
Proceedings of the International Conference on Neural Networks, pp. 524-528, 1996

Robust Optimization Using Training Set Evolution

Dan Ventura
Tony R. Martinez

Computer Science Department, Brigham Young University, Provo, Utah 84602
e-mail: dan@axon.cs.byu.edu, martinez@cs.byu.edu

ABSTRACT

Training Set Evolution is an eclectic optimization technique that combines evolutionary computation
(EC) with neural networks (NN). The synthesis of EC with NN provides both initial unsupervised
random exploration of the solution space as well as supervised generalization on those initial solutions.
An assimilation of a large amount of data obtained over many simulations provides encouraging
empirical evidence for the robustness of Evolutionary Training Sets as an optimization technique for
feedback and control problems

1. Introduction
Neural networks (NN) have been successfully applied to a variety of problems [2][5]. Also, work involving

a combination of evolutionary computation (EC) and NN is becoming more prevalent [1][4][6][7]. One class of
problems to which NN are often applied is that of optimization. The NN is responsible for optimizing a system
based upon some criteria. Evolutionary Training Sets is an optimization technique that employs evolutionary
computation [3][8] as a preprocessor that creates a training set for the neural network. The only requirements for the
optimization technique are access to the system to be optimized and a priori knowledge of a fitness function that
describes the desired optimization. The synthesis of EC with NN provides both initial unsupervised random
exploration of the solution space as well as supervised generalization on those initial solutions.

Evolutionary Training Sets are introduced in [9] and [10]. Two artificial problems have been designed to
explore the usefulness of this optimization technique. This paper extends previous work by presenting results
obtained from running hundreds of new simulations in order to study the effects of varying periods of evolution and
training set size on the effectiveness of optimization. Empirical results provide encouraging evidence for the
robustness and general usefulness of Evolutionary Training Sets.

Section two of the paper presents a generalized formal description of the problem to be solved --
optimization of a system (or equivalently, function approximation), either statically or dynamically (control
problems). Section three then briefly discusses the combination of a neural network with evolutionary computation
as a general approach to solving the problem of section two. Section four presents data (collected over many
empirical simulations) in condensed graphical form and discusses its implications for Evolutionary Training Set
optimization. Finally, section five presents conclusions and directions for ongoing research.

2. Problem Description
Given a system, Θ, the state of Θ may be described at time t by a vector of status variables, st. Suppose

that control of the system is effected by the setting of variables in a control vector, c. That is, given a system Θ at
time t described by vector st, the setting of the values of the vector c will result in a different system Θ' at time t+δ
described by the vector st+δ. The problem is, given a status vector, st, what modifications should be made to the
control vector c such that st+δ describes a better system, if possible, than st? Obviously, some evaluation or fitness
function, f, is necessary in order to determine whether or not one system is better than another.

The operation of Θ may be either continuous or discrete. A neural network is expected to detect the values
of st and to output values for c, the goal being to maximize f for any given instance (status) of Θ . If the problem is
an optimization problem, this is a single iteration process; if the problem is an optimization/feedback problem then
the process becomes an ongoing series of iterations.

3. Combining Evolutionary Computation with Neural Computation
From the space defined by s that describes Θ we choose a representative set of system states by choosing n

initial status vectors. We denote these i
t=0s , 0<i≤n and refer to the system state described by i

t=0s as i
t=0Θ , 0<i≤n.

These choices could of course be biased by any a priori heuristics as to what constitutes a realistic system. In
choosing this set of status vectors, i

t=0s , 0<i≤n, we have chosen the left hand sides of the training instances. We
now use evolutionary computation to discover “good” right hand sides, yielding training instances of the form i

t=0s
→ ck.

