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ABSTRACT

A Hierarchical Mixtures of Experts (HME) model has been applied to several classes of
problems, and its usefulness has been shown. However, defining an adequate structure in advance
is required and the resulting performance depends on the structure. To overcome this problem,
a constructive learning algorithm for an HME is proposed; it includes an initialization method,
a training method and an extension method. In our experiments, which used parity problems
and a function approximation problem, the proposed algorithm worked much better than the
conventional method.

1. Introduction

A Hierarchical Mixtures of Experts (HME) model has been applied to several classes of problems, and its
usefulness has been shown [5, 6, 10]. However, defining an adequate structure in advance is required and
the resulting performance depends on the structure.

To overcome this problem, we can consider two approaches: using pruning algorithms [8] or constructive
algorithms [7]. Pruning algorithms will play an important role in improving generalization performance of
networks, particularly for problems that involve many irrelevant input variables. However, a large amount
of computation time must be spent to train larger than desirable initial networks; moreover, we generally
do not know what size is suitable for an initial network. Compared to pruning algorithms, we believe that
constructive algorithms are more suitable for the present problem. Although several algorithms have been
proposed for feed-forward networks or classification trees (e.g.[3, 1]), little work has been done in an HME
context.

This paper proposes a constructive learning algorithm for HME. Section 2 explains the proposed algo-
rithm, which includes an initialization method, a training method and an extension method. In Section 3 the
proposed method is evaluated based on experiments that used parity problems and a function approximation
problem.

2. Constructive Algorithm

2.1. Basic definition

Let {(x1, y1), · · · , (xm, ym)} be a set of examples, where xt denotes an n-dimensional input vector and yt a
target value corresponding to xt. An HME consists of several Expert Networks (ENs) and Gating Networks
(GNs) expressed as a tree where leaves are ENs and the other nodes are GNs. In this paper, we only
consider binary HMEs, because an arbitrary tree can be reduced to a functionally equivalent binary tree.
Hereafter, the weight vector of ENi is expressed by wi = (wi0, · · · , win)

T , and its output value is defined
by ui(xt, yt;wi) = exp

(− 1
2 (yt −wT

i xt)
2
)
, where aT means the transposed vector of a. The weight vector of

GNi is expressed by vi = (vi0, · · · , vin)T , and since the soft-max function reduces to the sigmoidal function
in a binary HME, the output value of GNi can be defined by gi(xt;vi) =

(
1 + exp(−vT

i xt)
)−1

. Note that
wi0 and vi0 mean bias terms and xt0 is always set to 1. The simplest HME consisting of EN1, EN2, and



GN1 is expressed as (GN1, EN1, EN2), and its output value is defined by g1u1 + (1 − g1)u2. Then, an
arbitrary HME can be expressed by a corresponding list structure such as (GN1, EN1, (GN2, EN2, EN3)),
and its output value can be recursively defined by g1u1 + (1− g1)(g2u2 + (1− g2)u3).

2.2. Relation matrix and objective function

In order to describe the structure of variously extended HMEs, we introduce a matrix R = (rij); here, rij
represents a relation between ENi and GNj . An element only takes one of three values {1,−1, 0}: rij = 1
indicates that the product term gjui appears in the HME; rij = −1 indicates that the term (1 − gj)ui

appears; rij = 0 indicates that ENi and GNj have nothing to do with each other. For example, the relation
matrix for (GN1, EN1, EN2) is R

(2) = (1,−1)T , and the relation matrix for (GN1, EN1, (GN2, EN2,
EN3)) is R

(3) = ((1,−1,−1)T , (0, 1,−1)T ).
Hereafter, for the HME(c) whose number of ENs is c, a vector consisting of all weight vectors is simply

expressed as Φ(c) = (wT
1 , · · · ,wT

c ,v
T
1 , · · · ,vT

c−1)
T , where N (c) = (2c − 1)(n + 1) is the dimension of Φ(c).

