
NASA-CR-!99089

Genetic Algorithm based Input Selection for a Neural Network

Function Approximator with Applications to SSME Health ; / u 2.1

Monitoring i/J_.

Charles C. Peck and Atam P. Dhawan

Dept. of ElectricM and Computer Engineering

University of Cincinnati Cincinnati, OH 45221

Claudia M. Meyer

Sverdrup Technology, Inc.

NASA Lewis Research Center Group

Brook Park, OH 44142

ABSTRACT

A genetic ,'dgorithm is used to select the inputs to A neural network function ApproximAtor. lit
the application considered, modeling criticM parameters of the Space Shuttle Main Engine (SSME), the
functional rel,_tionslfip between mea._ured parameters is unknown and coxuplex. Furthermore, the number

of possible input parameters is quite large. MAlty approaches have been used for input selection, but they
are either subjective or do not consider the complex multivariate relationships between parameters. Due

the optimization altd space searching capabities of genetic Mgorithms they were employed in this paper
to systematize the input selection process. The results suggest that the genetic Mgorithm can generate
parameter lists of high quality without the explicit use of problem domain knowledge. Suggestions for
improving the performance of the input selection process are also provided.

I. INTRODUCTION

There is considerM_le interest within the space industry m improving the fault detection and isolation

capabilities of rocket engine condition monitoring and post-test diagnostic processing systems. This requires

developing accurate models of engine parameters based on other parameters measured from the engine.

Developing accurate models is particularly difficult due to the highly complex, non-linear nature of rocket

engines, the limited suite of measured parameters, and the large variability of behavior among engines of

the same design.

It has been shown that neural networks with one hidden layer can uniformly approximate any continuous

function [1, 2, 3]. Furthermore, neural networks are well-suited for problems in which the exact relationships
between inpnts and output_s are complex or unknown [4, 1]. These conclusions may be applied to dynamical

systems if the system state is sufficiently represented in the inputs of the neural network. For these reasons,
feedforward neural networks have been used to model critical parameters of tile Space Shuttle Main Engine

(SSME) during the start-tq) transient aml tiiey have been shown to be quite effective [4].

A task that is critical to the success of neural network modeling of complex, dynamical systems snch as

the SSME is the choice of the input parameters. There are several constraints that complicate this task.

First, while the instrmnentation of the SSME is extensive, it is not complete. Therefore, it is unlikely that

it will be possible to completely describe any subsystem input or output. Second, <aswas discussed above, it
is necessary to provide enongh state reformation to model the desired parameter. Finally, it is not practical

to use a large number of inputs tor a number of reasons. First, a time window of each input parameter is

typically used m order to provide time dependent information. The size of the wimtow lnultiplies the number

inputs to the network. For example, if 10 parameters are chosen as the network inputs and a time window of
the past ten valnes is used, then the effective nnmber of inputs to the network is 100. Another reason that

the input set shouhl be restricted is that large networks are difficult to train. Finally, the input set should

be small if tile system is to be used for real-tinae niodeling.

A number of ad hoc approaches have been proposed or used for input selection. These include the use

of characteristic equations, engine schematic analysis, correlations between candidate input parameters and

the modeled parameter, and expert advice. These methods are highly subjective or they do not adequately

measure the multivariate dependencies present, in the system. For these reasons, a systematic approach for

input selection is desired.

The choice of inputs may be modeled as an optimization problem where the space of possible solutions

is quite large. In fact, roughly 500 sensors are used for monitoring during test, firings of the SSME. This

represents approximately 2 o"o distinct input sets. Since an exhaustive search is clearly not possible, an

alternative search method is required.

Genetic algorithms are well suited for searching in a large parameter space [5, 6]. Through the u_ of

seeding (the process of providing an initial set of possible solutions), genetic algorithms search from a set of

solutions or starting points, rather than a single starting point. Genetic algorithms are not derivative based,

thus they can search spaces where methods such as conjugate descent fail. They work with both discrete

and continuous parameters, and explore and exploit the parameter space [7]. Furthermore, through the use

of elitism (a variant method in which the best, solution of a generation is promoted unaltered to the next

generation), a genetic algorithnl can be guaranteed to perform at, lea.st as well the methods used to seed or

initialize it. For these re_ons, a genetic algorithm was used in this paper to select the inputs to a neural

network used for SSME parameter modeling during the start-up transient.