 Assume a fitness function f that takes as input a status vector s and returns a real-valued fitness measure.
Now for each i

t=0s , randomly initialize a population of m control vectors, denoted ck, 0<k≤m. Evaluate the initial
population by simulating the workings of i

t=0Θ for δ time steps (where δ time steps are sufficient for Θ i to
stabilize) for each ck, and then applying fitness function f to i

t=δs . Next choose parents and use genetic operators to
produce m offspring. Now evaluate the children and select m survivors from amongst the parents and children.
Repeat this process until some stopping criterion is met (such as reaching a specified number of generations or
finding an individual with a fitness higher than some threshold).

Finally, choose j individuals from each of the n populations and build a set of jn training examples of the
form i

t=0s → ck. (To avoid ambiguity in the training set we could set j=1.)
Since we have only chosen a finite number of seed points from this space, our evolutionary computation

has found approximate solutions for only these n points in the space and can say nothing about any other points,
many of which we are likely to encounter during normal execution of Θ. Therefore it becomes necessary to
generalize on this relatively small set of approximate solutions. Using this set of approximate solutions as training
examples, an NN model can be trained to develop a general hypothesis over the entire space defined by s. (For a
more thorough explanation of the algorithm, see [9] or [10]).

The power of this NN/EC hybrid approach is its general applicability to a wide class of problems including
function approximation problems, optimization problems, feedback problems, and control problems.

4. Empirical Results
In order to study the probabilistic effects of varying length of evolution and training set size on quality of

optimization, simulations using two artificially generated problems were run. The first entails solving a set of
mathematical equations (described by a matrix) and the second requires the EC/NN combination to attempt to learn
how to hit a target moving in 2-d space. Due to space constraints, neither problem is described in this paper;
however, the first is described in [9] and the second in [10]. In general, both simulation processes include the
following steps:

1. Generate a problem definition
2. Create a training set using evolutionary computation
3. Train an NN with the training set
4. Create a test set
5. Test the NN on the training set

Since each example in the training set has an associated fitness value (determined during creation of the
training set by the evolutionary computation), an overall average fitness of the training set can easily be determined.
We term this average fitness of the training set its quality. This research attempts to answer the following three
questions regarding training set quality:

1) Does the evolutionary computation produce training sets of good quality?
2) Does training set quality correlate with NN generalization?
3) Does number of training examples or quality of training set more greatly affect NN generalization?

Artificial problem generation/simulation programs were used for several reasons. First, they are much easier to work
with in terms of analysis, reproduction of results, etc. Second, it is possible to create a test set which can be used to
show how well the NN is performing in relation to optimum, and thus to establish (to some extent) the quality of
the optimization procedure. Third, fitness of individual training examples and therefore of entire training sets can
also be measured against optimum. The training set quality then becomes a natural (though not a strict) upper
bound on the NN's generalization accuracy and can therefore be used as a yardstick by which to measure the NN's
performance.

All results are averages over ten runs, and all NN simulation was done with the PDP implementation of the
back propagation algorithm [5].

4.1. Matrix Problem
This problem involves solving a system of 10 equations with 15 variables for the 5 unknown variables,

where the system of equations is represented by a matrix. The evolutionary computation produces a training set of
hopefully good solutions for a small number of points (1000 examples) in the equation space; the NN then
generalizes on the training set in order to approximate the function described by the matrix. Since the variables are
defined on the range [0,100), the problem is difficult because of the huge search spaces (10010 for the space to be
explored by the EC and 1005 for the space to be generalized by the NN) involved.

Evolution

A
cc

ur
ac

y

50

60

70

80

90

1 10 100 1000 10000

1000 examples

500 examples

250 examples

Training Set Quality

Figure 1. Training set quality and NN generalization
accuracy for matrix problem

Evolution

S
ta

nd
ar

d
D

ev
ia

ti
on

0

2

4

6

8

10

12

1 10 100 1000 10000

1000 examples

500 examples

250 examples

Training Set Quality

Figure 2. Standard deviation of training set quality and
generalization accuracy for matrix problem

