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Abstract 

In this work t ,  we devise a self-organizing network 
to solve both the unknown system and unknown input 
in blind deconvolution of blurred images. We utilize 
a criterion function which has a similar form as the 
Kullback-Leibler cross information formula t o  a d a p t  
the network's weights to approach the unknown system 
function. This adaptation gradually reduces the crite- 
rion value which is a distance measure between the  sys- 
tem output and  the output of the a d a p t e d  system with 
a reconstructed input signal. The weight matrices of 
the neurons in the network will be shifted versions of 
the system function and will be aligned in the network 
according t o  their shifts during convergence. This i s  
because that the convolution operation copes with this 
network scheme and the hidden topology of the shifted 
system functions can be aligned similarly in a 2 0  plane. 

Keywords: self-organizing network, blind deconvo- 
lution, blurred image, Kullback-Leibler information 
criterion. 

1 Introduction 

Blind deconvolution [l] is the problem of deter- 
mining the components of a convolution, the input sig- 
nal and the time-invariant system function, from their 
contaminated output. The  operations involved in such 
a deconvolution process consist of the system identifi- 
cation and the input reconstruction. Because both the 
system function and its input are unknown, the prob- 
lem is difficult t o  be solved based on the system output 
only. Many methods are devised to  find these two com- 
ponents by incorporating properly specified knowledge 
(or constraints) [ 2 ] .  
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The usages of various constraints for insufficient 
information in the deconvolution process also limit 
the applications of these methods. Parametric meth- 
ods [3] [4] [5] model the input signal as an autoregres- 
sive moving average process by imposing some assump- 
tions. The deconvolution involves the parameter esti- 
mation under these specific assumptions. There are 
several methods for blind deconvolution with few con- 
straints. The nonparametric methods [B] 171 [8] [9] do 
not assume any model for system function or input sig- 
nal. Non-negativity and finite support are the fewest 
deterministic constraints. 

We propose a self-organizing approach t o  iden- 
tify the system function and t o  reconstruct input signal 
for the blind deconvolution problem. We employ a 2D 
self-organizing network [lo] with a criterion t o  solve 
the problem. This criterion is devised t o  minimize 
the distance between two function outputs based on 
the Kullback-Leibler [ll] cross information expression. 
This expression fits and benefits much to  our approach 
due to  its many well-behaved analytic properties. By 
minimizing the distance function and evolving the net- 
work, we can solve both the input signal and the system 
function. In addition, the solutions are robust t o  the 
noise in the system output. 

In the next section, the blind deconvolution 
problem is briefly reviewed. The self-organizing tech- 
nique for blind deconvolution is discussed. The  method 
for system identification and input reconstruction is de- 
rived in Section 2. Section 4 contains the simulation 
results carried out t o  display the performance of this 
approach. 

2 The Self-organizing Network for 
Blind Deconvolution 

In discrete-time signal processing, the operation 
of convolution is defined by 

d m ,  .) = qm, * f (m,  
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where g(m,n),  f(m,n), and h(m,n)  are the system 
output, system input, and system function at  the pixel 
point (m, n ) ,  respectively. Both f (m,  n)  and h(m,  n )  
are defined in proper support regions F and H ,  which 
are usually rectangular regions in images. The problem 
to identify the system function h(m,n)  and t o  recon- 
struct the input f ( m , n )  using the only information, 
the system output g(m,n), is known as the blind de- 
convolution. In practical applications, the noise may 
appear in the output g(m, n)  of model (1). 

In most image cases, the input f (m. ,n) ,  for 
(m ,n )  E F ,  is finite and nonnegative, that  is, 0 5 
f ( m , n )  < 00. For each (m ,n )  E H ,  the value of 
system function h(m,  n )  is also assumed nonnegative, 
that  is, h(m,n)  2 0. We require that  the convolution 
in (1) does not change the energy of the input sig- 
nal, the values of system function h(m, n)  must satisfy 
C(m,n)EH h(m,  n)  = 1. We also scale the values o f f  in 
F ,  by the normalization C(,,n,,r;:f(m,n) = 1, such 
that f can be processed as a 2D distribution function 
in our approach. 

