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ABSTRACT 
The shapes andjring rates of motor unit action potentials W A P s )  in an electromyographic @MG) signal provide 
an important source of information for the diagnosis of neuromuscular disorders. In order to extract this irfonnation 
fi-om EA4G signals recorded at force levels up to 20% of mmzimum voluntary contraction @WC) it is required: i )  To 
identi& the M A P S  composing the EMG signal, ii) To classifi MUAPs with similar shape and iii) To decompose the 
superimposed W A P  wavefoims into their constituent MUAPs. For the clmsgcation of McIAPs two di fferent pattern 
recognition techniques are presented: i )  An art&ial neural network (Am) technique based on unsupervised 
learning, using the self-organizingfeature maps (SORA,$ algorithm and learning vector quantization (ZVQ and ii) A 
statistical pattern recognition technique based on the euclidian distance. The success rate on real data for the ANN 
technique is about 96% andfor the statistical one about 94%. For the decomposition of the superimposed wavefonns 
the following technique is used: i )  Crosscowelation of each of the unique M A P  wavefinns, obtained by the 
clmsvcation process, with the superimposed waveforms in order to j n d  the best matching point and ii) A 
combination of euclidian distance and area measures in order to class& the components of the decomposed 
wavefom. The success rate for the decomposition procedure is about 90%. 

1. Introduction 
Electromyography is the study of the electrical activity 
of the muscle and provides usefid information for the 
assessment of neuromuscular disorders. EMG signals 
recorded at low force levels (less than 20% M V C )  are 
composed of MUAPs generated by different motor units 
0. The MU is the smallest functional unit of the 
muscle that can be voluntarily activated. It consists of a 
group of muscle fibres all innervated fiom the same 
motor nerve. The MUAP shape reflects the MU 
architecture. With increasing muscle force the EMG 
signal shows an increase in the number of activated 
MUAPs recruited at increasing linng rates. This makes 
it d.&icult for the neurophysiologst to distinguish the 
individual MUAP waveforms. The EMG signal 
decomposition and MUAP classification into groups of 
similar shapes provide important information for a 
correct diagnosis. 
A number of researchers have been working in the field 
during the last few decades. LeFever and DeLuca [5] 
used a special three channel recording electrode, 
template matching and firing statistics for classification. 
Their decomposition method required operator 
intervention. Haas and Meyer [l] in their system called 
ARTMUP used potential features like duration, area, 
amplitude and number of turns as input to a hierarchical 
clustering technique for cIass%cation, followed by a two 
stage decomposition. McGill et al. [SI developed the 
ADEMG system that used template matching and a 
specific alignment algorithm for classification. Loudon 
et al. [7] used eight potential features as input to a 
statistical pattern recognition technique for 
classitication. The decomposition of superimposed 

waveforms used a combination of procedural and 
knowledge-based methods. Hassoun et al. [2] in their 
system called W R V E  used time domain features as 
input to a three layer ANN with a 'pseudo-unsupervised' 
learning algorithm for classifation. 
In this work an unsupervised learning A" using the 
Kohonen self-organizing feature maps in conjunction 
with learning vector quantization and a statistical 
pattern recognition technique based on euclidian 
distance were developed to class@ MUAPs. The 
objective is to develop an accurate, simple, fast and 
reliable system whch can perform well even with a 
limited amount of data. Furthermore an algorithm for 
decomposition of superimposed waveforms using 
crosscorrelation for MUAPs alignment, and a 
combination of euclidian distance and area measures in 
order to class@ the decomposed waveforms is 
presented. 

2. Method 

2.1. Data acquisition and preprocessing 
The EMG signal was recorded from the biceps brachii 
muscle at low force level, for 5 seconds, using the 
concentric needle electrode. The signal was analogue 
bandpass filtered at 3 Hz to 10 KHz, and sampled at 20 
KHz with 12 bits resolution. The EMG signal was then 
lowpass filtered at 8 KHz and downsampled by a factor 
of two at 10 KHz. 

2.2. Segmentation 
The next step is to cut the EMG signal in segments of 
possible MUAP waveforms and eliminate arm of low 
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Fig. 1. Raw EMG signal. Peaks over threshold are considered as candidate MUMS 

activity pig. 1 and Fig. 2). The segmentation algorithm 
calculates a threshold, depending on the maximum and 
mean value of the whole EMG signal. Peaks over the 
calculated threshold are considered as candidate 
MUAPs. A window with a constant width of 100 pints 
(i.e. 10 ms at 10 KHz) is applied centred at the 
identified peak. If a greater peak is found in the 
window, the window is centred at the greater peak 
otherwise the 100 pints are saved as a candidate 
N A P  waveform . The threshold is calculated as 
follows: 
-If " U m ( e m g )  > 30 * mean(abs(emg)) 

then threshold = 5 * mean(abs(emg)); 
else threshold = " m ( e m g )  / 5. 

