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Abstract: Previous work in recognition of hand gestures has concentrated on classification of hand shapes, with
relatively little work done on hand motions. This paper describes a recurrent neural network which has been
trained to classify sixteen different hand trajectories, including relatively complex paths such as circles and back-
and-forth motions. The network's ability to anticipate the classification of an incomplete gesture is also
examined, and its implications for segmentation of gestures is discussed.

Introduction

Computer recognition of human hand gestures has
potential for application in many fields such as virtual
reality interfaces, robotic control and automated sign
language translation. Hand data can be captured either
via a camera and image processing techniques, or
directly through an instrumented glove worn by the
user. Pattern recognition techniques can then be applied
to this data to classify the gesture made by the user.

Components of hand gestures

Most of the analysis of hand gestures has originated
from research into Deaf sign languages. The most
common method of describing gestures is in terms of
their four primary components - handshape,
orientation, place of articulation (or location) and
motion [1]. Handshape refers to the flexion of the
fingers and wrist, orientation to the angle of the hand,
and place of articulation to the location of the gesture
relative to the body. Motion is the most complex
feature as it can consist of changes over time in any
combination of the other three features. For example,
opening and closing of the fingers changes the
handshape, twisting the wrist changes the orientation
and moving the hand through space changes the
location.

Existing work on gesture recognition
Previous research has focused primarily on recognising
handshapes [2], [3]. Standard feedforward neural
networks have been successfully applied to this
problem. For example, Fels and Hinton (4) developed
the GloveTalk system, which discriminates between 66
different handshapes with an accuracy rate of about
98%. The orientation and location components of
signs are similar in nature to handshapes, and therefore
the extension of existing techniques to these aspects of
gestures should be relatively straight-forward.

In contrast the recognition of hand motions is a more
complex problem which has been relatively lightly
researched. GloveTalk can distinguish between six
different motions (back-and-forth motions along the
primary axes), whilst the GIVEN system [5]
recognises seven different motions (movement in either

direction along these axes, plus stationary). Murakami
and Taguchi (6) applied recurrent neural networks to
recognising ten different signs from Japanese sign
language, for which both handshape and motion were
important, achieving an accuracy of 96%.

Data gathering

As part of research on the SLARTI sign language
recognition system [7],[8], a prototype hand motion
classifier has been developed based on a recurrent neural
network. Motion data was gathered from a user wearing
a CyberGlove equipped with a Polhemus sensor for
measuring the location and orientation of the hand.
Examples of gestures were gathered from three different
users, who made several examples each of sixteen
different motions. These consisted of the same motions
used by GIVEN, as well as back-and-forth motions
along the main axes, and circling movements in these
axes (both clockwise and counterclockwise). The start
and end of a motion were indicated by the user via a
button on the CyberGlove's wrist (this was the only
data gathered from the CyberGlove which otherwise
acted only as a mount for the Polhemus). 560 of these
examples were used as a training set, and the remaining
320 as a test set.

Rather than working directly from the raw data the
three position values from the Polhemus were pre-
processed by calculating the difference between the
current location and the previous one. Using these
differences as the input to the network was intended to
improve the system's spatial invariance.

Network architecture

A recurrent network was used in preference to a
feedforward network presented with the entire sequence
at once for a number of reasons. Primary amongst
these was the length of the sequences in the data set.
The longest of these was 10 time frames. A
feedforward network would need 30 inputs to manage
this example, whereas a recurrent network would need
only 3 inputs. The resultant reduction in the number of
free parameters in the network should improve the
generalisability of the system. In addition a recurrent



network should be more immune to variations in the
speed of gestures.

The network used consisted of 3 input nodes,
completely interconnected to a single layer of
processing nodes. This layer consisted of 16 output
nodes and 14 additional hidden (or state) nodes, and all
nodes in this layer were recurrently connected to every
other node in the layer (including self-recurrent
connections). The processing nodes all used the
symmetric sigmoid as a squashing function. This
architecture varies from the more commonly used
Elman network in not having a hidden layer, and in
having recurrent links to and from the output nodes.
Whilst the absence of a hidden layer makes some
problems such as a temporal XOR impossible, the
state nodes can act a replacement for the hidden layer,
but only in the next time-frame. The addition of
recurrent links between the output nodes allows the
development of positive self-recurrent links and
negative recurrent links to the other output nodes,
which appears to help to stabilise the network's
behaviour.

The network was trained using the backpropagation
through time (BPTT) algorithm. Effectively this
unrolls the network to form a non-recurrent network
the length of the training sequence and then
backpropagates the error through this network (for a
more technical description see [9]). One issue which
arose during this process was the nature of the training
signal to be presented to the network. The only point
at which the desired output of the network is known is
at the end of the sequence, when one output should be
0.4 and the rest -0.4. To use BPTT effectively it is
necessary to generate training values for the time
frames earlier in the sequence. A ramped signal (where
the training signals were linearly interpolated from all
0 at the start of the sequence to their desired values at
the end) was tested, but training was slower and less
effective than using a flat signal where the end training
values were also used for all the earlier frames in the
sequence. The results reported in this paper are for the
networks trained with this flat signal.