Then, by referring to the relation matrix R(c), the product term with respect to ENi can be expressed as

hi(xt, yt;Φ
(c)) = ui(xt, yt;wi)×

∏
{j|r(c)

ij
=1}
gj(xt;vj)×

∏
{j|r(c)

ij
=−1}
(1− gj(xt;vj)). (1)

Now, the objective function of the HME(c) can be defined by the logarithmic likelihood

L(Φ(c)) =
m∑
t=1

log

(
c∑

i=1

hi(xt, yt;Φ
(c))

)
. (2)

Thus, the maximum likelihood estimation problem is finding the Φ(c) that maximizes L(Φ(c)).

2.3. Main algorithm

The basic idea of the proposed method is that after training the HME(c), the ENb with the largest error
is selected among the ENi, i = 1, · · · , c; then, by replacing ENb with (GNc, ENb, ENc+1), an extended

HME(c+1) is constructed. This is based on the “divide-and-conquer” approach employed by existing methods
such as CART [1]. The main algorithm is described as follows:

step 1: Initialize Φ(2) (w1, w2 and v1), and set R
(2) = (1,−1)T , c = 2;

step 2: Train all weights included in the HME(c);
step 3: Terminate the iteration if a stopping criterion is satisfied;
step 4: Select an ENb to be extended, calculate R

(c+1), and initialize wc+1 and vc;
step 5: Set c = c+ 1, and return to Step 2;

2.4. Initialization method (Step 1)

In our preliminary experiments using parity problems, when the initial values for Φ(2) were set to random
values near 0, most trials converged to Φ̂(2) (w1 = w2 = ŵ, v1 = 0), where ŵ is the solution of a regression
problem: find ŵ that minimizes

∑m
t=1(yt −wTxt)

2. Moreover, even though a small vector ∆Φ was added

to Φ̂(2), it usually held that L(Φ̂+∆Φ) < L(Φ̂), and in most trials Φ(2) came back to the same point Φ̂(2).

Here, we analyze how this occurs by investigating the Hessian matrix ∇2L(Φ
(2)
0 ). In general, we can

assume that
∑m

t=1 xtx
T
t is positive definite. Also note that

∑m
t=1(yt − ŵTxt)xt = 0. When Φ̂(2) is set as

w1 = w2 = ŵ and v1 = 0, we can see that ∇L(Φ̂(2)) = 0, because

∇wiL(Φ̂
(2)) =

m∑
t=1

hi(xt, yt; Φ̂
(2))(yt −wT

i xt)∑2
k=1 hk(xt, yt; Φ̂(2))

xt =
1

2

m∑
t=1

(yt − ŵTxt)xt = 0,

∇v1L(Φ̂
(2)) =

m∑
t=1

h1(xt, yt; Φ̂
(2))(1− g1(xt;v1))− h2(xt, yt; Φ̂

(2))g1(xt;v1)∑2
k=1 hk(xt, yt; Φ̂(2))

xt = 0,



where h1(xt, yt; Φ̂
(2)) = h2(xt, yt; Φ̂

(2)) and g1(xt;v1) = 0.5 for Φ̂(2). On the other hand, by calculating
second-order derivatives, we can see that ∇2L(Φ(2)) usually becomes semi-negative definite, when the target
values are normalized in the range of [0, 1]. Thus, Φ(2) is a weak local maximum.

Fortunately, we can easily escape from this weak local maximum by using ∆Φ such that ∆w1 = ∆w2 = 0
and ∆v1 is set to a random vector. Here, in order to randomly scatter the value of g1(xt;v1) around 0.5, each
value of {v11, · · · , v1n} is set to a random value in the range of [−1, 1], and v10 is set to −

∑n
i=1 v1i (

∑m
t=1 xti).

That is, v1 becomes a random hyper-plane that includes the gravity of input vectors; training examples
will be divided into two classes each of which includes much the same number of examples. Then, L(Φ̂) =
L(Φ̂ +∆Φ), ∇w1L(Φ̂ +∆Φ) =

∑m
t=1 g1(xt;v1)(y − ŵTxt)xt �= 0, and the value of the objective function

can be steadily increased in the next iteration.