- The threshold is allowed to take values from 50 to 150 
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Fig. 2 . Segmented EMG signal 

2.3. Classification 
MUAP waveforms are processed in order to idenm 
goups of similar MUAPs, all transmitted &om the same 
MU, and separate superimposed waveforms. In this 
work two different methods for N A P  classification are 
presented, a neural network based pattern recognition 
technique using unsupeMsed learning and a statistical 
one using the euclidian distance. 

2.3.1. Neural network pattern recognition 
technique 
A single-layer neural network is presented for the 
identification and grouping of similar MUMS and 
separation of superimposed waveforms. The 
developed ANN is a feedfonvard network composed 
from 100 input nodes and 8 output nodes. The 
selected number of 8 output nodes is considered 

satisfactory since the maximum number of active 
motor units at low force is at most 5-6. The 
classification procedure is implemented in three 
phases: In the first phase unsupenised learning is 
applied based on one dimensional self-organizing 
feature map (Kohonen) and competitive learning, in 
the second phase, in order to improve classification 
performance, a (self) supervised learning technique, 
the learning vector quantization ( LVQ2 by 
Kohonen) is applied and in the third phase the actual 
classification takes place. 

A. Self-Organizing Feature Map (SQFM) - 
Learning Phase 1 
The objective of this phase is to provide a first 
'approximate' quantization of the input space 
(Voronoi vectors) by adapting the weight vectors of 
the neurons in the feature map [3], [4], [6] .  The 
implementation steps are: 
Step I :  Initialise weights at small random values. 
Step 2: Calculate distances between input vector xi 
and weight vectors wik for each output node k:  

N 
d ,  = (xi - w i k  ) 2  where k=1..8 andN=100. 

i = 1  

The output node with minimum distance is the 
winner. 
Step 3: Adapt weights. The weights for each output 
node k and for each i are adapted with 

w i k  ( t  + 1 )  = wik ( t )  + h k  * ( x i  - w i k  ( t ) )  
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Fig.3. Learning rate kk (with g = 1) getting narrower within 
time and smaller as often an output node k is selected winner 
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Fig. 4. MUMS with similar shapes classified into three different classes 

The learning rate h, is a Gaussian function that gets 
narrower within time (neighbourhood) (Fig. 3). The 
learning rate is also frequency sensitive, which 
means it gets smaller the more often a neuron is 
selected winner: 

hk = g * exp(-(k - kw )’* t 1 2 )  1 Jtkw 
where 0 < g 5 1, kw is the winner node, t is the 

number of iterations and t ,  is the number of times 
the specific node is selected winner. 
Step 4: Go to step 2 for all segmented inputs. 
M e r  all inputs are presented to the network, the first 
adaptation of weights is completed and the system 
proceeds to the second learning phase. 

B. Learning Vector Quantizer (LVQ) - Learning 
Phase 2 
The task of this phase is to adapt the weight vectors 
slightly (move Voronoi vectors) in order to improve 
the classification quality 131. LVQ is actually a 
supervised learning technique, i.e. demands 
forehand knowledge of correctly labelled (classified) 
inputs. Since such a knowledge is not available it is 
assumed that the adaptation carried out during the 
first phase is correct enough and thus the segmented 
inputs coming in will be correctly classified. Weights 
adaptation and winner selection is again on-going. 
The implementation steps are: 
Step I: Use the values of weights as obtained from 
learning phase 1. 
Step 2: Present inputs and calculate distances d, 
between input vector xi and weight vectors wj, for 
each output node k as in step 2 of learning phase 1. 
The output node with minimum distance d,, is the 
first winner kl and the output node with the second 
best minimum distance dk2 is the second winner k2. 
Step 3: Adapt weights. The weights for the first 
winner output node kl  are adapted with 

w j k l  (t + I) = ik I (t) + h k l  * - ik l  (l)) 
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The learning rate h,, begins froni 0.2 and decreases 
linearly with the number of times tklw the specific 
node kl  is selected as first winner: 

h k l  = 0 . 2  - 0 . 0 1  * t , , ,  * 

The factor d,,/dk2 is used so as to move the 
second winner far away if the classification 
boundaries are close enough or little if the 
classification boundaries are far away. In other 
words the weight vector with the correct label is 
moved towards the input while the incorrect label is 
moved away from it. 
Step 4: Go to step 2 for all segmented inputs. 
After all inputs are presented to the network, the 
network is trained and the actual classification 
process starts. 

