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ABSTRACT

A model of dynamic associative memories is proposed in this paper. The aim is to find all stored patterns,
and to distinguish the stored and the spurious patterns. Aihara used chaotic neurons and showed that his

model has a nonperiodic associative dynamics. In his model, however, it is difficult to distinguish the stored

patterns from the others, because the state of the network changes continually. We propose such a new

model of neurons that each neuron changes its output to the other when the accumulation of its internal

state exceeds a certain threshold. By computer experiments, we show that the state of the network stays at

the stored pattern for a while and then travels around to another pattern, and so on. Furthermore, when

the number of the stored patterns is small, the stored and the spurious patterns can be distinguished using

interval of the network staying these patterns.

1. Introduction

An associative memory is a hopeful application of
neural networks(NNs). Connection weights are ad-
justed so that patterns are memorized on equilib-
rium states. In this paper, the recurrent neural net-
work(RNN), in which all neurons are interconnected
through a superposed auto-correlation synaptic ma-
The chaotic
neural network that uses chaotic neurons constitut-

trix, is basically taken into account.

ing the RNN shows the nonperiodic associative dy-
namics [1],[2]. However, in this network, retrieval
frequency of the stored patterns is small and it is
difficult to distinguish the unstored patterns from
the stored patterns. The purpose of this paper is to
organize such a network that its state travels around
the stored patterns and stays at each of them for a
while.
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2. Chaotic Neural Networks

2.1. Recurrent Neural Network

The associative memory by the RNN is described
here. A neuron is connected with all the other neu-
rons. Let the internal state and the output of the
ith neuron at the tth transition cycle be u;(¢) and
z;(t), respectively. Network transition is formulated

as follows:
N
U,‘(t) = Z’wijl'j(t - 1) (1)
j=1
zi(t) = f(ui(?)) (2)
where
f(u)={ o u= &)

Here, w;; expresses the connection weight from the
Jth neuron to the ith neuron. The weights are de-



termined according to the following symmetric auto-
correlation matrix of the stored patterns:

1
—_E ™
w;j—M .‘l,".‘l,'J.
m=1

Due to interactions among neurons through these

(4)

interconnections, the network shows self-associative
dynamics.

The vector z(t) = (z1(t),z2(t),...,zn(t))! repre-
sents the network state, at the same time, it is called

‘pattern’ in this paper.

2.2. Chaotic Neural Networks

The dynamic associative memory proposed in [1], [2]
Chaotic

neuron models proposed by Aihara can be used as

is briefly described here for comparison.

constituent elements of the RNN, which is called
“chaotic neural networks”. The dynamics of the ith
chaotic neuron is described as follows:

zi(t+1) = f(fh'(t+1)+Ci(t+ 1)) (5)

where z;(t + 1) is the neuron output with an analog
value between 0 and 1, f(u) is the sigmoid function,
and 7;(t+1) and ¢;(t+ 1) are internal state terms for
the feedback inputs from the neurons in the network
and refractoriness, respectively, as described in the

following.
N
m(t+1) = km(t)+ ) wizit—d) (6)
ji=1
Glt+1) = kGlt) — amit) + (7)

where k; and k, are the decay parameters for the
feedback inputs and the refractoriness, respectively.
a; denotes the sum of the threshold and the tempo-
rally constant external inputs to the ith neuron.
This network behaves as a dynamic associative
memory, in which the network state travels around
the stored patterns. However, it is not always guar-
anteed that the network state stays the stored pat-
terns for a while. For this reason, it is hard to extract
the stored patterns. In Sec.4, simulation using this

model will be omitted.

3.Proposed Dynamic Associative

Memory

3.1. A New Neuron Model

We use a new type of neurons instead of chaotic
neurons as constituent elements of the RNN.

In the RNN, after the network state is attracted
to an equilibrium state, the state does not change.
In order to get out from the equilibrium state, we
propose a new model, whose output is reversed when
the network stays at the same state for a while. This
is done by the following.

After u;(t) and z;(t) are calculated by Egs.(1)
and (2), the internal state is accumulated as follows:

(®)

where y;(t) expresses the accumulation of the inter-

vi(t) = vt — 1) +wi(?)

nal state. When |y;(t)| exceeds some threshold, the
output turns to the reverse, and y;(¢) is reset to zero.
This is expressed by.

If |p(t)] > A,

then
.’L','(t) = —.’l:,'(t) (9)
yi(t) = 0 (reset) (10)

Set t =t 4 1, and return to Eq.(1).
The connection weights are determined by

Eq.(4).