2.5. Training method (Step 2)

2.5.1. Second-order learning algorithm

The conventional learning algorithm for an HME [6, 10] is based on the Expectation Maximization (EM)
algorithm [2]. However, since this algorithm requires Iterative Reweighted Least Squares (IRLS) in the
M-step, numerical instabilities are likely [10]. Since our preliminary experiments also suffered from this
problem, we employed a second-order learning algorithm [9] based on a quasi-Newton method [4].

In this algorithm, the following are repeated until convergence: after calculating the gradient vector, the
search direction (∆Φ) is calculated on the basis of the partial BFGS (Broydon-Fletcher-Goldfarb-Shanno)
update; the optimal step-length λ that maximizes L(Φ + λ∆Φ) is calculated as the maximal point of a
second-order approximation. Below, we show that the optimal step-length can be efficiently calculated for
the HME(c) networks defined in Section 2.2.

Since λ is the only variable in L(·), we can express L(Φ+λ∆Φ) simply as ζ(λ); then the maximal point
of a second-order approximation is given when λ = −ζ′(0)/ζ′′(0). By differentiating ζ(λ) and substituting
0 for λ, we obtain

ζ′(0) =
m∑
t=1

∑c
i=1 h

′
i(xt, yt;Φ)∑c

i=1 hi(xt, yt;Φ)
, ζ′′(0) =

m∑
t=1

{
−
(∑c

i=1 h
′
i(xt, yt;Φ)∑c

i=1 hi(xt, yt;Φ)

)2

+

∑c
i=1 h

′′
i (xt, yt;Φ)∑c

i=1 hi(xt, yt;Φ)

}
.

Now that the derivative of hi(xt, yt;Φ) is defined as
d
dλhi(xt, yt;Φ+ λ∆Φ)|λ=0, we obtain

h′
i(xt, yt;Φ) = hi(xt, yt;Φ)αi, h′′

i (xt, yt;Φ) = h′
i(xt, yt;Φ)αi + hi(xt, yt;Φ)βi.

where

αi = (y −wT
i xt)∆w

T
i x+

∑
{j|rij=1}

∆vT
j x−

∑
{j|rij∈{1,−1}}

gj(xt;vj)∆v
T
j x

βi = −(∆wT
i x)

2 −
∑

{j|rij∈{1,−1}}
gi(xt;vj)(1− gj(xt;vj))(∆v

T
j x)

2.

Here, recall that ∆wi and ∆vi mean the search directions with respect to wi and vi, respectively.

2.5.2.Weight reduction

As construction of the HME proceeds, the magnitude of weight vectors in gating networks generally becomes
very large; since these output values approach 0 or 1, their derivatives almost become 0. Since these weights
can hardly be modified, the magnitude of such weights should be reduced; this reduction is equivalent
to decreasing the gain (or slope) of the sigmoid nonlinearity. In our preliminary experiments, when the
magnitude of all gating weights was simultaneously reduced, a small reduction did not have much effect,
but a large reduction was likely to destroy what the HME had learned so far. Since it is difficult to know an
adequate reduction in advance, we employed a method where the weight reduction was performed separately.

After training the HME(c), the HME(c) is trained again by v
(new)
k = γv

(old)
k . This process is iterated from

k = 1 to k = c− 1. In our experiments, γ was set to 0.1.



Table: 1: Constructive HME for parity problems

parity bits 4 5 6 7 8
converged trials (out of 100) 100 100 100 100 99
average number of ENs 3.07 3.85 4.01 4.20 5.23

standard deviation number of ENs 0.26 0.43 0.10 0.47 0.75
minimal number of ENs 3 3 4 4 5

2.6. Extension method (Step 4)

In order to extend the HME(c), the ENi that maximizes the following formula is selected:

Err(ENi) =
m∑
t=1

(yt −wT
i xt)

2 ×
∏

{j|r(c)
ij

=1}
gj(xt;vj)×

∏
{j|r(c)

ij
=−1}
(1− gj(xt;vj)). (3)

In this formula, the first squared value represents the error of each example, and the remaining product
term represents the probability that the example is assigned to ENi; thus, the total summation can be
regarded as the expected error of ENi. The ENb with the largest error is selected.