Evolution

A
cc

ur
ac

y

30

40

50

60

70

80

90

100

1 10 100 1000 10000

250 examples

125 examples

62 examples

Training Set Quality

Figure 3. Training set quality and NN generalization
accuracy for target problem

Figure 1 shows the effects of
evolution on training set quality (indicated by
the filled squares). Here evolution is indicated
on the x-axis and is a logarithmic function of
both population size and number of
generations. The more extended the evolution
(that is, the larger the population and/or the
more generations of evolution), the higher the
training set quality. This is not surprising.
The more interesting result is that the higher
the training set quality, the better the NN
generalization. The hollow squares indicate
NN generalization using all 1000 examples in
the training set, the solid circles indicate
generalization on half of the training set (500
examples), and the hollow circles show
generalization on one quarter of the training
set (250 examples). Notice that

generalization accuracy increases as training set quality increases. In other words, the evolutionary computation is
producing a training set that faithfully represents the underlying function to be approximated.

Figure 2 shows that as evolution time
increases, the standard deviation in training set
quality decreases. So with longer evolution,
the probability of finding a good training set
increases. Even more encouraging, Figure 2
also indicates that the standard deviation in NN
generalization also decreases as training set
quality goes up. Therefore, as evolution times
are increased, the probability of finding a high
quality training set increases; and as the quality
of training set increases, the probability of
good generalization accuracy increases as well.

4.2. Target Problem
This problem involves the NN trying

to learn to hit a target moving in 2-D space
with a simple gun, where both bullet and
target are subject to the effects of gravity. The
evolutionary computation produces a training
set of hopefully good bullets for a small number of points (250 examples) in the target space; the NN then
generalizes on the training set in order to attempt to learn how to hit any target. The search spaces are much smaller
in this problem (352 for the EC and 452 for the NN); the difficulty this time arises from the fact that the gun is

placed in front of the target origin so that
some targets cannot be hit at all. This has the
effect of introducing noise into the generated
training set.

Figures 3 and 4 are analogs to figures
1 and 2 for the target problem. Figure 3
shows again both that training set quality
increases with time and that NN generalization
accuracy increases with training set quality.
Further, Figure 4 reiterates the idea that
confidence in training set quality increases
with time of evolution and also that confidence
in generalization accuracy increases with
training set quality. Again, it is seen that as
evolution time increases, the probability of
producing a high quality training set also
increases and that as the quality of the training

Evolution

St
an

da
rd

 D
ev

ia
tio

n

0

2

4

6

8

10

12

14

1 10 100 1000 10000

250 examples

125 examples

62 examples

Training Set Quality

Figure 4. Standard deviation of training set quality and
generalization accuracy for target problem

Number of Training Examples

A
cc

ur
ac

y

0
10
20
30
40
50
60
70
80
90

100

0 50 100 150 200

Training Set Quality

NN Generalization

 Figure 5. Generalization accuracy vs. number of training
examples for target problem

set increases, the probability of good
generalization accuracy increases as well.

Another point of interest in both
Figures 1 and 3 is the effect that training set
quality vs. training set size has on NN
generalization. Notice that with a 5% to 10%
increase in training set quality the number of
training examples required to maintain
generalization accuracy is reduced by 50% to
75%. For example, in figure 3, the fourth
solid square from the left indicates a training
set quality of .820. The resulting NN
generalization accuracy on the entire training
set (250 examples) indicated by the fourth
hollow square is .718. However, when the
training set accuracy is increased to .891 (the
next solid square to the right), the fifth hollow
circle from the left shows that only one quarter

of the training set (62 examples) is required to maintain that generalization accuracy (actually it increases slightly to
.736).

One difference between Figures 1 and
2 and Figures 3 and 4 is the stratification of
training set quality from NN generalization
accuracy. This is readily explained by the
previously mentioned noise that is inherent in
these training sets. Thus, even though the
training set quality can be extremely high, NN
generalization suffers somewhat because noise
exists in the training set. Nevertheless, the
principle of longer evolution producing a good
training set which results in good NN
generalization is still very much in evidence.