3.2. Characteristics of Proposed Network

By using this type of neurons as constituent elements
of the RNN, we may expect the dynamics as de-
scribed in the following.

1) When the network state is attracted to one of
stored patterns, absolute value of y;(t) continues in-
creasing because the value of internal state becomes
the same in this period.

2) After the network state stays at the equilibrium
state for a while, it goes away from this equilibrium
state. In an equilibrium state, that is a stable pat-
tern, the state of neurons having large internal state
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tend to be reversed earlier. Since these neurons are
important in this pattern, by reversing these neurons
states, the network state can escape from this pat-
terns.

3) The threshold h plays an important role in this
network. In Eq.(8), vi(t) is determined by the initial
value y;(to) at the begining of the equilibrium state,
and the internal state in this state. Furthermore,
yi(to) is determined in the transition process from
Therefore, it

may be rather randomized. On the other hand, the

one equilibrium state to the other.

internal state is determined by a set of the stored
patterns, and is closely related to the pattern stabil-
ity.

When the threshold h takes a small value, ef-
fect of yi(to) will be relatively large. On the other
hand, the internal state will be dominant in y;(t) for
the high threshold. This means that the network
state transition will be randomized by using the low
threshold, and will be rather deterministic with the
high threshold.

4) After it goes away, the output is difficult to be
reversed, because |y;(t)| is not accumulated in the
nonequilibrium state. Therefore, the network state
attracted to the equilibrium as the same as the RNN.

4. Simulation Results

4.1. Fundamental Dynamics

A mutually connected NN, having 10x 10 = 100 neu-
rons, is used. Four patterns shown in Fig.1 are mem-
orized. The weight matrix is calculated by Eq.(4).

The network state transition is simulated starting
from the stored pattern (a). In Fig.3, the network
state transition is investigated using the Hamming
distances(HD), the number of neurons whose output
differ, between the output pattern and the stored
patterns (a), (b) and (c). From this result, the net-
work state stays at one of the stored patterns(HD=0)
during some period and in a minute it changes to
the other stored patterns(HD=0) or their reversed
patterns(HD=100).
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Fig. 1: Stored patterns (a) ~ (d).

4.2. Retrieval Characteristics

The network retrieves the stored patterns and their
reverse patterns. Table 1 summarizes retrieval fre-
quency of the stored patterns in the network with
four different initial conditions shown in Figure 2.
The network state is considered as the equilibrium
state when it stays the same state more than one
time. Frequency of equilibrium states are also shown
in Table 1. This means that, for example, the stored
pattern (a) is recalled 176 times, and it stays in the
equilibrium state 141 times among them. From these
results, it can be concluded that when the stored pat-
terns are recalled, most of them stay the equilibrium
states. The meaning of the threshold h = 750 will
be discussed in Sec.4.3.

Table 2 shows transition frequency among the
stored patterns and their reversed patterns. Table 3
shows correlations among the stored patterns. Com-
paring the transition frequency with these correla-
tions, there is no relation between them.

Tables 1 and 2 show that retrieval characteristics
depend on the initial conditions. In other words, the
network can generate various retrieval characteristics
depending upon the initial conditions.

4.3. Effect of Threshold on Dynamics

In the previous experiment, the threshold h for the

accumulation of the internal state, whose average is
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Fig. 2: Initial conditions (e) ~ (h).



Table: 1: Retrieval frequencies of stored and spurious patterns during 5000 iterations(h = 750)

Initial condition(e)

Initial condition(f)

Retrieval | equilibrium Retrieval | equilibrium
Stored (a) 176 141 Stored (a) 113 94
Stored (b) 1601 1314 Stored (b) 1342 1132
Stored (c) 888 750 Stored (c) 952 782
Stored (d) 176 145 Stored (d) 331 272
Total 2841 2350 Total 2738 2280
Suprious 1118 Suprious 1249
Initial condition(g) Initial condition(h)
Retrieval | equilibrium Retrieval | equilibrium
Stored (a) 370 301 Stored (a) 85 69
Stored (b) 1276 1046 Stored (b) 1032 854
Stored (c) 883 701 Stored (c) 641 519
Stored (d) 223 188 Stored (d) 1048 839
Total 2752 2236 Total 2806 2281
Suprious 1201 Suprious 1042
about 25 in the stored patterns, was fixed to 750.
Next, effects of the threshold A on the dynamics
is investigated. Figures 4(a) and 4(b) show effects
of the threshold h on both the retrieval frequency voo
and the transition frequency to other stored pattern,
respectively. The former is roughly proportional to = so | —[\"\H\—\—w

h, while the latter is inversely proportional to A.
The reason is that, when the threshold is large, the
interval in which a neuron don’t reverse is long and
the number of neurons, whose output are reversed at

once is small.

