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ABSTRACT 

The concept of generalization is defined for a general class of unsupervised learning machines. 
The generalization error is a straightforward extension of the corresponding concept for supervised 
learning, and may be estimated empirically using a test set or by statistical means - in close 
analogy with supervised learning. The empirical and analytical estimates are compared for 
Principal Component Analysis and for K-means clustering based density estimation. 

1. Introduction 

The goal of unsupervised learning is to identify and explore regularities and dependencies in data (for an 
introduction see e.g., [4]). Principal Component Analysis (PCA) [5] and Clustering [3] are two prominent 
examples of unsupervised learning schemes that are widely used in applications. Like supervised learning 
schemes, unsupervised learning proceeds from a finite sample of training data. This means that the learned 
concepts are stochastic variables depending on the particular (random) training Iset. This opens the question 
of robustness and generalization: how robust are the learned concepts to fluctuation and noise in the training 
set, and how well will they perform on a new (test) datum? Generalization is a key topic in the theory of 
supervised learning, and significant progress has been reported. The most universally applicable algebraic 
results were recently published by Murata e t  al. [lo], describing the asymptotic generalization ability of 
supervised algorithms that are continuously parameterized. 

The aim of this paper is to extend the theory of Murata e t  al. to unsupervised learning and show how it 
may be used to optimize the generalization performance of PCA and clustering. 

2. Generalization 

While supervised learning concerns the identification of func t ional  dependencies,  the objective of unsuper- 
vised learning is to capture statistical dependencies] i.e., the structure of the underlying data distributions. 
In both cases we are interested in robust modeling] i.e., that the knowledge obtained is generic and, as 
far as possible, independent of the particular training set provided. It is a common observation that good 
generalization is obtained when the model capacity is well optimized1. If the mlodel capacity is too limited 
the model will not be able capture the full complexity of the distributions, while a high capacity model 
will support many different solutions to the learning problem and is likely to focus on non-generic details of 
the particular training set (overfitting). The proposed scheme attempts to  estimate the effects of the finite 
random training set, with the purpose of minimizing their role. 

Like [lo] we analyze models that are smoothly parametrized and whose training can be described in 
terms of a cost function. If a particular data vector is denoted 5 and the model, denoted H ,  involves the 
parameter vector 0, the associated cost will be denoted by E(x10, H ) .  

'Also referred to as the bias/variance dilemma. 
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A training set is a finite sample D = { Z ~ } C = ~  of the stochastic vector x. Let p ( z )  be the “true” 
distribution of z, while the empirical distribution associated with D ,  is given by pe(z) = 1/N 6(z-z,). 
For a specific model and a specific set of parameters we define the training and generalization errors as follows, 

N 

G(8, H )  = d z p ( z ) r ( z l 8 ,  H ) .  (2) J’ 
Note that the generalization error is non-observable, i.e., it has to be estimated either from a finite test set 
drawn from p(x), or estimated from the training set using statistical arguments. 

3. Analytical Estimate of the Generalization Error 

To estimate the generalization error we will assume that learning results in the selection of the parameters 
ê  pertinent to the specific training set by solving dCld8 = 0 where C is the cost function C(8)  = E(8)  + 
R(8) including a regularization term R(8). Note even though learning is done by minimizing C(8) ,  the 
generalization error is still defined as in ( 2 ) .  This matter is, however, not discussed in [lo]. 

Hence ê  = O(D, H ) ,  is a stochastic variable. Let m = dim(8) be the dimensionality of the parametrization 
the model. Under fairly mild conditions it is possible to show that in the limit m / N  -+ 0, the distribution 
of $becomes asymptotically Gaussian, 8 N N(8*, C*) where the optimal value 8* = arg mine(G + R), while 
the covariance matrix is given by, 

E* = - J - 1 ~  J - 1  

A 

(3) 
1 
N 

where the matrices, J ,  Q, are defined by, 

Since C* cx 1/N we can estimate the generalization error by expanding in the small fluctuations around 0’ 
induced by the training set, 

(5) 
1 

(G(e^))0 x G(8*) + R(8*) - (R(e^))o + ZTrace [J(A8AeT)o] 

( s ) ~  signifies the average over all possible training sets of size N .  We have denoted the fluctuation of the 
optimal parameters as A8 = e^- 8*. Inserting the expression for the covariance of these fluctuations as given 
by (3) we find 

(G($))D M G(O*) + R(B*) - (R(e^))o + 2NTrace [QJ-’1 (6) 
1 

The order one matrices Q, J may in turn be estimated from the empirical distribution pe(z), 
N N 

