(k - L)], L = 12, to the real axis: 

2(k) = Fu (z(k)) 2 E 72, (1) 

where u=(w, W) is the N-dimensional weight vector and 

The non-linear mapping can be written as: 
Z(k) is the prediction of z(k). 

(2) 
where nH is the number of hidden units. Wj are the 

hidden-to-output weights while wij connect the input and 
hidden units. 
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Fig. 1 F u y  connected network used an a starting point for the prun- 
ing procedure. A vertical bar through a unit indicates an active 
threshold. 

111. TRAINING 
The objective of the training procedure is single-step pre- 
diction. Hence, the network weights, U, are trained to 
recognize the short time structure of the chaotic time se- 
ries. We use the sum of squared errors to measure the 
prediction ability of the current network: 

where p is the number of training examples. 
A state of the art simulator has been developed based on 

batch mode, second order local optimization. The second 
order scheme is implemented as a direct matrix-inversion 
identification of the hidden-teoutput weights [2], while a 
pseudo Gauss-Newton method is used for identification of 
input-to-hidden weights, see e.g. [3]. 

To ensure numerical stability and for assisting the prun- 
ing procedure we augment the cost-function with a weight 
decay term. The cost-function can then be written as: 

where N,, NW are the numbers of weights and thresh- 
olds in hidden and output units, respectively. 

The second order pseudo Gauss-Newton method used 
for identification of input-to-hidden weights can be written 
as: 

+ %-I/( a2Etrain 2 a w )  
P 8wij P 

(5) 
where the parameter q is used to secure that all the 

weight updates lead to a decrease in the cost-function. q is 
initialized to 1 before each step, and iteratively dimished 
by powers of two, until the step leads to a decrease in 
the cost-function. As in [5] we approximate the second 
derivative by the positive semi-definite expression: 

Iv. PRUNING BY OPTIMAL BRAIN DAMAGE 

The OBD scheme proposed by Le Cun et al. [5] was suc- 
ceafully applied to reduce large networks for recognition of 
handwritten digits [SI. The basic idea is to  estimate the 
effect on the training error when deleting weights. The 
estimate is formulated in terms of weight saliencies 81: 

IED IED ‘ 
where UI is a component of U. The saliency definition 

used here takes into account that the weight decay terms 
force the weights to depart from the minimumof the train- 
ing set error. The sum runs over the set of deleted weights 
D. 

The following assumptions enter the derivation of OBD: 

The terms of third and higher orders in the deleted 

, can 
weights can be neglected. 

be neglected. 
0 The off-diagonal terms in the Heasian, dh 02E 

U1 211’ 

Computationally the second order (diagonal) terms are 
reused from the training scheme (5 ) ,  in particular we re- 
frain from working on the full Hessian, which would scale 
poorly for large networks. 

The recipe allows for ranking the weights according to 
saliency. The question of how many weights it may be 
possible to delete was not answered in [5]. To evaluate 
a network, hence, formulate a pruning stop criterion, we 
note that there are three objectives of pruning: 

Improve the generalization performance by limiting 
the network resources. 
Reduce the computational burden of prediction. 
Allow for fast on-line adaptation. 
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In this presentation we emphasize the first of these ob- 
jectives. However, since the generalization error by defini- 
tion, involves test on an independent data set, we cannot 
directly use the error on the training set, as estimated 
by OBD, to  formulate a stop criterion. We may indeed 
accept an increased error on the training set if better gen- 
eralization is obtained. Also, among networks with the 
same estimated test error we still prefer the minimal, be- 
cause it has a lower computational burden, and typically 
needs less training examples for retraining if the environ- 
ment changes. The latter is very important for on-line 
adaptation. If data are abundant we can formulate a stop 
criterion based on a validation set (an independent sub- 
set of the training set). This approach was criticized by 
Weigend et al.: The training data set is scarce for the 
sunspot series - and indeed for many other applications. 
We support their conclusion by the observation that even 
for the (90%)/(10%) splitting of the training set (in train- 
ing and validation sets, respectively), as used by [ll], the 
estimated validation error is an extremely noisy quantity. 