In [la], the blind deconvolution problem is for- 
mulated as a self-organizing learning process. Since 
this deconvolution is performed in absence of a train- 
ing (or teaching) sequence, the problem is solved by 
achieving a matching in the learning process. We also 
design a matching (criterion or energy) function and 
an unsupervised learning algorithm t o  evolve a self- 
organization network with different contents. 

We develop a new self-organizing network for the 
blind deconvolution problem. “The Magic TV” [lo] ap- 
plication inspires us that  the shifted blur (or system) 
functions can be aligned in a 2D rectangular plane ac- 
cording t o  their shifts when the input image is situ- 
ated in a similar 2D rectangular plane and the optical 
aperture is in between the input image and the output 
image. A point source in the input plane will gen- 
erate a shifted system function on the output image 
plane according to  the shift of this point source from 
the center of the plane (as shown in Figure 3 ) .  This 
network scheme copes with the convolution operation 
where a shifted version of blur function in the output 
plane is generated from the shifted point source in the 
input plane. So we devise a 2D self-organizing network 
where neurons are regularly arranged in a 2D square 
plane t o  learn the system function. 

This 2D network employs NI x N2 neurons. Each 
neuron ( i , j ) ,  ( i , j )  E N ,  i = 1 .  . . N I ,  j = 1 .  ..Nz, has 
its own synapse matrix [ w , ~  (m ,  n ) ] ,  which has the same 

Figure I .  In a real imaging system, the point 
source generates a shifted version of blur 
function in the output plane, which is equiva- 
lent to a 2D convolution operation. 

dimension as the size of F .  The value wij(m+i’, n+j’), 
where (8, j ’ )  is the pixel position of the ( i ,  j)- th neuron 
on the image, corresponds t o  the component h(m, n)  on 
this support. In our case, we set N I  = 32, N2 = 32, 
i’ = 8 x ( i  - 1) + 5, and j ’  = 8 x (j - 1) + 5 for a 
256 x 256 image. This means an image is partitioned 
into regular squares with the same size where these 
squares may overlap. Each neuron represents a square 
region, In our case for 256 x 256 image, each square 
has size 8 x 8 pixels. Each neuron is right on the cen- 
ter of the square, (i ’ , j ’ ) .  During the self-organization, 
the synapse matrices in the network are adapted as 
various candidates t o  approximate the system func- 
tion h(m,n).  The one candidate which fits the net- 
work scheme will be further evolved. The synapses of 
the best-matching neuron (c1, cz) will be a best esti- 
mate of the shifted version of h.  After the estimated 
system function, A(m, n)  = wclc2(m + c’1, n + c‘z), is 
determined, the reconstructed input, f ( m ,  n) ,  will be 
determined optimally with respect t o  the minimization 
of the utilized criterion function. Note that  when the 
network converges, all center excitation parts of matrix 
wij will have the same shape and represent the same 
system function. 

For system identification, the criterion function 
for matching is defined to  measure the distance be- 
tween the normalized system output g(m,n) and the 
output of the learned system function wij(m+i‘, n+j’) 
from the estimated f(m,n). The  criterion ei j  for the 
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neuron ( i ,  j )  is defined by eij s e(wij ,  f), where 

(2) 

+ i’,n + j ’ )  = 1, 
subject t o  0 5 w i j ( m  + i‘,n + j ’ )  5 1, 0 5 

and C(n,n)EF f ( m ,  n)  = 1. Note that in equation (2) 
wij(m+i’, n+j’) is equal t o  h(m, n).  All values outside 
H are set to  zeros. In our later experiments, we will 
preset H t o  a 11 x 11 support and values of w;j outside 
H t o  zeros. The criterion function e in (2) is defined 
following the expression of Kullback-Leibler informa- 
tion criterion [ll]. It provides a quantitative measure 
of how closely the shape of wij(m + i’, n + j ’ )  * f ( m ,  n )  
matches that  of g(m, n) ,  for (m, n )  E F .  