4.3. Training set quality vs. training set
size

The effects of quality vs. size were
further explored in this final set of
simulations. The highest quality (.978
average) training sets generated in the target

Number of Training Examples

S
ta

nd
ar

d
D

ev
ia

ti
on

0

1

2

3

4

5

6

7

8

0 50 100 150 200

Figure 6. Standard deviation of accuracy vs. number
of training examples for target problem

problem were altered by removing the noisy instances and were then randomly and systematically reduced in size.
This was done to investigate the value of individual examples for NN generalization. Figure 5 shows accuracy of

generalization vs. number of training examples. With
only 50 instances in the training set generalization
accuracy is at .80. Since the number of possible targets
in this problem is 352=1225, this performance is
attained after seeing only 4% of the possible targets.
Another way of looking at this is to consider the
generated training set as a set of exemplars. We have
attained 80% of optimum performance while reducing
the problem representation by 25 times.

Finally, Figure 6 is included to show the
standard deviation in generalization accuracy as opposed
to training set size. Even though standard deviation is
somewhat higher with a training set size of only 50, it
still indicates a confidence in the generalization ability
with a training set of that size. Increasing to 100
examples lowers the standard deviation to 5%,
indicating that even if the training set is as small as 8%
of the total number of possible targets, 95% of the time

generalization accuracy will be at least 70% of optimum.

5. Conclusion and Future Work
The results in this paper are an assimilation of data collected over the course of hundreds of EC and NN

simulations. They provide empirical evidence that

1) Evolutionary computation produces training sets of good quality.
2) The longer the evolution, the greater the confidence in the training set quality.
3) Training set quality correlates with NN generalization.
4) The higher the training set quality, the greater the confidence in the NN generalization.
5) Training set quality has a greater effect on NN generalization than does training set size.

Current research focuses on developing a theoretical basis for the empirical results discussed in this paper. Also,
application of Evolutionary Training Sets to real world problems (such as real-time network control) is necessary to
further validate this optimization technique.

References
[1] Caudell, T. P. and Dolan, C. P., “Parametric Connectivity: Training of Constrained Networks using Genetic

Algorithms”, Proceedings of the Third International Conference on Genetic Algorithms, 1989.

[2] Falhman, S. E. and Lebiere, F., “The Cascade-Correlation Learning Architecture”, Advances in Neural
Information Processing 2, D. S. Touretzky (ed.), Morgan Kaufman, 1990.

[3] Goldberg, D. E., Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley
Publishing, 1989.

[4] Harp, S. A., Samad, T., and Guha, A., “Designing Application-Specific Neural Networks Using the Genetic
Algorithm”, NIPS-89 Proceedings, 1990.

[5] McClelland, James L. and Rumelhart, David E., Explorations in Parallel Distributed Processing, MIT
Press, Cambridge, Massachusetts, 1988.

[6] Montana, D. J. and Davis, L., “Training Feedforward Neural Networks Using Genetic Algorithms”,
Proceedings of the Third International Conference on Genetic Algorithms, 1989.

[7] Romaniuk, Steve G., “Evolutionary Growth Perceptrons”, Genetic Algorithms: 5th International
Conference (ICGA-93), S. Forrest (ed.), Morgan Kaufman, 1993.

[8] Spears, W. M., Dejong, K. A., Baeck, T., Fogel, D., and de Garis, H., “An Overview of Evolutionary
Computation”, European Conference on Machine Learning (ECML-93), 1993.

[9] Ventura, Dan, Andersen, Tim, and Martinez, Tony R., “Using Evolutionary Computation to Generate
Training Set Data for Neural Networks”, Proceedings of the International Conference on Neural Networks
and Genetic Algorithms, pp. 468-471, 1995.

[10] Ventura, Dan, and Martinez, Tony R., “A General Evolutionary/Neural Hybrid Approach to Learning
Optimization Problems”, submitted to the World Congress on Neural Networks, 1996.