In the usual case of limited data sets we follow the stan- 
dard approach within system idenfification [7] and esti- 
mate the generalization error of the pruned networks us- 
ing statistical arguments. In particular, we apply Akaike’s 
FPE estimate [l, 7] of the test error in terms of the train- 
ing error. In its standard form it reads: 

where p is the number of training samples, and N is the 
number of parameters in the model. The left hand side of 
(8) is the average generalization error, averaged over all 
possible training sets of size p. The estimate is based on 
linearization of the networks as regards the fluctuations 
in the weights resulting from different training sets. The 
relation express the fact that the training error is a biased 
estimate of the noise level because each parameter during 
training has “absorbed” some of the noise in the training 
samples. 

Since we have regularized the training procedure by 
weight-decay terms a,, a w ,  hence, suppressed the abil- 
ity of the (otherwise) ill-determined parameters to model 
noise, we need to modify the classical FPE estimate by re- 
placing the total number of parameters with the eflecttue 
number of parameters see e.g. [4, 81: 

(9) 

Where the A’s are the second derivatives already com- 

In brief, the following assumptions enter the derivation 
puted in (7), A j j  G a2Etra in  law; , Aj B2Etrajn law!. 
of (8-10): 

Independence of input and error on output. 
0 Sufficient capacity, i.e., the network must be able to 

0 Many examples pr. weight: N / p  + 0. 
0 The off-diagonal elements of the second derivative 

implement the rule. 

matrix can be neglected. 

With the above tool we can obtain a generalization er- 
ror estimate for each pruned network. By selecting the 
network with the lowest estimated generalization error we 
have developed the stop criterion sought. 

V. EXPERIMENTS 
Following Weigend ef al. [ll], the sunspot data are par- 
tioned into a training set (1700-1920) and a test set (1921- 
1979), and further we compute the test error for two sep- 
arate sets, namely the periods 1921-1955 and 1956-1979. 
The sunspot series is rather non-stationary and the latter 
period is atypical for the series as a whole. The normal- 
ized errors on the training set and on the two test sets are 
calculated as: 

where pre t  is the number of examples in the data set 
in question. The squared errors of each data set are nor- 
malized as in [ll] by the variance of the total data set 

An ensemble of 11 networks were trained and pruned. 
The weight decay parameters were set as: a, = 0.02 and 
o w  = 0.01. 

Fig. 2 shows the normalized training error and the 
two test set errors during training of the fully connected 
network, Note that the training set error decreases 
monotonously, while the error on the test sets start out 
decreasing, but after some training increase again. This 
is a generic over-training scenario in which the network 
overfits the training set. 

In order to prevent the network from overfitting we limit 
its resources by pruning. We use OBD, rank the remain- 
ing weights according to saliency, and delete a number of 
these determined by 101 = r0.02- Nremajnjngl , in a simple 
iterative procedure. The evolution of training and test er- 
rors during pruning are recorded for a specific network in 
Fig. 3. Further this figure shows the estimated test error 
as given by (9). The FPE estimate of the test error lies 

2 
utotal* 
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a i .  . . I! 

Fig. 2 'lkaining and tent error when training the fully connected 
network. An 'Epoch' is a full sweep through the training set. 

between the two test sets. Moat importantly, the estimate 
reproduce the common trend of the test sets, sharing a 
generalization error minimum just below 20 parameters, 
indicating that the statistical approach is viable. In the 
particular run, the stop criterion selects a network having 
12 weights and 3 thresholds as indicated by the vertical 
line in Fig. 3. 

Among the eleven networks pruned, the procedure se- 
lected 9 nets with a number of parameters in the range 
12 - 16, and two nets with more than 25 parameters. The 
9 small architectures were considered succesfully pruned, 
and used as an ensemble for computing significance levels 
for the procedure. In order to fine tune the nine small 
networks, they were retrained without weight decay, re- 
sulting in the normalized errors on the three data sets: 
0.090 f 0.001 (1700-1920), 0.082 f 0.007 (1921-55), and 
0.35 f 0.05 (195679). Four nets had 15 parameters, an- 
other four nets had 16 parameters, while one net had 12 
parameters. The latter appears to be overpruned and car- 
ried higher errors than the rest. In Table I we compare 
our findings with other reported results for the sunspot 
series. 