4.4. Distinction between Stored and Spurious
Patterns

From Sec.4.2, the equilibrium states correspond to
both the stored and the spurious patterns. Figure 5
shows the intervals in which the network state stays
in the same patterns, that is the stored patterns and
the spurious patterns. From this result, the stored

and the spurious patterns can be distinguished by '

using h = 1500.
includes the following two states. First, the network

In this simulation, the interval

state stays in the equilibrium state. Second, even
though it escapes from the above state, it quickly
returns to the same state.
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Fig. 3: Hamming distances between the output pattern and

the stored pattern (h = 750).



Table: 2: Transition frequencies among stored patterns and their reversed patterns during 5000 iterations(h = 750)

Initial condition(e) Initial condition(f)
Stored Reverse Stored Reverse
(OENORNORICOENOREONNORNECO) ORRORNORENONEORNORNORNC)
Sto(a) | 36 1 T 0 0 1 o Sto(a) | 36 1 0 0] o0 1 2 0
Sto.(b) 0 | 661 4 1 0 4 4| 2 Sto.(b) 1| 406 3 3| 4 4 6 1
Sto.(c) 1 4 | 364 1 1| n 0 1 Sto.(c) 0 2 | 330 o| o] 10 3 1
Sto.(d) 0 0 0| 66 1 2 o| o Sto.(d) 0 0 1 23] o 1 3| o
Rev.(a) 0 0 0 0 100 1 1 0 Rev.(a) 0 0 0 0 47 7 0 0
Rev.(b) | 2 1| 10 1 0| 613 9| 1 Rev.(b) | 2 7| 10 1| 2|67 3| o
Rev(c) | © 8 4| o 0 1|ss2]| 2 Rev.(c) o| 1 2 o| 1 2 |49 1
Rev.(d) | © 2 of o 0 4 0| 70 Rev.(d) 1 0 0 1| o 1 0| 61
Initial conditon(g) Initial condition(h)
~Stored Reverse Stored Reverse
(@) [ (b)) | () J(d) ] (@] ®)] (c)]d) ONEORNORNOREORRORNONNC)
Sto.(a) 161 1 0 1 1 1 3 2 Sto.(a) 26 0 0 0 0 1 1 0
Sto.(b) 5 | 565 0 2 2 3 6| o Sto.(b) 1| 386 1 1 1 3 1 1
Sto.(c) 2 2 | 234 1 0 5 1 1 Sto.(c) 1 2 | 328 2| o 6 1 0
Sto.(d) o| 4 0| o7 1 1 1] o Sto.(d) 0 1l s3lue | o 1 3| o
Rev.(a) 0 0 3 0] 125 2 0 1 Rev.(a) 0 1 0 0] 39 1 0 0
Rev.(b) 2 3 6| 2 0 | 447 1 1 Rev.(b) [ © 1 6| 3| o443 3 3
Rev.(c) 0 7 0 0 2 1] 444 | 2 Rev.(c) 0 3 0 1 1 3| 170 1
Rev.(d) 0 2 2 1 0 2 0| 77 Rev.(d) | © 1 2 ol o 1 0 | 708
Table: 3: Correlations among stored patterns(a) ~ (d)
Sto.(a) | Sto.(b) | Sto.(c) | Sto.(d)
Stored (a) | 1.00 | 0.08 | 0.0 | 0.06
Stored (b) | 0.08 | 1.00 | -0.02 | 0.06
Stored (c) | 0.10 | -0.02 | 1.00 | 0.08
Stored (d) [ 0.06 0.06 0.08 1.00
4000 220 v . -+
3500
> : >
% 3000 %
3 3
E g
© 0 S
@ 1500 -
& 1000 §
500
0 n L " " " 0 " " " 2
0 500 1000 15hOO 2000 2500 3000 500 1000 1500 2000 2500 3000
h
(2)Retrieval frequency (b)Transition frequency

Fig. 4: Effects of threshold h on both retrieval and transition frequencies.
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5. Conclusions

A model of the dynamic associative memory has been
proposed in this paper. A new model of neuron
changes its state after staying in the same pattern
for a while. The network state can travel around the
stored patterns and can stay at them during some pe-
riod. The network state transition among the stored
patterns has no relation to the correlation among
them. When the threshold for the accumulation of
the internal state is large, the retrieval frequency is
large while the transition frequency is small. The
stored and spurious patterns can be distinguished
in some cases based on the intervals, in which the

network state stays in the same patterns.
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