This paper will first [)resent the design issnes anti methodology applied to the selection of SSME input

parameters. A preseutation anti discussion of results will follow. Tile paper will conclude witil the conclusions

and ideas for future work.

II. DESIGN ISSUES AND METHODOLOGY

The design issues range fronl those applicable to all genetic algorithms and multi-layered perceptron

neural networks to those specific to this particular problem of SSME parameter approximation.

There are two fundamental design requirements for applying genetic algorithms: encoding candidate

solutions onto binary strings, and developing a fitness function. In this case, encoding candidate solutions

onto binary strings is trivial since a single bit is sufficient to indicate whether a particular parameter is to be

included in the network input set. Accordingly, the string, or chromosome, has one bit for every candidate

engine parameter. To reduce tile size of the search space, redundant sensor measurements were eliminated

and those parameters believed to be nearly independent of the modeled parameter were not included in the

candidate parameter set. This reduced the size of the candidate parameter set. to 49 parameters. Before

discussing the development of the fitness function, it should be rioted that ill the genetic algorithm used, the

smaller the fitness function vahle, the better the evaluated solution is considered to be.

Tile choice of a fitness flmction is somewhat more complicated than the string encoding. Recall that

the primary flmctiou of the genetic algorithm is to produce mpnt sets that enable neural network function

approximators to accurately learn and generalize the relationships betw_n the modeled parameter and the

input parameters. One way to do this is to make tile fitness fimction proportional to the neural network

training error. Adding the input set size constraint to tile fitness filnction could be done simply by multiplying

the training error by the number of parameters selected. This results in a very strong constraint, however.

The strength of the size constraint ('an be coutrotled by adding a constant to the number of parameters

selected. A small offset created in this manner yields a strong size constraint, whereas a large offset yields a

weak one. The fitness flmction may I)e fllrther tweaked by squaring the size (_onstraint term. This increases

the strength of the coltstraint as the llumber of parameters increases.

The additional need to minimize the numl)er of inputs to tile network anti tile disparity in the size

between heuristically _tnd randondy selected seeding sets are l)rimarily responsible for the added complexity

of the fitness function. The heuristically selected see(ling sets consist of approximately 10 parameters, while

the randomly selected seeding sets consist of approximately 25 parameters. If the two seeding sets were

approximately the same size, an offset couh[be chosen that wouhl yield the desired input set size at the

end of the evolution process. This size disparity, however, res,dts in either a strongly biased choice of input

parameters or it results in input sets that are too large. To see this, consider the use of an offset sutficient
to reduce the randomly selected seeding sets to a target size of 8 parameters. Due to the size disparity,

the heuristicMly selected seeding sets would have considerably lower fitness fimction values and would thus

dominate in successive generations. Conversely, the use of an offset that does not, significantly favor the

heuristically selected seedings may not significantly reduce the size of the parameter lists.

For the work presented in this paper, generation dependent offsets were used to avoid biasing the results

while ensuring satisfaction of the size constraint. Initially, the offset was set very high to allow the candidate

solutions to compete primarily on the basis of the training error. As the genetic algorithm proceeded, the

size constraint, was ,nade progressively strollger. By the end of the genetic algorithm the offset was small,

yielding a strong bias for shorter lists. This change of offset with respect to the generation will be referred
to as an offset progression. Two offset progressions were used: one yielding a generally weak size constraint,

and another yielding a generally strong size constraint. The offset progression yielding the weaker size

constraint ranged from 71 initially to 14 over 20 generations. The other ranged from 45 initially to 7 over

20 generations. The resulting fitness flluctions are shown in Equations i and 2, respectively:

f (c + 71 - 3G) z= x Training Error, (1)
(71 - 3G)'-'

f (c + 45 - 2G) 2= x Training Error, (2)
(45- 2G)_

where f is the fitness flmction value, c is the number of parameters in the candidate input list, and G, which

ranges from 0 to 19, is the generation number.

To ensure robustness and resistance to domination by "Super Individuals" (i.e., non-optimal solutions

that are significantly more fit than other solutions early in the evolution process), the evolutionary process

was designed to run in two stages. In the first stage, three populations were independently evolved. These

populations were used to seed a _cond evolutionary stage. In the first stage, fitness fnnctions with weaker
size constraints were used. This favors lower training error. In the second stage, the fitness flmction with

the stronger size constraint was used.