The values of R(c+1) are determined as follows. First, since ENc+1 is located under the former location
of ENb, for 1 ≤ j ≤ c− 1, each element rc+1,j is set equal to rbj . Then, since GNc takes effect only on ENb

and ENc+1, rbc = 1, rc+1,c = −1, and for i �= b, each element ric is set equal to 0.
The values of wc+1 and vc are initialized using the weight initialization method described above; namely,

wc+1 = wb, each value of {vc1, · · · , vcn} is set to a random value in the range of [−1, 1], and vc0 is set to

vc0 = −
n∑

i=1

vci


 m∑

t=1

xti ×
∏

{j|r(c)

bj
=1}
gj(xt;vj)×

∏
{j|r(c)

bj
=−1}
(1− gj(xt;vj))


 .

Here, vc becomes a random hyper-plane that includes the gravity of weighted input vectors with respect to
ENb.

3. Evaluation by experiments

3.1. Parity problems

By using 4- to 8-bit parity problems, the proposed method was evaluated. In this experiment, all possible
input patterns were used as training examples, the target values were set to 0 or 1, and the maximum
number of ENs was set to 8. The iteration of Step 2 was terminated when ‖∇L(Φ(c))‖/N (c) < 10−8,
while the iteration of the main loop was terminated when each example satisfied

∑c
i=1 Err(ENi) < 0.1.

Table 1 shows the learning results; trials were performed 100 times for each number of bits. The minimum
number of ENs to solve an n-bit parity problem is given by 
n/2�+1. Table 1 shows that most trials of the
proposed method converged by using the minimum number of ENs. The conventional method [10] required
many more ENs to solve these parity problems. For example, in the case of the 8-bit parity problem, it
required 64 ENs in order to achieve a success rate of 67%.

3.2. Function approximation problem

Consider a piecewise linear function that consists of several lines whose slope is −4 or 4; these lines are
alternately connected to each other from (x, y) = (0, 2) to (4, 2), x is an input value and y is a target output
value. In this experiment, the value of x was randomly generated in the range of [0, 4], and the corresponding
value of y was calculated from x, where each value of y was corrupted by adding noise generated according
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Fig. 1: HMEs for function approximation

to a normal distribution with a mean of 0 and a variance of 0.1. The total number of training examples was
set to 100, and the same stopping criteria as in the previous experiment was employed. In all 10 trials, our
constructive algorithm found desirable results. An example of the learning results is shown in Figure 1(a).
Its structure is expressed by

(GN1, EN1, (GN2, (GN3, (GN4, (GN5, EN2, EN6), EN5), (GN6, EN4, (GN7, EN7, EN8)), EN3))).

On the other hand, when a 3-level balanced binary tree expressed by

(GN1, (GN2, (GN4, EN1, EN2), (GN5, EN3, EN4)), (GN3, (GN6, EN5, EN6), (GN7, EN7, EN8))),

was given in advance, we were not able to obtain a reasonable result during 10 trials. Figure 1(b) shows
an example of the learning results. In order to obtain a desirable result using the 3-level balanced binary
tree, the decision boundary of GN1 must be x = 2. Actually, in the case of Figure 1(b), the decision
boundary of GN1 was x ≈ 1.5; thus, redundant ENs appeared when x < 1.5. Conversely, more ENs
were required when x > 1.5. When the structure of the HME is fixed in advance, learning will be more
difficult because the decision boundaries of several GNs are predetermined. Figure 2 shows the learning
process of our constructive algorithm; although the decision boundary of GN1 was x ≈ 0.5, our constructive
algorithm was able to obtain a desirable result because new GNs with adequate boundaries were successively
generated.

4. Conclusion

We have proposed a constructive learning algorithm for HMEs that includes an initialization method, a
training method and an extension method. In experiments using parity problems and a function approx-
imation problem, the proposed algorithm worked better than the conventional algorithm in respect that
our algorithm obtained the desirable results with the minimum size of HME. In the future, we plan to do
further comparisons using a wider variety of problems.
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