(7) 
- 1 d6(~ , lO)  a~(~ , l8 )  dR(8)  d R ( 8 )  y,, - 1 d2~(x,18) d‘R(8) +- 

Q Z j =  EX----- QC=l d8i dOj dei d8j ’ ” - N 

However, this still leaves us with the unknown ‘‘noise level” G(8*). Fortunately this quantity may be 
estimated from the averaged training error. By expansions similar to those entering the estimation of the 
generalization we find, 

aeiaej aoiaoj . +-- 
c U = l  

(8) 
1 

2N 
( ~ ( e ^ ) ) ~  =: G(o*) + R(o*)  - ( ~ ( $ 1 ) ~  - -Trace [QJ-’] 

Which by elimination of the noise level leads us to the final relation, 

The relation (9) provides a link between the averaged training and test errors analogous to the results of 
Murata et al. [lo], and similar to Akaike’s Final Prediction Error [l], thus extending these key results to 
unsupervised learning schemes. For further discussion see also [7]. 
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4. Examples 

To illustrate how the generalization estimate (9) is used in more specific contexts, we analyze two impor- 
tant unsupervised learning machines, in particular we show how one may select the optimal number of 
principal components in PCA and, secondly, how to select the optimal number of clusters in a radial basis 
function network based on the K-means clustering algorithm. These schemes are among the most popular 
for unsupervised learning in practical applications. Note that we do not employ any regularization in th  
examples. 

4.1. Principal Component Analysis 

In PCA the objective is to provide a simplified data description by projection of the data vector onto the 
eigendirections corresponding to the largest eigenvalues of the covariance matrix [5]. This scheme is well- 
suited for high-dimensional, highly correlated data, as, e.g., found in explorative analysis of brain scan 
volumes [8]. Simple neural network architectures have been suggested that are able to recursively estimate 
subsets of the principal components, see e.g., [4, 111. 

However, the selection of the optimal number of PCs is a largely unsolved problem, although many 
statistical tests and heuristics have been proposed [5]. Here we suggest to  use the estimated generalization 
error to select the number, in close analogy with the approach of [12] for optimization of feed-forward nets 
in a supervised learning context,. 

To proceed we need to specify PCA in terms of a cost function. In particular we assume that the 
data vector z (of dimension L )  can be modelled as a Gaussian distributed multivariate variable whose main 
variation is confined to a subspace of diniension KO, this component being degraded by additive, independent 
isotropic noise, z = s + n where the “signal” s - N(z0, Cs), while the “noise” is distributed n - N ( 0 ,  En).  
We assume that E, is singular, i.e., of rank KO < L ,  while E, = u 2 1 ~ ,  where IL  is a L x L unit matrix and 
o2 is a noise level. 

Using well-known properties of Gaussian random variables we find z - N ( X o ,  C, + E n ) .  Hence, we can 
use straightforward maximum likelihood estimation (R(8) E 0) to learn the parameters Q E (50,  E,, En). 
Maximum likelihood estimation - or equivalently minimum of the negative log-likelihood - is precisely of the 
form we have discussed with ~ ( ~ 1 8 )  = - logp(zl6) where p ( z l 8 )  is the p.d.f. of the data given the parameter 
vector. With this form of the cost we can simplify the design relation (9) considerably. Note that by Fisher’s 
argument Q = J ,  hence, Trace [QJ-’1 = dim(8) and 

where the dimensionality of the parametrization of course depends on the number, say K E [l; L ] ,  of PCs 
retained in the PCA context. Since we also estimate the mean value vector zo and the noise variance o2 the 
total number of estimated parameters is dim(8) = L + 1 + K ( K  + 1)/2. 

Assuming the examples to be drawn independently, we obtain the maximum likelihood estimate as: 

+ N  . N  
1 - 1  

2 0  = - za,  c = - E(.. - ?o)(za - Bo)’ 
ff=l 

N 
c U = l  

N 

By ffixing the dimensionality of the signal subspace, K ,  we further identify the covariance matrix 2~ of 
the subspace spanned by the K largest PCs. The noise level is subsequently estimated as Z2 = l / ( L  - 
K)Trace@ - 2~1, hence C, = g 2 1 ~ .  For each value of K we then estimate the generalization error and 
commend the value that provides the minimal error. 

To illustrate the procedure we arrange an experiment based on L = 20 dimensional data vectors. The 
signal subspace dimensionality is set to KO = 3. In the experiment the training set comprises N = 42 data 
vectors and for comparison we compute the empirical test error on an independent test set of size Ntest = 120. 
In figure 1 the result of the evaluation is shown as function of K .  As seen, not only do the analytical theory 
predict correctly the optimal value of K ,  but in fact, it is also able to provide a reasonable estimate of the 
numerical values of t h e  negative log-likelihood. I t  is worth noting t h a t  t h e  optimal generalization is obtained 
by modeling the “signal” space as well as parts of the noise subspace. This is expected since our model can 

27 

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 02,2010 at 06:49:31 EST from IEEE Xplore.  Restrictions apply. 