To fllrther increase diversity within the "gene pool," the fitness fimctions in two of the first stage genetic

algorithms were varied to favor either early or late convergence of the neural network training error. The
method used to implement these biases exploits the observation that the training error consistently remained

on a high plateau betbre failing precipitously, as shown in Figure 1. Since oscillations and unusual patterns

in the training error were not observed, integration of the area bounded by the error curve and a bounding
rectangle couhl be pedbrmed. To favor early convergence, the fitness fimction in Equation 1 was multiplied

by the area of integration normalized by the area of the bounding box. If A, B, and C denote the normalized

areas of their corresponding regions in Figure 1, the shape dependent fitness term is A tbr the early training

error curve and A + B for the late training error curve. To favor late convergence, the normalized area of

integration is first subtracted from 1 before ,nultiplying Equation 1. This corresponds to a shape dependent

fitness term of B + C for the early training error curve and C for the late training error curve.

As described above, the fituess flmctiou evaluation involves creating a neural network, training it, and

evaluating its performance. This is computationally expensive and time consuming. To limit the cost of

performing this operation, the QuickProp learning algorithm was used [8]. Furthermore. the network was
trained only as far a_ ,tecessary to distinguish it from other networks with different input configurations.

It was determined empirically that 100 epochs is sufficient. According to the analysis provided in [8],

this should be comparable to 1000 epochs of training with standard backpropagation. Finally, the neural

networks were presented with a time window of 5 past values instead of the 10 p_t values used in [4].

Another important design consideration is that the training error of a network is a noisy fitness evaluation

function. The weight initialization ca,l have a significant effect on the performance of a network. Thus, to

avoid biasing the fitness of a particular candidate set of inputs ,as either too good or too bad, the fitness of

each candidate input set was evalnated every generation in which it was preseut.

III. RESULTS AND DISCIrSSION

tlJ

._¢

I-

bounding box

I C
I

e 1
t

Epochs

Figure 1: Early versus Late Training Error Convergence

Table 1: Parameter Lists

Parameter Nnmber Parameters

List of PIDs

GA-I 6 21 58 209 734 951 1050

GA-2 7 21 58 209 327 734 951 1058

GA-3 8 21 52 58 209 327 734 951 1050

REF 9 40 42 59 231 480 1205 1212 O/Cs OPBs

The fimdamental output of tile system described above consists of candidate parameter lists. The three

parameter lists with the best fitness values are presented in Table i. These three lists are labeled GA-1-
GA-3. An additional list, labeled REF, is also presented for the purpose of comparison. This "reference"

list has been modified from the one t)resented in [4] to exclude autoregressive information.

The parameter that was modeled is ttle SSME's High Pressure Oxidizer Turbine (tIPOT) discharge

temperature, which has a Parameter IDentification number (PID) of 233. Descriptions of this PID and the
others included in the four lists described above are provided in Table 2.

To evaluate the performance of the parameter lists produced by the genetic algorithms, feedforward

neural networks were fillly trained using these lists and the reference list. The resulting networks were then

used to approximate PID 233 using measured parameters from 12 actual SSME test, firings. Four of the

test firings were used for training the networks and eight were used to validate the resulting models. The

results, ,as represented by the mean squared error (MSE), tile normalized MSE, and the maximum percent
error, are shown in Tables 3, 4, 5, and 5. A summary of these results is presented m Tables 7 and 8. Tile

results are divided into two groups: one presenting the aggregate performance of the networks on the training

data (Table 7), and the other l)resenting the aggregate performance of the networks on the validation data

(Table 8).

It is clear from tile results that the parameter list GA-I h_ the worst error performance of the four lists.

This is compensated by tile t,act that this is tile shortest parameter list. Even though the error performance

of this parameter list is the worst, it is still close to the performance of the other lists, including the reference

list.

The parameter lists GA-2 and GA-3 outperformed the reference list on the training data and pertormed

only slightly worse than the reference list on the validation data. Due to the large standard deviations of
validation data error, the differences in the error means cannot be considered statistically significant.

