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Abstract- In complicated tasks such as 
speech recognition, neural network architec- 
tures have to be improved for better learn- 
ing and recognition performance. This paper 
presents an analysis o f t  he backpropagation al- 
gorithm and reveals the significance of vector- 
ized backpropagation and automatic pruning for bet- 
ter learning performance and MLP network 
optimization. During the learning phase, the 
network which uses vectorized backpropaga- 
tion converges within 20% - 50% of the it- 
erations required for the standard MLP to 
converge without affecting the test set per- 
formance. The network pruning algorithm re- 
duces the number of hidden nodes and con- 
nection weights. The pruned network with 
only 40% connection weights of the unpruned 
network gives the same learning and recogni- 
tion performance as the parent unpruned fully 
connected net work. 

I. VECTORIZED BACKPROPAGATION 

The multilayer perceptron network (MLP) using 
standard backpropagation (BP) algorithm[l] mini- 
mizes output mean square error by modifying the 
weights and thresholds after each input pattern is 
introduced to  the network. The learning procedure 
can be expressed as 

where tuu, is the weight from node U to node v, 17 is 
the rate of learning, ej, is the j t h  dimensional output 
error for the input pattern p and Ep = e;, is 
the output mean square error for the pattern p. 

Consider the pattern classification to  be an N-class 
problem and let us choose the desired class identifica- 
tion vectors to be the N orthonormal vectors of the 
output space. In the N dimensional output space, 
E,  = [el,, ...,e~,]l is the output error vector for the 
pattern p. Let E: and E:+' be the error vectors 
before and after the weight updation for the input 
pattern p presented during the kth scan of the train- 
ing set and let the j t h  component of the vector be e:, 
and e::' respectively. In the MLP network learning, 
the backpropagation algorithm uses the gradient de- 
scent approach which assures that 

(3) 

However, this condition does not assure reduction of 
the individual components of the error vector. i.e., 

I I f 1  e!, I f o r  some j and I C .  (4) 

Thus, it is possible that the network may have un- 
learned for a particular class, while the average learn- 
ing for all classes put together has improved with 
the training iterations. Fig. 1 shows the variation 
of E, during the learning process. The output error 
vector after an update has the freedom of lying any- 
where within the hyper-sphere of radius equal to the 
magnitude of error vector before the update. Thus, 
if we can formulate the learning rule such that all 
of the components e:, are simultaneously reduced 
through each iteration, faster convergence of the neu- 
ral network could be expected. This corresponds to a 
constrained minimization in which the updated error 
vector can lie only within the N-dimensional cuboid 
formed by the error vector before the updation as 
shown in Fig. 1. 

This formulation of the learning rule in which each 
of the individual components of the error vector E, 
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are minimized through each iteration of learning is 
termed as “vectorized backpropagation( VBP).” 

A .  Multiplane MLP Network 

The goal of minimizing the error components ej, 
individually can be achieved if the network has a sin- 
gle output node. Thus, the multi-class pattern recog- 
nition problem has to  be viewed as several two-class 
recognition problems. This can be achieved by mod- 
ifying the learning rule (2) which results in the new 
multiplane MLP (MPMLP) architecture. 

Consider the BP learning rule(2) where the con- 
nection weight w,, is altered by the gradient of the 
error vector components. i.e., 

4, -& w,, - 2 7 v j  ( 5 )  

Now, let us formulate a new network with one sin- 
gle out put node corresponding to the j t h  class and 
a stack of such networks for the N different classes. 
Each weight w,, of the standard MLP network in 
learning rule (2) is extended as a vector W,, = 

stack. Each of the networks in the stack receive iden- 
tical inputs and can be learnt independent of others 
in the stack. Thus, learning rule for the j t h  stack can 
be written as 

[w,,, 1 ...,wZlt, where e,, is the weight in the j t h  

The learning rule (6) provides a joint minimization 
of the individual error components ej, than the min- 
imization of the total error 1 E, I as in the standard 
BP. i.e., 

Q j ,  I C .  (7) 

The new architecture of a stack of MLPs, referred to 
as multiplane MLP, is shown in Fig.2. 