C. Classification phase 
In this phase all the input vectors will be classified to 
one of the output nodes and superimposed 
waveforms will be separated. The implementation 
steps are the following: 
Step I :  Calculate distances dk between input vector 
xi and weight vectors wjk as in step 2 of the 
learning phase 1. The output node kw with minimum 
distance d ,  is the winner. 
Step 2: In order to separate the superimposed 
waveforms from simple, non overlapping MUM 
waveforms the length of weights vector of the winner 
node kw is calculated as the sum of squares of its 
vector values 

N 

‘kw = wikw 
i= 1 

If d, / lh < 0.2 then the input is classified; 
else the input is considered as a 

superimposed waveform. 
Step 3: Go to step 2 for all segmented inputs. 
Step 4: If the number of members in a class is three 
or more then their average is calculated and a 
MUM class is identified (Fig. 4). Otherwise they are 
saved with the superimposed waveforms for 
decomposition. 



2.3.2. Statistical pattern recognition technique 
In this technique the euclidian distance is used in 
order to identlfy and group similar waveforms. The 
group average is continuously calculated and used as 
a comparative measure for MUMS classification 
applying a constant threshold technique. The 
implementation steps are the following: 
Step 1: The system starts with the first waveform x 
as input and calculates its vector length and the 
distance between it and all the other waveforms y as 

Step 2: Find the waveform y with the minimum 
distance which is the one with the greatest similarity 
with x and remove it from the input data. 
Step 3: Sliding and baseline correction. Firstly slide 
the waveform y with minimum distance up to 2 
points backwards and up to 2 points forwards in 
order to find the best alignment point. Recalculate 
the distance d, for each case and assign the smallest 
as d&. Then calculate baseline correction bc as 

I O  100  I O  1 0 0  

b e  = (c  y i  + y i  - x i  - x i )  / 2 0  . 
i = l  i = 9 1  l = I  i = 9 1  

Subtract bc from waveform y and recalculate 
distance with x. If it is smaller than d,, assign it as 
d&. 
Step 4: 

then group, calculate group average and go to step 1 
with group average as input; 

else iy number of group members > 2 
then form a new class; 
else waveform is superimposed; 

go to step 1 withy as input. 

d&fl,< 0.125 

If the minimum distance divided by the vector length 
of the first waveform is less than a constant 
threshold set to 0.125, then the two waveforms form 
a group. Then the group average is calculated and 
the procedure is repeated (go to step 1 with the group 
average as input) comparing the group average now 
with all the rest in order to find the nexT waveform 
with the minimum Euclidian distance. If the above 
condition is satisfied then a new waveform is added 
in the group and a new group average is calculated 
and so on. If not the process stops, and if the group 
members are more than three then a class is formed 
and its averaged waveform is saved. If they are less 
than three they are considered as superimposed 
waveforms. The process continues where it stopped 
comparing the last encountered waveform with all 
the remaining until all waveforms are processed. 
Threshold values were chosen after extensive testing. 

The averaged class waveforms are again the unique 
W A P  waveforms composing the EMG signal. 

2.4. Decomposition of superimposed waveforms 
The EMG signal obtained by the use of a concentric 
needle electrode contain, even at low force, overlapping 
potentials. It is important for a correct firing rate 
analysis to iden@ as much MUAPs as possible through 
decomposition of the superimposed waveforms into its 
constituent MUMS. It is assumed that the correct 
unique MUAP waveforms composing the superimposed 
ones are known through one of the previous 
classification processes (Fig. 5). The decomposition 
steps are the following: 
Step 1: Extract the main part of the MUM. Reduce the 
unique MUMS durations by dropping the beghung 
and ending points of the waveform that are less than 
1/15 of the amplitude (minimum to maximum). This is 
necessary in order to crosscorrelate the most important 
part of the MUAP only. 
Step 2: Crosscorrelate each reduced MAP with a 
superimposed waveform and find the best matching 
point as the point where the crosscorrelation coefficient 
takes its maximum value. 
Step 3: For each matching pair calculate the normalised 
euclidian distance, the area difference and a variable 
threshold. 
The normalised euclidian distance (Nd) is the sum of 
squares of the values obtained by the subtraction of the 
reduced MUAP from the superimposed waveform for 
the reduced MUM duration, dwided by the sum of the 
squares of the reduced MUAP vector values: 

M M 
N d  = ( x i  - c i ) '  I 

i = l  i = l  

where M is the number of points of the reduced MUAP 
wavefonn c, and x is the superimposed waveform. The 
average area merence (Ad) is the average of the 
absolute values obtained by the subtraction of the 
reduced MUAP from the superimposed waveform for 
the reduced MUAP duration: 

M 

A d  = C \ x i  - ci//A4 . 
i = I  

The variable area threshold (Th) is defined as: 