Table2: ParameterDescriptions

PID Descrilnion

21 Main Combustion Chamber Oxidizer Injection Temperature

40 Oxidizer Preburner Oxidizer Valve Actuator Position

42 Fuel Preburner Oxidizer Valve Actuator Position

52 High Pressure Fuel Pump Discharge Pressure

58 Fuel Preburner Chamber Pressure

59 Preburner Boost Pump Discharge Pressure

209 High Pressure Oxidizer Pump Inlet Pressure

231 High Pressure Fuel Turbine Discharge Temperature

233 t High Pressure Oxidizer Turbine Discharge Temperature

327 High Pre_ure Oxidizer Pump BalCav

480 Oxidizer Preburner Chamber Pressure

734 Low Pressure Oxidizer Pump Speed

951 High Pressure Oxidizer Pump Pressure SL DR

1050 Oxidizer Tank Discharge Temperature

1058 Engine Oxidizer hflet Temperature

1205 FAC Fuel Flow

1212 FAC Oxidizer Flow

O/Cs Dummy Parameter indicating Open/Closed Loop Operation

OPBs Dummy Parameter indicating Oxidizer Preburner Prime Time

t the modeled parameter

Table 3: Error Statistics from Parameter List GA-I

Test

Firing

B1046

BI060

BI061

B1062

B1063

B1066

B1067

Bl070

B1071

B1072

B1075

B1077

Training/ MSE NMSE Max.
Vali,lation % Error

T 3.787033 0.000322 2.2330

T 14.743364 0.001223 4.8150

V 20.168583 0.001657 10.4348

V 34.029559 0.002832 9.6225

V 39.671779 0.003301 6.9063

V 30.608499 0.002532 7.5330

V 42.103255 0.003498 9.2189

T 11.699498 0.000945 3.1922

V 63.607371 0.005154 20.8187

V 23.816642 0.001898 8.3420

V 20.268258 0.001669 10.0018

T 12.931541 0.001945 5.3681

Table.4: ErrorStatisticsfromParameterListGA-2

Test

Firing

B1046

B1060

B1061

B1062

B1063

B1066

B1067

B1070

B1071

B1072

BI075

B1077

Traming/ MSE NMSE M_.
Vafidation % Error

T 3.341027 0.000284 2.0253

T 6.059592 0.000503 3.1339

V 19.080619 0.001568 5.9461

V 37.601837 0.003129 9.9597

V 35.212338 0.002930 6.6999

V 33.799122 0.002795 7.3425

V 36.724494 0.003051 7.9440

T 10.592421 0.000864 3.6021

V 48.479257 0.003929 15.9965

V 17.781945 0.001417 5.1814

V 35.017457 0.002884 11.4959

T 7.973934 0.000544 2.6040

Table 5: Error Statistics from Parameter List GA-3

Test

Firing

B1046

B1060

B1061

B1062

B1063

B1066

B1067

B1070

B1071

B1072

B1075

B1077

Training/
Validation

MSE NMSE

0.000341

MaX.

% Error

1.7042T 4.015542

T 6.114787 0.000507 2.5343

V 20.477665 0.001682 6.2484

V 40.542411 0.003374 10.5837

V 38.320758 0.003188 7.1349

V 38.782970 0.003208 8.8021

V 39.245907 0.003261 8.4381

T 10.515996 0.000850 3.2462

V 5:3.008395 0.004296 18.9413

V 17.990471 0.001434 4.7040

V

T

0.002732

0.000557

33.172788

6.889614

12.0369

2.3684

Table 6: Error Statistics from Parameter List REF

Test Training/ MSE

Firing VMidation

B1046 T

B1060 T

BI061 V

B1062 V

B1063 V

B1066 V

B1067 V

B1070 T

BI071 V

BI072 V

Bi075 V

BI077 T

NMSE M&_.
% Error

6.652181 0.000565 3.8462

7.375382 0.000612 3.0370

22.370471 0.001838 4.8509

23.747774 0.001976 7.2832

28.076726 0.002336 7.9618

16.538060 0.001368 7.6115

20.482848 0.001702 6.6011

6.588053 0.000532 3.8668

50.654580 0.004105 11.0878

42.897089 0.003419 6.7544

25.213499 0.002077 9.4449

7.809484 0.000631 4.5456

Table 7: Summary of Parameter List Performance on Training Data

Farm.