We illustrate the properties of one of the compact net- 
works (presented in Fig. 4 and in Table 11), in two ways: 
First we show, in Fig. 5, the retraining history of this 
network after pruning. As expected we see no overtrain- 
ing. Both the training error and the two test errors are 
monotonously decreasing. 

It is interesting to note that the network does not use 

/ 

.......................................................... -- -.-. a-....- - - - - - - - - - - - - - - - - - - - - - 
0 

Fig. 3 The evolution of training and test errors during pruning. The 
FPE estimate of the test error is baaed on equation (9). The verti- 
cal line indicates the network for which the ertimoted test error is 
"al. 

Fig. 4 Pruned network with 12 weight0 and 3 thresholds. Note 
that the network only usee a subset of the Tapped-Delay line. 
Dash-dotted lines indicate negative weights, and solid lines positive 
weights. The network parameters are given in Table 11. 
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the full set of inputs. We interpret this to be a result 
of the finite training set. Within the noise level of the 
sunspot time series it is harmful to use more than a care- 
fully selected subset of the available lag space. Among 
the succesfully pruned networks there is some consensus 
regarding which inputs to  use. They all use the two most 
recent inputs, and one or more inputs among the “oldest” 
part of lag space. 

Fig. 5 Training and test error when re-training the pruned network 
without weight decay. 

Secondly, in Fig. 6, the predicted sunspot activity us- 
ing the pruned and fine tuned network is shown. We note 
that the variance of the sunspot activity is increased sig- 
nificantly in the period after about 1960. 

In Fig. 7 we show the effective number of parameters as 
computed from (10). Judged from this figure the weight 
decays are important in the initial pruning phase where 
they limit the number of parameters to about 85. With 
higher weight decays we were unable to train the networks 
to error levels like those reported. On the other hand, 
with smaller weight decays the second order optimization 
scheme is plagued by numerical problems also leading to 
higher errors and a lower yield of useful architectures. 

VI. CONCLUSION 
We have discussed pruning and evaluation of Tapped- 
Delay Neural Networks. We have shown that the gen- 
eralization ability on the sunspot data can be improved 
by pruning using the Optimal Brain Damage method. In 
particular, we have identified a set of compact networks 
with three hidden units employing around 15 weights and 
thresholds. These networks generalize well compared to 

Ycu 

Fig. 6 Predicted sunspot activity using the pruued feed-forward net- 
work shown in Fig. 4. 
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Fig. 7 The effective number of parameters in the neural network 
during the pruning d o n .  
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TABLE I 
NORMALIZED ERROR 

Model 
Tong and Lim [lo] 

Linear model' 
Fully connected network2 

Weigend ef al. [ll] 

Pruned network3 

(1700-1920) (1921-55) (1956-79) parameters 
0.097 0.097 0.28 16 
0.082 0.086 0.35 43 
0.132 0.130 0.37 13 

0.078 f 0.002 0.104 f 0.005 0.46 f 0.07 113 
0.090 f 0.001 0.082 f 0.007 0.35 f 0.05 12 - 16 

Lag 8 
Lag 11 
Threshold 

1) Linear model is a dngle linear unit. 2) The initial pre-pruned networks, trained with the same weight decay terms M used during pruning. 
3) Pruned networks retrained without weight decay. The mean and standard deviation arc based on the networks selected for retraining 
(90 % of the initial set of networks). 

0 -0.435 -0.408 
-0.279 0 -0.259 
0.192 0.236 0.411 

TABLE I1 
PRUNED NETWORK WEIGHTS 

Hidden I Hidden I Hidden I 
Input U1 

I Lan 1 I 

m unit 

-1 
Threshold 

previous studies. Further we have shown that the network 
performance may be evaluated using statistical methods 
and that the trend (in error versus number of parame- 
ters) of the estimate is in good agreement with those of 
the test sets. We have shown how the estimated gener- 
alization error may be used for selection of the optimal 
network architecture during a pruning session. The yield 
of the procedure was 90%: Out of eleven networks the 
procedure found nine useful architectures. 

For the sunspot series we note that non-stationarity is 
a problem insofar that the normalized test error for the 
period 19561979 is four times higher than the test error 
on the more representative test set comprising the period 
1921-1955. This means, that it is important to corrobo- 

rate our results on other problems and time series, such 
work is in progress. 
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