The best-matching estimate of the system func- 
tion, w,,,.. , is determined by minimizing the weighted 
criterion functions centered at the neuron (c1, “2)  

f (m ,n>  I 1, C ( m + i f , n + j f ) E H  w . . ( m  23 

E,,,, = Z ( c , , c 2 ) , ( i , j )  ‘ e i j ,  (3) 

where ‘?-t(cl,,,)>(i,j) is the neighborhood function which 
weights the interaction of synapse matrices w , , ,~  and 
wij during self-organization. The function E in (3) is 
defined for each neuron (c l ,  c2) (as suggested by [13]). 

For input reconstruction, the optimal estimate 
of the input, f ( m , n ) ,  (m,n)  E F is then determined 
by further minimizing the criterion E,,,, with respect 
t o  the input f .  

3 Optimal Solutions of h and f 

To derive the optimal solutions of h and f ,  we 
apply an iterative technique t o  minimize the criterion 
function E,,,, subject t o  the basic constraints on h 
and f .  In each iteration during self-organization, there 
are four steps, consisting of finding the best-matching 
candidate h(m, n )  = w,,,,(m + c’l, n + c ‘ ~ )  for system 
identification, adapting all the synapses with normal- 
ization wij , determining the optimal estimate of system 
input f, and adjusting the learning parameters. 

We may use an alternative criterion ( 2 )  instead 
of using (3) to  find the best-matching neuron (see, for 
example, [14]). The  criterion function e(wij , f )  in ( 2 )  
achieves its minimum when wij ( m  + i’ , n + j ’ )  * f (  m, n )  
matches g(m, n ) ,  for (m, n )  E F .  With this criterion 
function, the matching step determines the winning 

neuron (c l ,  c2) whose synapse matrix w,,,, is the best- 
matching candidate for system identification. The  neu- 
ron (cl  , c2) is decided by 

for (i ,j) E N, (4) 

where the late estimated f is fixed in this step. The 
rule (4) is applied in all our iteration steps t o  decide 

After the winning neuron (c1, c2) is found, the 
adaptation step updates the synapses of neurons with 
different updates by 

( C l ,  c2). 

win,eW(m + i ’ ,  n + j’) = wq(m + i ’ ,  n + j ’ )  

for (i, j )  E N, (m,  n)  E H ,  (5) 

where wnFw denotes the updated synapse matrix of wij 
for next iteration and ct is the learning rate. In (5), 
both CY and E are functions of the iteration time. Note 
that the adaptation rule (5) for wij is derived by adapt- 
ing the synapses in the negative gradient direction to  
minimize the criterion function E defined in (3) .  The 
term within the bracket (.) of (5) is obtained by calcu- 
lating 

de 

a? 

- 
aw;j ( m  + i ’ ,  n + j ’ )  ’ 

To reduce the computational load, we may first 
adapt the synapses of the winning neuron (cl ,  C Z ) ,  i.e., 
w , , ~ ~ ,  according to  the rule (5). After the wW,,,, is up- 
dated, the synapses of the other neurons are adjusted 
using 

w?ew(m + i’, n + j ’ )  = wij(m + i ’ ,  n + j ’ )  
23 

-w i j (m  + i ’ , n  -I- j o ) ,  

for ( i ,  j )  E N, (m, n)  E H. (6) 

The adaptation rule (6) is utilized to  support the iden- 
tification operation (5) in the self-organizing network 
for a general sense [14]. When using the rule (6), the 
adapted synapses will have the similar results as those 
using the rule (5). When we use (4) instead of finding 
the neuron with minimum ( 3 ) ,  we choose a Dirac delta 
function as the function Z. To be consistent, the 7-1 
in (5) and (6) should be a Dirac delta function. This 
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kind choice of X in (5) and (6) will cause difficulty 
in convergence. For the convergence in the learning, 
we use a well-behaved neighborhood function 7-1 in (5) 
and (6). This inconsistency will be diminished in the 
final convergence stages. 

Because of the basic constraints on h,  the nor- 
malization of all synapse matrices wij  is always neces- 
sary. After each adapt,ation, the synapse matrices are 
then adjusted by 

w y y m  + i ' ,  n + j') = 

for (i, j) E N ,  (m, n)  E H, ( 7 )  

where the denominator sums up all the components in 
the matrix [w;j] for normalization. Note all w i j ( m  + 
i ' ,  n + j') for (m ,  n )  outside H are set to  zeros and 
are omitted in our algorithm. Because of the non- 
negativity of g(m,  n ) ,  f ( m ,  n ) ,  and w; j (m + i', n + j ' )  
in (5) and (6), the normalized value wi"j""(m+i', n+j') 
will keep non-negative. 