L_t #

GA-1 10.790359

GA-2 7.015768

GA-3 6.884260

REF 7.106275

MSE NMSE Max.

cr # (r

4.833357 3.902086 1.445958

2.841333

0.000884 0.000392

0.000574 0.000244

0.000564 0.000212

0.000585 0.000045

0.6798293.101272

2.709112 2.463281 0.633292

0.589258 3.823920 0.617108

Table 8: Summary of Parameter List Performance on Validation Data

Farm. M,b'E NMSE Max.

(rList tL

GA-I 34.284241

GA-2 32.962132

GA-3 35.192673

REF 2_.747531

14.485731

10.068242

11.349328

11.808645

0.002818 0.001180

0.002713 0.000832

0.002897 0.000937

0.002353 0.000932

It O*

10.359750 4.397353

8.820735 3.563816

9.611175 4.430940

7.699442 1.889502

It shouldbenotedthat tile heuristicallychosenparameterlists that wereusedto seedthegenetic
algorithmswereoutperformedearlym theprocessbygeneticalgorithmgeneratedparameterlists. While
thebehavioramtresultsofthegeneticalgorithmwerecertainlyaffectedbytheheuristicallychosenparameter
sets,theguidanceprovidedbythesesetsdidnotappearto bestrong.
IV. CONCLUSIONS AND FUTURE WORK

The results indicate that the error performance of the genetic algorithm generated parameter lists was

roughly the same as that of tile reference list. Furthermore, in all cases, the genetic algorithm generated
parameter lists were smaller than the reference list. Thus, the genetic algorithm was able to systematically

generate parameter lists that performed well without the explicit use of problem domain knowledge.

Many improvements for the input selection process have been envisaged. One may, for example, modify

the fitness evaluation flmction to be dependent on the error on a validation set instead on the training. This

would favor parameter lists that yiehl networks with superior generalizing capabilities instead of lists that

yield networks capable of rapid learning. As an extension, the fitness function could be made a function

of the training error, the validation error, and the generation. In this manner, learning capability could be

favored early in evolution and generalization could be favored later.

As demonstrated by the GA-1 list, smaller size can be overemphasized compared to the error performance.

Instead of favoring a parameter list of the smallest size, a list of a particular size could be favored. This would
favor the inclusion of sufficient information while discouraging the use of parameters that do not significantly

improve the error performance. For this particular application, a size of 10 would be reasonable.

V. ACKNOWLEDGMENTS

The public domain genetic algorithm GENESIS Version 5.0, written by John J. Grefenstette, was u_d

for the work described m this paper. Furthermore, the fitness evaluation function is a highly modified and

optimized derivative of Terry Regier's implementation of the QuickProp training algorithm.

VI. REFERENCES

[1] S. Chen, S. A. Billings, and P. M. Grant. Non-linear systems identification using neural networks.

Research Report 370, University of Edinburgh, Mayfield Road, Edinburgh, Scotland, August 1989.

[2] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals,

and Systems, 2:303-314, 1989.

[3] K. Funahashi. On the approximate realization of continuous mappings by neurM networks. Nenral

Networks, 2:183-192, 1989.

[4] Claudia M. Meyer and William A. Maul. The application of neural networks to the ssme startup transient.
Number 2530 in 91. AIAA, July 1991.

[5] David E. Goldberg. Gtrnctic Algorithms in S¢:arch, Optivzization, and Machine LeaT'aing. Addison-Wesley

Publishing Company, Inc., Reading, Massachusetts, 1989.

[6] Lawrence Davis. Handbook of G_m_:tic AlgoTqthm._. Van Nostrand Reinhohl, New York, 1991.

[7] David J. Powell, Michael M. Skolnick, and Sin Shing Tong. Handbook of Genetic Algorithms, chapter 20,

pages 312-331. Van Nostrand Remhohl, New York, 1991.

[8] Scott E. Fahlman. Fa.ster-learning variations on back-propagation: An empirical study. In D. Touretzky,
G. I-Iinton, anti T. Sejnowski, editors, Procecding,s of th_ 1988 Connection_.st Models Summer School,

pages 38-51, San Marco, CA, .hum 1988. Carnegie Mellon University, Morgan Kaufmann Publishers.