Recognition results

Ten networks were trained from different starting
weights, with results as summarised in Table 1. A
step size of 0.05 was used and the networks were
trained for a maximum of 50,000 pattern presentations,
testing their performance every 1000 presentations.
During training the weights of the network for its best
test set performance were retained and used to generate
the results in Table 1, which shows that the networks
achieved an extremely high level of accuracy on the
test data.

Training set Test set
Mean 95.9 98.9
Minimum 95.0 98.4
Maximum 96.6 99.4

Table 1: Summary of the classification rate of ten
recurrent neural networks trained to distinguish between
16 different hand motions

Anticipatory classification

An interesting feature of recurrent networks is that they
produce an output for each time-frame in a sequence
rather than producing only a single output at the end of
the input sequence. By examining these intermediate
outputs of the network it may be possible to classify a
sequence correctly before the end of the sequence is
actually reached. This has the benefit of reducing the
response rate of the network which can be important
for real-time applications. It may also have specific
benefits for gesture recognition as a foundation for
identifying individual gestures within a continuous
series of hand motions, such as is used in signing.

The anticipatory abilities of the motion recognition
were tested by applying a threshold to the value of the
highest output node at each time step in the sequence.
If the threshold was exceeded the sequence was
classified as that gesture and the rest of the sequence
was ignored. If the end of the sequence was reached
without the threshold being exceeded then the sequence
was classified as normal on the basis of the final
output values. A range of different threshold values
were examined on the test data for their hit rate
(percentage of signs exceeding the threshold), the
accuracy of their classification and the speedup they
obtained (in terms of the percentage of the sequence
actually processed prior to classification). The results
of these experiments are summarised in Table 2.

From these results it can be seen that it was possible
to classify many of the sequences well before their
actual end with relatively little impact on the
classification accuracy. For example by using a
threshold of 0.25 we can reduce the network's response
time by almost 40% whilst still maintaining a
classification accuracy of 99%. This ability of the
network to classify early in gestures leads to the
possibility of automatically detecting the end of a
gesture by performing this anticipatory classification
and signalling the end of the gesture when that output
node falls below a second threshold value. This would
remove the need for the user to manually flag the end
point of a gesture and would greatly improve the
flexibility of a gesture recognition system.



Threshold Hit rate % correct on Speedup on % correct on | Speedup on all| Segmentation
@ thresholded thresholded all gestures gestures accuracy
gestures (b) gestures (axb)

-0.4 100.0 21.5 12.9 21.5 12.9 21.5
-0.35 100.0 21.5 12.9 21.5 12.9 21.5
-0.3 100.0 394 19.8 39.4 19.8 39.4
-0.25 100.0 55.6 26.2 55.6 26.2 55.6
-0.2 100.0 68.7 31.0 68.7 31.0 68.7
-0.15 100.0 79.7 353 79.7 353 79.7
-0.1 100.0 88.0 39.6 88.0 39.7 88.0
-0.05 99.9 92.5 43.0 92.5 43.1 92.4
0 99.7 94.7 46.2 94.7 46.4 94.4
0.05 99.4 96.6 48.7 96.6 49.0 96.0
0.1 99.1 97.6 51.4 97.6 51.8 96.7
0.15 98.3 98.5 54.1 98.4 54.9 96.8
0.2 97.6 98.9 57.8 98.9 58.8 96.5
0.25 96.6 99.0 60.5 99.0 61.9 95.6
0.3 94.3 99.1 63.7 99.1 65.8 93.5
0.35 88.5 99.1 66.9 99.2 70.7 87.7
0.4 71.3 99.2 69.2 99.2 78.0 70.7

Table 2: Mean results over ten networks of anticipatory classification of test data using different threshold values

To implement a segmentation algorithm it is necessary
to choose a threshold which produces close to 100%
both in gestures exceeding the threshold and in
classifying those gestures. The final column in Table 2
summarises performance in this area by multiplying
the hit rate and thresholded classification accuracy. For
this problem thresholds in the range from 0.05 to 0.2
provide suitable performance in both of these
categories (around 96-97% segmentation accuracy),
which means they could be used for detecting the start
of a gesture. Due to the pre-segmented nature of the
data used it has not been possible to test the ability of
the network to detect the end of a gesture, but it
appears likely that similar thresholding techniques
should prove equally effective for that task. A possible
extension to the thresholding algorithm which may be
useful for noisier data would be the inclusion of a
temporal aspect to the threshold, such that the
network's output must remain above the threshold for a
certain period of time before the threshold is activated.

Conclusion

The recurrent network developed improves on both the
number and complexity of hand motions recognised by
previous systems, whilst maintaining a high level of
generalisation to unseen examples. The thresholding
technique described appears to have a great deal of
potential for segmentation of gestures, which will
allow the network to be applied to continuous
sequences of gestures.
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