The choice of orthonormal target vectors to  iden- 
tify each class makes each plane of the MPMLP to 
solve a 2-class recognition problem with a single out- 
put node. Since each output space orthonormal vec- 
tor of the MLP is representing a separate class, j t h  
plane of the MPMLP network learns to recognize 
j th  class independent of the learning in other planes. 
This is because the output error is propagated back 
only within each plane and there is no link across 
different planes. 

11. NETWORK OPTIMIZATION 

Vectorized backpropagation is useful for better 
convergence of the network. However, the realiza- 
tion through MPMLP increases the number of net- 
work weights. This can result in memorization effects 
and suboptimum local minima in learning due to  the 
limited training data [3]. On the other hand, if the 
network size is too small, the network will fail to con- 
verge in learning. Since each plane of the MPMLP 
network is dealing with a different recognition task, 
the optimum size for each of the planes will be dif- 
ferent. The Network pruning is a method in which a 
network of larger size is chosen and then iteratively 
reduced to an optimum size. Such Pruning accom- 
plished during the learning process has been referred 
to  as “dynamic pruning [4].” Pruning has also been 
performed after the learning process is complete [3]. 
However, in both methods, the pruning is limited 
to the reduction of network nodes only. Pruning of 
nodes leads to  a drastic decision because many con- 
nections go through a node. Instead of such a fully 
connected MLP, wherein each node in a layer is con- 
nected to  all nodes in the adjoining layers, reduced 
number of interconnections can be advantageous in 
some cases [6]. 

An automatic pruning algorithm [2] has been de- 
veloped which is applicable to  a general MLP net- 
work. In this method, pruning is incorporated into 
the learning algorithm and the network is itera- 
tively reduced such that an optimum configuration is 
achieved along with the network convergence. Using 
an integrated measure of forward and backward sig- 
nificance, least effective connection weights are iden- 
tified and removed. 

A .  Pruning Algorithm 

Let C, be the number of nodes in the mth layer of 
an MLP network where m = 0 is the input pattern 
layer and m = 3 is the final layer. Let the output 
at node i in the ( m  - l)th layer be 2; and the weight 
connecting node i to  node j in the mth layer is wc. 
For each pattern p introduced to  the network dur- 
ing learning, the backpropagation algorithm makes 
use of each connection weight in the network in two 
instances. In the forward direction, for final layer 
output calculations, each connection weight wz con- 



tributes x;wC to  the total activation Ci xjw; of the 
node to  which it is connected. In backward error 
propagation, each weight w$ contributes W ~ S F  to  
the total correction factor z k  w Z 6 r  for the weight 
wz-' in the previous layer as shown in (8). 

where 

= -(dk - y k ) y k (  1 - y k )  f o r  the final layer (9) 
67 = wz+'6r+' f o r  other layers (10) 

In (9), dk and yk represent the target output and 
the observed output at node k in the find layer. If 
both forward and backward contributions from a par- 
ticular weight are not significant over the entire train- 
ing set, it is clear that the weight is not playing a sig- 
nificant role in the learning process and such a link 
can be marked for pruning. However, changing the 
network structure too soon can affect the convergence 
of the learning process. 

To determine the optimum degree of pruning, a 
parameter called pruning factor (fp) is introduced 
(0 < fp < 1). A connection weight w: is pruned if 
the following conditions are satisfied. 

I z i w g  I < I c x ; w ;  I fp f o r  all p (11) 

P (12) 

i 

I W g S j  I < I C w c ~ j  I f p  f o r  
j 

fp = 0 implies learning without pruning and fp = 1 
means pruning to  the maximum extent. Accordingly, 
by varying fp the degree of pruning can be varied. If 
all weights attached to  a node are pruned, it is equiv- 
alent to the removal of that node. Usually fp is cho- 
sen close to  0. Elimination of the connection weights 
can cause convergence problems to the backpropaga- 
tion algorithm, but care has been taken through (11) 
and (12) that the error caused by pruning is minimal. 

