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Abstract 

This paper presents two novel (GIST and GEST) networks, which combine unsupervised feature- 

extraction and Hebbian learning, for tracking emergent correlations in the evolution of spatiotempo- 

ral distributions. The networks were successfully tested on the challenging Data Mapping problem, 

using an execution driven simulation of their implementation in hardware. 

I Introduction 
Several important and difficult problems require tracking emergent spatio-temporal correlations 

among useful features of time-varying data distributions, where it may not be possible to obtain a 

priori analytical characterization of the processes generating the data. Data Mapping is one such 

problem where disjoint sets of data must be mapped to processors in a multiprocessor system to 

minimize off-processor data accesses. This requires (a) modeling emergent distribution of data 

references and (b) tracking correlations in the distribution of references. We extend Fritzke's 

unsupervised Growing Cell Structures (GCS) network [l] for these purposes to produce two new 

networks models: the GCS Instantaneous Spatio-Temporal (GIST) network and the GCS Epochal 

Spatio-Temporal (GEST) network, together referred to as the GST networks. We demonstrate 

their success in learning the spatiotemporal dynamics on the challenging Data Mapping problem. 

2 GST Spatial Mappiing Dynamics 
The GST network is a 2-dimensional network of neurons forming planar maps, whose topology 

always consist of triangles. Figure :l illustrates the network and highlights the various connectivities 

among neurons. The lateral weight W;j, connecting neuron j to neuron i, records emergent temporal 

correlations in their activations. A Signal Receptivity Meter (SRM) records the number of hits to  

each neuron over an epoch and is an enhancement over the Signal Frequency Counter (SFC) of 

the GCS network. 

The GST spatial dynamics positlion neurons at cluster centers in the input Signal Vector Space 

(SVS) during both the training and the production modes of operation. The network uses training 
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data to approximately map time-varying distributions in the offline training mode. 'The map is 

refined online using actual iiicoming data during the production mode. Network perfolrmance pa- 

rameters, evaluated at epochal checkpoints, are used to decide if the network needs offline retraining. 

Both modes involve: 

1. Input vector quantization and subsequent input weight (W' in Figure 1) adamptations as 

non- in Kohonen's SOM [a] with the difference that the adaptation rates are fixed (i.e. 

stochastic). 

2. The SRMs of the winner neuron and all its neighbors a:re adapted as opposed to the GCS 

dynamics which adapt the SFC of only the winner neuron. 

The GST architectural dynamics define the structural adaptations in the network which only 

occur under conditions wherein the network-wide average quantization error changes less than 10% 

across successive epochs. Architectural adaptations under such conditions of positional equilibrium 

involve: 

1. Addition of a neuron, its a topological neighbor of the neuron with the highest avlerage quan- 

tization error, to increase map resolution and decrease network-wide average quantization 

error. 

2. Deletion of one superflous neuron with the least relativle SRM value, .;/z(~j:), (and any 

neighbors not part of at least one topological triangle [1:I), to coarsen resolution in areas of 

low input probability. 

j 

3 GST Temporal Mapping Dynamics 
The production mode temporal dynamics of the GIST and GEST networks involve: (a) different 

lateral weight update schemes but (b) the same computations of temporal correlations in neuronal 

activations. The computed temporal correlations are used to obtain the total probability of activa- 

tion, Pi, of neuron i. Pi is termed the Signal Utility of inputs m.apped to this neuron anid measures 

the usefulness of this data-cluster in the temporal evolution of the SVS distribution. The total 

probability, P; is given by: 

Pi = C(P(i1j)  x @ j )  
j 

P(+) is the conditional probability of correlations in the evolution of cluster i with respect to  the 

evolution of cluster j and is given by: P(;lj) = wij/xwkj. The a priori probability of inputs 

quantized by neuron j is: $j = 7 j / x T k r  where rj is the SRM of neuron j .  
k 

k 
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The GIST lateral weight, W;j, records the frequency with which first neuron j and then neuron 

i are activated (i.e. first-order correlations). These weights are used in computing the P(iij) values 

which yield the various P;. 

The GEST lateral weights record higher-order correlations using an adaptation of the Drive 

Reinforcement Theory (DRT) learning equation [3]. The correlation interval, A = X T ~ /  I 7 - crT I 7  
represents the number of presentations after which weight updates are performed. r is the network- 

wide average SRM value and oT is the standard deviation. The lateral weight update rule at the 

end of the interval [t - A, t] is: 

k 

4 GST Application: Problem Formulation 
The allocation of computations on data to processors, in data mapping, requires data-dependency 

information. The problem of modeling temporally emergent dependencies is solved by determining 

temporally emergent probabilities of correlations in processor references to  data elements. 

