First publ.in: Proceeding®f theInternationalConferencen NetworkProtocols,Novembef7 - 10,1995, Tokyo,Japan/
ed.byMing T. (Mike) Liu ... Los Alamitos: IEEE ComputerSoc.Press,1995

Formalizations and Algorithms for Optimized Parallel Protocol
Implementation

Stefan Leue

Institute for Informatics
University of Berne

CH-3012 Berne

Abstract

We propose a formalized method that allows to au-
tomatically derive an optimized implementation from
the formal specification of a protocol. Qur method
starts with the SDL specification of a protocol stack.
We first derive a data and control flow dependence
graph from each SDL process. Then, in order to per-
form cross-layer optimizations we combine the depen-
dence graphs of different SDL processes. Next, we de-
termine the common path through the multi-layer de-
pendence graph. We then parallelize this graph wher-
ever possible which yields a relared dependence graph.
Based on this relaxed dependence graph we interpret
different optimization concepts that have been sug-
gested wn the literature, in particular lazy messages
and combination of data manipulation operations. To-
gether with these wnterpretations the relared depen-
dence graph can be be used as a foundation for a
compile-time schedule on a sequential or parallel ma-
chine architecture. The formalization we provide al-
lows our method to be embedded in a more compre-
hensive protocol engineering methodology.

1 Introduction

Optimized protocol implementation has become an
important field of research as network speed has in-
creased much faster than computer processing power
over the last decade. We present a method for the
mainly automated derivation of efficient implementa-
tions of protocol stacks, starting from formal specifi-
cations. The rigor in the formalization is useful when
implementing our method as a tool, which we are cur-
rently doing. In the paper we formalize and general-
ize optimization approaches that can be found in the
literature, in particular in the literature on optimal
protocol implementation.

Philippe Oechslin

Computer Network Lab LTI
Swiss Federal Institute of Technology
CH-1015 Lausanne

Overview. In Section 2 we discuss the sort of
layered SDL specifications we consider in the paper.
Here, we also argue why a direct and faithful im-
plementation of SDL specifications would lead to in-
efficient implementations. Next we construct a de-
pendence graph representing control-flow and data
dependences among statements in an SDL specifica-
tion. This leads us to so-called Transition Dependence
Graphs (Section 3). The dependence graph construc-
tion i1s an application of methods known from the do-
main of compiler optimization and parallel compila-
tion as they are for example described in [8] and [2].
In the next step of our method we perform an opti-
mization and parallelization of the operations which
are caused by the processing of a packet. We con-
sider the way the packet takes from the point where
it enters the protocol stack to where it exits. There-
fore we construct a so-called Multi-Layer Dependence
graph (Section 4). Third, we identify the path a packet
takes through the protocol stack in the so-called com-
mon case. The resulting graph is called Common Path
Graph. We will apply our later optimizations only to
the common case part of the specification. Fourth, in
Section 6 we relax dependences within the common
path graph. This is accomplished in two steps, first
the anticipation of the common case along the com-
mon path (Section 6.1), and second the parallelization
of the operations in the common path graph (Section
6.2). The result is a relaxed dependence graph. Fi-
nally, in Section 7 we show how suggestions that have
been made in the literature to optimize the implemen-
tation of communication protocols can be interpreted
based on the relaxed dependence graph. We refer
to the concepts of Lazy Messages (see [12]), and, in
particular, Grouping of Data Manipulation Operations
(see [5], [6] and [1]). The optimized and parallelized
graph now serves as a foundation for an implementa-
tion on either a sequential or a parallel machine ar-

Konstanze©Online-Publikations-Syste(KOPS)
URL: http://www.ub.uni-konstanz.de/kops/volltexte/2008/6496/
URN: http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-64962


http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-64962
http://www.ub.uni-konstanz.de/kops/volltexte/2008/6496/

chitecture. The discussion of implementation aspects
such as scheduling is outside the scope of this paper.
We refer the reader to [11] and [10] for further discus-

slon.

Related work. Aspects of hardware and soft-
ware architecture that increase an implementation’s
efficiency are discussed in [5], [6], [12], [7] and [14]. The
parallelization of protocol implementations as pro-
posed for example in [4] depends entirely on the in-
tuition of the designer and thus its efficiency may be
non-optimal. Others ([9]) analyze the data- and mes-
sage flow dependences between communicating pro-
cesses, whereas we restrict ourselves to the analysis of
local dependences inside processes.

Precursors. Precursors of our work appeared in
[11] where we describe the application of our method
to a IP/TCP/FTP protocol stack. More technical de-
tail, in particular the algorithms discussed in this pa-
per, can be found in [10].

The role of SDL. The formal specification tech-
nique we consider is the CCITT standardized Specifi-
cation and Description Language SDL [3]. We chose
this language not because we particularly advocate its
suitability as an implementation language, but rather
because it enjoys wide acceptance in the protocol en-
gineering community. The choice of a formal descrip-
tion technique as starting point connects our method
to existing techniques and methods in the domain of
protocol engineering. Parts of our method are spe-
cific to features of SDL. However, we claim that for
many other procedural specification methods an easy
adaptation is possible.