B. Decision regions 
Each perceptron in the standard MLP network 

with input vector X and weight vector W parti- 
tions its input space into 2 regions characterized by 
XW'  > 0 and XW' < 0 with a hyperplane given by 

X W t  = 0 where, 0 is the perceptron threshold [l]. 
Thus, C1 perceptrons in layer-1 form in general C1 
hyper planes in the feature space [5]. These can par- 
tition the space into a maximum of 2c1 decision re- 
gions (Fig. 3(b)). Input patterns occurring in dif- 
ferent regions give rise to a different layer-1 output 
pattern with each node output being in the range of 
0 to  1. The layer-1 outputs form an C1 dimensional 
space where in the range is limited to  an C1 dimen- 
sional hyper cube. Thus, different decision regions in 
the input feature space are mapped to  corresponding 
zones in the hyper cube (Fig. 3(c)). For perceptrons 
with hard limiting transfer functions (binary output), 
decision regions in the feature space are mapped to 
the corners of the cube. For sigmoidal perceptrons, 
the decision regions are mapped to  the neighborhood 
of different corners. Removal of a node from layer- 
1 eliminates the corresponding hyper plane. This 
makes the decision region to  loose one of its bound- 
ary and starts spreading in volume. These princi- 
ples can be similarly extended to  layer-2 and layer-3. 
Layer-2 forms decision regions by hyper planes in the 
space derived from layer-1. Node removal in layer-2 
makes decision region to  spread in layer-1. Thus, in 
general, pruning should be applied only until the de- 
cision region for a pattern class starts t o  overlap with 
another. 

In Fig. 3(a), the decision boundary in the feature 
space corresponding to  the first node in layer-1 is 
given by 

Pruning the link w21 modifies the boundary to  

01 
51 = - 

w11 

which represents a line parallel to  the zz-axis.  This 
means that the perceptron decision is independent of 
the parameter 22.  Generalizing this fact for an Nm 
dimensional layer, pruning the link wc modifies the 
hyper plane, in the space derived by ( m  - l)th layer, 
parallel to the axis along the ith dimension. Also, 
output of node j in the mth layer becomes indepen- 
dent of its ith dimensional input. 



111. EXPERIMENTAL RESULTS 

MLP network’s ability to  tolerate distortion in the 
input patterns and yet classify them correctly de- 
pends on how well the network has learnt from the 
training set and this is referred to as network gener- 
ality. The test set performance, defined as the pro- 
portion of the number of untrained patterns classified 
correctly by the network to  the total number of all 
possible input patterns is used as a measure of net- 
work generalization. This is measure applicable to 
discrete pattern finite extent problems. 

The learning as well as test set performance of the 
MPMLP is evaluated using a 3 class binary picture 
recognition problem and results are compared with 
that of an MLP. Binary pictures made of 3 x 3 and 
5 x 5 grids (Fig.4) representing characters I, 0 and X 
are used for training. For the 5 x 5 grid experiment 
an 18-18-3 node fully connected architecture is used 
for the MLP network where as in MPMLP, the same 
number of nodes are distributed into 3 planes. For 
an n node output MLP network, the maximum pos- 
sible mean square error per pattern is n. A value of 
0.01% of the maximum possible error is taken as the 
threshold for convergence. The test set comprised 
of the (29 - 3) untrained patterns for the 3 x 3 grid 
experiment and (225 - 3) for 5 x 5 grid experiment. 
The MPMLP, with the same number of total nodes 
as the MLP, converges within 20% - 50% of the itera- 
tions required for the MLP to converge (Fig.5(a) and 
5(b)) without any deterioration in the testing perfor- 
mance. The test set performance of the MPMLP is 
found marginally better than that of the MLP net- 
work. 

The addition of the pruning algorithm to the 
MPMLP network learning is evaluated in comparison 
with the parent unpruned MPMLP network which is 
trained with the same random initialization as the 
pruned network. Also the pruned MPMLP perfor- 
mance is compared with that of the pruned MLP 
net work. 