'0 2 4 6 8 10 12 14 
Number of PCs retained 

Fig. 1: Numerical experiment illustrating the selection of signal space dimension (number of Principal Components retained 
in PCA). Artificial multivariate ( L  = 20) Gaussian data was created with a covariance matrix that was composed from two 
components: one component is singular (rank KO = 3) and the second component being isotropic (white) noise. The signal to  
noise ratio was set to 10. PCAs were carried out retaining an increasing number of PCs. The noise subspace was modelled by 
a covariance structure proportional to the unit matrix ( L  x L ) .  The analytical estimate of the generalization error is compared 
to an empirical estimate based on a test sets of size Ntest = 120. Error bars are estimated by the standard deviation within 10 
replications of the experiment. 

capture both the structure signal space (KO = 3) and the noise subspace. The optimal number of PCs for 
the given example is about K = 9. 

4.2. K-means Clustering 

Our second demonstration concerns estimation of cluster centers and widths for use in radial basis function 
based density estimation. There are a large number of clustering based neural net algorithms in the literature 
see e.g., 12, 6, 9, 131 and optimization of the architecture, as exemplified by selection of the optimal number 
of basis functions (clusters) is a largely unsolved problem [6]. Many heuristics have been suggested [2, 131, 
e.g., formulated in terms of prior complexity penalties. [14] have proposed the AIC criterion for cluster 
selection. The model we consider here is a Gaussian mixture 

K 

k = l  

where P k  is the probability of cluster k and Ck P k  = 1. and P~(z) = p(zla: E cluster k )  is the conditional 
p.d.f. (basis function). As before, the data vector is L dimensional, and we assume the basis function to be 
isotropic and Gaussian: 

The cluster centers are denoted pk, while the widths are denoted 0 2 .  We further constrain the widths to be 
identical uz = 0 2 .  Maximum likelihood estimation is used to estimate the parameters on the finite training 
set. This allows us to employ the theory developed, with the negative log-likelihood cost function, c(zl8) = 
- logp(zl6), as in the previous example. The parametrization comprises: 8 = ( P I , .  . . , P K ,  c2, PI, .  . . P K ) .  
In this case dim(0) = K ( L  + 1) + 1 real parameters. 

Generalization theory is used in this example to select the number of clusters K (radial basis functions). 
To determine the cluster centers we employ a simple K-means procedure2, while the radial basis function 

2The K-means procedure is an iterative assignment and averaging procedure. First a fixed number of cluster centers, K ,  
are initialized at random positions. All points in the training set are assigned to a specific cluster center by proximity in the 
Euclidian metric. The cluster centers are subsequently moved to the center of mass of it's member data points. 
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widths are determined by maximum likelihood assuming simple isotropic Gaussian basis functions. The 
relative probabilities of the clusters, ,&, are determined simply as the relative frequencies observed on the 
training set. K-means is, in fact, not an exact maximum likelihood procedure for center selection. However, 
it is a computationally attractive and close approximation for well defined clusters. 
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Fig. 2: Numerical demonstration of clustering by K-means. The data are generated by three ( K O  = 3) cluster centers with 
additive isotropic Gaussian distributed noise. The resulting cluster centers for K = 7 are indicated by numerals. 
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Fig. 3: Numerical experiment illustrating the selection of the number of clusters in a radial baais function network estimation 
the density of the 2D data vectors of figure 2. The analytical estimate of the generalization error is compared to  an empirical 
estimate based on a test, sets of size Ntest = 120. Error bars are estimated by the standard deviation within 10 replications of 
the experiment. 

A.s numerical test bed we construct 2D ( L  = 2) data based on three clusters as depicted in figure 2. We 
subsequently draw at random a training set consisting of N = 42 points. K-means is used to find centers for 
K = 1 , .  . . ,7.  The resulting cluster centers are indicated in figure 2, for K = 7. 

Like in the previous demonstration we estimate the generalization error by the analytical expressions and 
by means of a test set, as shown in figure 3. In line with the previous example we conclude that it is possible 
to estimate the form of the generalization error analytically. Using either the empirical or the analytical 
estimate we conclude that the proposed generalization error can indeed be used to select the optimal cluster 
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number. 

5. Conclusion 

This paper introduced the concept of generalization in an unsupervised context. The objective of unsu- 
pervised learning is to identify structure in the probability distribution of a data vector. Formulating the 
unsupervised learning problem as a minimization task, by parameterizing the probability density of the data 
vector, enables us to define an associated generalization error. The generalization error is used to determine 
the correct dimensionality of the parameterization, e.g., the number of principal components in principal 
component analysis or the number of clusters in K-means clustering. 

The suggested method was successfully applied to determine the number of principal components and 
the number of clusters. 
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