After the normalized synapse matrix, w,,,,, as 
the best-matching candidate for the system function 
is determined, the components of function h are as- 
signed to  those corresponding components of w,,,, by 
k(m, n )  = wClc2(m + c'l, n + c'z), (m, n)  in H. We 
then further evaluate the reconstructed system input 
f for consistency with using (4) and we minimize the 
criterion function e(w,,,,, f )  with respect, to  f instead 
of the function E,,,,. The new estimated input f is 

for ( m , n )  E F ,  (8) 

where ,b' is the adjusting rate. The term within the 
bracket (.) in (8) is obtained by calculating 

d e  - 
8.f (m, n> ' 

Following the adaptation in (8), the value of f (m,  n) is 
normalized by 

for ( m , n )  E F,  (9) 

The selection of the proper parameters for the 
learning process is usually determined by experiences. 

In general, the learning parameters CY and /3 are non- 
increasing function of iteration time. The effective 
range of the neighborhood function 7t diminishes dur- 
ing the self-organizing process. Note that when the 
network converges, all center excitation parts of wi j  

will represent the shifted blur function and have the 
similar shape approximately. 

4 Simulation Results 

The self-organizing approach t o  both system 
identification and input reconstruction is applied t o  
process blurred images. Simulation results are pre- 
sented in this section. Figure 2 and 3 show the original 
image (a  256 x 256 8-bit photograph) and the blurred 
image, respectively. In Figure 3, the image is blurred 
by a 7 x 7 blur function which has a geometrically de- 
creasing factor 0.7 from the center. The blurred image 
is also degraded by white noise a t  30 dB SNR. The 
procedures to  reconstruct the blurred image are sum- 
rnarized in Figure 4. 

In the self-organizing network, there are 32 x 32 
(NI = 32 and Nz = 32) neurons with 32 x 32 x 256 x 
256 synapses, each neuron has a 256 x 256-dimensional 
synapse matrix which resembles the 256 x 256 shift 
blur function on the output image. Note that in our 
algorithm we do not need 256 x 256 synapse matrix 
for each neuron. We use the center excitation parts of 
the shifted blur functions which are 11 x 11 synapse 
matrices instead of using 256 x 256 synapse matrices 
to  implement the identification. The values of i' and 
j '  are set as i' = 8 x ( i  - 1) + 5 and j '  = 8 x ( j  - 1) + 
5, respectively, where i = 1 . .  .NI and j = 1 . .  . N z .  
The initial synapses are set t o  variously normalized 2D 
shifted Gaussian functions. The total iteration times 
are 800. 

Figure 5 and 6 show the values of averaged E,,,, 
over the 32 x 32 neurons and e(w,,,,,f) a t  different 
iterations, respectively. Simulation results show that 
this approach converges in appropriate number of it- 
erations. The reconstructed image by this approach is 
displayed in Figure 7. Figure 8 shows the center region 
(11 x 11) of the best estimated blur function in the 
self-organizing network. 

From the results, this approach appears to  be 
potential to solve the general deconvolution problem 
with the few constraints, t o  find the optimal solutions 
of the system function and the reconstructed input, 
to  avoid trapping in local minima, and to  be robust 
to  the noise and the overestimation of blur function. 
Simulation results demonstrate the performance of this 
approach. 
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Figure 4. The system chart for the reconstruction of blurred image. 
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Figure 5. The values of averaged E for 
800 iterations during the deconvolution pro- 
cess by the proposed approach. 
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Figure 6. The values of e(w,,,,, f) for 800 it- 
erations during the deconvolution process 
by the proposed approach. 

Figure 7. The reconstructed image from the blurred 
image in Figure 3 by the proposed approach. 

Figure 8. The center region (11 x 11) of 
the best estimated blur function in the self- 
organizing network. 
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