Weight reduction is measured using a reduction 
coefficient(p) given by 

m=3 ‘ 
C m = l  cm 

(16) = c~z; C m c m - 1  

where Cm is the number of weights remaining un- 

pruned between the mth and ( m  - l)th layer. Thus 
the reduction coefficient for the mth layer is given by 

(17) 
C m  

CmCm-1 
Pm = 

In all the experiments, for a fixed fp, layer-1 weights 
have been subjected to  maximum pruning followed 
by progressively less pruning for succeeding layers 

The reduction in the number of connection weights 
and the test set performance with respect to  fp 
is shown in Fig.G(a) and 6(b) for both MLP and 
MPMLP networks. Fig. 6(a) shows a greater 
reduction in connection weights of MPMLP than 
MLP. This justifies the effectiveness of pruning for 
MPMLP. As Fig. 6(b) shows, with the pruning factor 
in the range of 0-0.4, the network size is reduced with 
least deterioration, if not marginal improvement, in 
the testing performance. For fp close to  unity the 
network size becomes too small to  maintain network 
generality. 

Also, unless fp is close to  unity, pruning does 
not seem to affect the number of learning iterations 
for convergence. Thus, incorporating pruning while 
learning in an MPMLP architecture leads t o  an opti- 
mized architecture which can provide better perfor- 
mance. 

(P1 < P2 < P3)- 

REFERENCES 

B. Widrow and M. A. Lehr, “30 Years of Adap- 
tive Neural Networks: Perceptron, Madaline, and 
Backpropagation,” IEEE Proceedings, Vol 78, 
No. 9, Sept. 1990. 

Suryan Stalin and T. V. Sreenivas, “Vectorised 
Backpropagation and Automatic Pruning for 
MLP Network optimization,” Technical report , 
Dept. of ECE, Indian Institute of Science, Aug 
1992. 

J. Sietsma and R.J.F. Dow, “Neural net prun- 
ing - Why and how,” Proc: IEEE, 1nt.Joint Conf. 
Neural Networks, Vol 1, pp 325-333, 1988. 

B. E. Segee and M. J. Carter, “Fault tolerance of 
multilayer networks,” Proc. IEEE, Int . Joint Conf. 
Neural Networks, Vol 2, pp 447-452, 1991. 

1430 



J.  Makhoul, A. El-Jaroudi, and R. Schwartz, 
"Partitioning Capabilities of TweLayer Neural 
Networks," IEEE Trans. on Signal Processing, 
Vol 1, No 6, pp 1435-440, June 1991. 

[SI T. V. Sreenivas, Unnikrishnan, V. S. and D. 
N. Dutt, "Pruned Neural Network for Artifact 
Reduction in EEG Signal," IEEE, Int. Conf. 
Engineering and Medicine in Biology (EMBS), 
Florida, 1991. 

'll,,J'initial error vector 1 - 0  E~ ,,; 

n Dimensional &here 

Random movement Constrained region 
of error vector Epk in 
standard backpropagation in MPMLP 
( e p ' k  e: for some ,....-. j and k..)... 

of movement of E, 

For al l  j and k ) 
A 

x1 

x 2  

...___ _..,. 

Fig. 1. Error vector variations in standard backpropagation and 
vectorized backpropagation. 
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Fig. 3. (a) An MLP network with two dimensional input space. 
(b) Decision regions formed by layer 1. (c) N 
dimensional hyper cuboid in the layer 1 output space. 

Fig. 2. Multiplane MLP network for N=3 class problem. The network 
in each plane provides recognition of a single class. 
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Fig. 4. 3x3 grid binary patterns representing characters I, 0 and X. 
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Fig. 6(a). Variation of reduction coefficient (p) with respect to pruning 
factor (fd for the MLP and MPMLP networks. 
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Fig. 5(a). Error convergence of MLP and MPMLP networks during the 
training phase of a 3 class 3x3 rid binary picture recognition 
problem. The best learning codcients: q,,=5; qMpML+. 
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Fig. S(b). Error convergence of MLP and MPMLP networks during the 
training phase of a 3 class 5x5 rid binary picture recognition 
problem. The best learning coeffcients: q,,=s; q,,,,+. 
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Fig. 6(b).Vanation of reduction coefficient (P) with respect to pruning 
factor CfJ for the MLP and MPMLP networks. 
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