M 
T h  = 4 + 0 . 5  * c l c , p 4  

I = I  

Step 4: The best matching MUAP is identified as the 
one with minimum( Nd *Ad/  Th / M )  m.d is classrEied 
as belonging to the reduced MUAP class if 

Nd< 0.2 or ( A d <  ThandNd< 0.5) . 
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Fig, 5. Decomposition of a superimposed waveform into its three constituent MUMS 

Step 5: The best matching MUAP, if classified, is 
subtracted from the superimposed waveform. The so 
obtained new waveform is fed in (go to step 2) for a nexT 
cycle until no other MUM is identified or the 
maximum waveform value is less than 50 pV. 
Otherwise, if not classified, the next superimposed 
waveform is fed in. 
Go to step 2 for all superimposed waveforms. 
Step 6: Complete firing rate table with the newly 
identitied MUAPs. 

3. Results and Discussion 
EMG data collected fiom 24 subjects were analysed 
using the pattem recognition techniques described 
above. Data were recorded fiom 8 nom@ (NOR) 
subjects, 8 subjects suffering with motor neuron disease 
(MND) and 8 subjects mering from myopathy W O ) .  
Table 1 tabulates the classification success rate on 8 11 
Mums, obtained from 463 EMG recordings. The 
classification success rate was defined as the percentage 
ratio of the correctly identified MUAP classes by the 
algorithm and the number of true MUAP classes present 
in the signal. The average success rate for the SOFM 
with the LVQ algorithm was 96%, for the SOFM 
algorithm alone 93%, and for the statistical pattem 
recognition technique 94%. The ANN technique also 
yielded good results without the LVQ learning phase. In 
general, where the algorithms failed to idenQ a class it 
was because of inadequate number of class members 
and waveform variability. The success rate for the 
decomposition of the superimposed waveforms was 
about 90%. 

MATLAl3 was used for implementing the above 
algorithms. The processing time on a PC 486DX2 66 
MHz for a 5 sec epoch EMG signal with 50 waveforms 
was about 4 sec for the segmentation and about 8 sec for 
the classification with SOFM with LVQ, 6 sec for 
SOFM and 10 sec for the statistical technique. The 
processing time for the decomposition of 12 
superimposed waveforms with 3 classes was about 20 

Both pattem recognition techniques described are quite 
simple in their conception and the success rate high 
enough. Classfiation and decomposition of real EMG 
data into their constituent Motor Unit Action Potentials 
is often a diflicult task because of WAFS waveform 
variability, jitter of single fiber potentials and MUpSs 
superpositions. Artificial Neural Networks appear 
attractive for the solution of such a problem because of 
their ability to adapt and to create complex classification 
boundaries. The statistical technique has the 
disadvantage of using a constant threshold for 
classification that makes it less flexible since what looks 
similar in shape has not necessarily a small euclidian 
distance. Also the computational time increases 
geometrically with the amount of processed data. On the 
other hand the use of slide and baseline correction 
improved the classification success rate by about 5%. It 
was also observed in both techniques that often, due to 
wavefom variability, MUAP classes coming from the 
Same MU, although they looked simiIar, were not 
grouped together. Merging of these classes can be 
achieved by using the firing statistics after the 
decomposition process or by using the statistical pattern 

sec. 
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recognition technique with a greater constant threshold 
(4.3)  and the averaged class waveforms as input. 
Several new ideas were introduced in this work in order 
to improve the algorithms performance: i) The use in 
the SOFM of a learning rate that gets narrower withh 
time (neighbourhood) and that is also frequency 
sensitive. ii) The use of the LVQ in a self-supenised 
m e r  with the factor dk, / dk2 to optimise the second 
winner weights adaptation. iii) In the classitication 
phase the use of a threshold technique in order to 
separate the superimposed waveforms. iv) The use of 
the goup average in the statistical pattem recognition 
technique as a comparative measure. v) In the 
decomposition of the superimposed waveforms the 
combination of euclidian distance and area measures in 
order to  class^ the decomposed waveform. 
Future work will evaluate the algorithms developed in 
this study on EMG data recorded from more muscles 
and more subjects. In addition this system may be 
integrated to a hybrid diagnostic system for 
neuromuscular diseases based on ANN where clinical 
data, EMG, muscle biopsy, biochemical and molecular 
genetic findings will be combined to provide a 
diagnosis. 

SOFM with LVQ SOFM Statistical 

(277/293) 95% (273/293) 93% (275/293) 94% 

(25 1/266) 94% (239/266) 90% (25 1/266) 94% 

(248/252) 98% (24 1/252) 96% (238/252) 94% 

(776/811) 96% (753/811) 93% (764/811) 94% 
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