The test case involves mapping data in an ecological simulation, “WaTor,” of sharks and minnows 

in a toroidal ocean [4]. WaTor exhibits rapidly varying localities among slowly varying dataset sizes. 

The simulation parameters include a 200 x 75 ocean grid with 5000 sharks and 1563 minnows. The 

simulation runs for 10 iterations using 4,8,  16 and 24 processors. Each application processor’s task 

partition consists of minnows distributed in the toroidal ocean mesh. Remote references would be 

minimized if each processor’s partition consists of neighboring minnows as WaTor computations 

require near-neighbor interactions. Hence, execution locality is measured by the average Euclidean 

distance (in the ocean) seperating minnows within each processor’s task partition. 

5 The Solution: Simulation Model and Application 
Memory is abstracted as consisting of indivisible and contiguous Atomic Memory Units (AMUs). 

Among descriptors associated with each AMU, the A M U  UtiEity records the probability of local 

references to  the AMU. Ongoing local computation induces changes in AMU descriptors producing 

non-stationary SVS distributions at  each processor. For example, the AMU Utility varies due to  

increases (decreases) in the frequency of references to various AMUs as they are inducted (expelled) 

from the local working-set. 

A GST (either GIST or GEST) network is used at each processor to capture spatial maps of 

AMU distributions in the local SVS from the processor reference streams. The Signal Utility of 

the neuron quantizing an AMU is assigned its A M U  Utility. Offline training sets for networks are 

1654 



-ties Execution Speed U 

Table 1: GST Simulation Timing Parameters. n in the TEM timing refers to  the network size. 

derived from past processor references and the current contents of local memory. In this context, 

pj provides an a priori frequency based measure of the probability that AMU-cluster j contains 

AMUs of the current local working set. Also, P(ilj) can be viewed as the conditional probability 

that references to  AMUs in cluster i are correlated with references to  AMUs in cluster j. Thus, P; 
is the probability of the presence of references belonging to clust8er i in the reference stream. 

The simulations assume an  on-chip GST coprocessor unit per processor in the multiprocessor 

system. The execution driven simulation, implemented on the KSRl [5 ] ,  simulates concurrent 

execution of the GST coprocessor and the WaTor application,. The essential timings for GST 

activities are given in Table 1, and have been derived from simulations and results in [6., 5, 71. 

6 Simulation Resullt s 
The experimental results show that the GST networks successfully track the varying locality 

characteristics online and prolduce increasingly better execution locality. 

0 GST Sampling Efficiency: References from the co-execu ting application processor are dis- 

carded during training aind so the sampling efficiency, [No. of Refs. Processed]/[Totad No. of Refs.], 

evaluates the online tracking ability. The sampling efficiency ranges between 90% to  loo%, 
indicating short offline training phases as in Figure 2 for the GEST network. The GIST 
sampling efficiency (not shown due to space limitations) was higher in comparison with the 

GEST network (primarily because TEM > TIM usually), but suffered more high-frequency 

variations. 

0 WaTor Application Performance: The execution timings in Table 2 show scalable WaTor 

performance and indicaie that Minnow updates were responsible for 75% to 90% of the 

total execution time. The GIST locality measure plotted in Figure 3 shows in.creasingly 

better execution locality wherein the inter-minnow distances decrease from an initial high 

of 75 to level off at about 40. Hence, processor partitions achieved increasing contiguity 
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Run Size 
4 Processors 
8 Processors , 1 16 Processors I 8.473986 sec I 6.6604046 sec I 1.409917 sec I 1.273765 sec m 

Minnow Loop Shark Loop 
GIST Run GEST Run GIST Run GEST Run 

23.695952 sec 21.768551 sec 4.679540 sec 3.528160 sec 
13.460341 sec 13.248189 sec 2.312860 sec 2.040482 sec 

I I I I 

24 Processors I 6.034877 sec I 4.6708921 sec I 1.140522 sec I 1.208808 sec 

Table 2: WaTor Execution Timings (using GIST and GEST networks) 

and compactness in  spite of the increasing dataset sizes. This is also evident in the GEST 

network runs plotted in Figure 4 which shows an almost monotonic decrease in the inter-task 

distances. 

7 Conclusions 
The simulation results (in Section 6) show that both the GIST and GEST networks converge 

to  stable maps of emergent non-stationary distributions without undue loss in their sampling effi- 

ciencies. Higher-order correlations are useful for smoothing high-frequency variations, and extract 

long-term low-frequency correlations in neuronal activations. Hence, the GEST network is better 

a t  tracking the long-range evolution of non-stationary distributions as seen in the almost monotonic 

improvements in locality in the GEST network runs (Figure 4). However, GEST network sampling 

efficiency was lower in comparison with that of the the GIST network. 
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