2 A Discussion of SDL Specifications

2.1 SDL Specifications of Protocol Stacks

An SDL specification of a protocol stack can usu-
ally be structured into different concurrent processes,
each one representing the functionality of one protocol
layer. A process 1s structured into transitions which
describe its dynamic behaviour. Processes communi-
cate via asynchronous signal queues. For reasons of
conciseness of the presentation we abstract away from
the SDL mechanism of mapping between output and
input signals by signal routes and identify sender and
receiver of messages simply by identity of the message

type.

2.2 Inadequacy of ‘Faithful’ Implementa-
tions

By the term faithful we refer to an implementation
which follows in its structure and in the sequence of
operations exactly the original SDL specification from
which 1t is derived. This may for example mean that
every statement in the SDL specification is mapped
to a statement in the implementation, that every SDL
process corresponds to a process in the implementa-
tion, and that the processes in the implementation
communicate using the SDL asynchronous communi-
cation mechanism via infinite queues. However, as we
argue in the following, such a faithful implementation
is potentially inefficient.

No ezxplicit parallelism: Although SDL processes
run concurrently the processing inside an SDL process
is strictly sequential. This means that the structuring
of the specification into processes, which in many cases
is influenced by general design decisions; determines
the degree of parallelism of a specification.

Structuring of the specification into processes: The
structure of the specification often means that there is
one process per protocol layer peer entity of the pro-
tocol. Though from a structured-design point of view
a layered design may be desirable, we stipulate that
in order to derive efficient parallel protocol implemen-
tations such a layered design is obstructive. Similar
arguments can be found in [7].

Asynchronous inter-layer communication via infi-
nite queues: An efficient implementation of a proto-
col stack for one peer entity will usually be a non-
distributed system. Apparently it is very inefficient to
implement the exchange of data in a non-distributed
system via asynchronous queues.

The objectives of our method are therefore to re-
move the boundaries between processes, to remove the
asynchronous communication between processes, and
to analyze dependences between statements in order to
enable parallel and combined execution of statements
belonging to different processes.

3 Dependence Analysis for SDL Pro-
cesses

In this section we explain how a Dependence Graph
can be obtained by syntactical analysis from an SDL
specification. We first analyze dependences inside
SDL transitions and then analyse entire protocol
stacks.

Syntactic structure of an SDL transition. A
transition in an SDL specification is a construct which



describes the transition of an SDL process from one
symbolic state into a successor symbolic state. The
body of a transition consists of a collection of state-
ments which we group in the set of statements S.
We only consider a limited subset of SDL-statements,
namely INPUT, TASK, DECISION and OUTPUT state-
ments, and we identify one of these four statement
types with every element of S. For the sake of con-
ciseness we have limited our considerations to this lan-
guage subset but we conjecture that it is adequately
expressive (see [10]).

3.1 Control Flow and Data Flow Depen-
dences

The syntactical analysis of the SDL specifications
that we describe in this Section yields a graph struc-
ture over the set of statements S. This so-called
dependence graph represents the two types of de-
pendences between the statements of a specification,
namely control flow and data flow dependences.

Statements, which according to the syntactical and
semantical rules of SDL are direct successors, are part
of the control flow dependence relation cfd over the set
S. A statement of type DECISION has two or more di-
rectly succeeding statements, all pairs of a DECISION
statement and it successor statements are part of the
cfd relation. The execution of a statement directly
succeeding a DECISION statement depends on the run-
time evaluation of the decision predicate. This is rep-
resented by a branching of the ¢fd graph.

A statement usually describes operations on process
variables in which these are usually referenced in two
different ways.

e We say that a statement S, uses a variable z
iff 1t references the variables current value with-
out modifying it. Typically a variable used by a
statement is found on the right hand side of an
assignment statement.

e We say that a statement S, defines a variable z
iff it assigns an initial or new value to the variable
without referencing its previous value. A typical
example is the definition of a variable on the left
hand side of an assignment statement.

A pair of statements (s1, s2) is in the data flow de-
pendence relation dfd if (s1, s2) is in the transitive clo-
sure of the cfd-relation and s, uses a variable which

I Thus our definition of the data dependence implies that an
‘earlier’ statement in the control flow cannot be data dependent
on a ‘later’ one.

is defined in s1. For simplicity we assume that no re-
definition of variable names inside transitions occurs?.
Also, we assume that every variable name used in a
transition is defined inside of the transition, there-
fore no data dependences from statements in other
transitions exist. Assignments to structured variables
are decomposed into component-wise assignments. An
INPUT(X) statement is a define statement with respect
to a variable named X, an OUTPUT(Y) statement is a

use statement with respect to variable named Y3.

3.2 Transition

(TDG)

Dependence Graphs

Definition Transition Dependence Graph.
Let S, STT and X denote pairwise disjoint sets,
the elements of which we call statements, statement
types and wvariables. Formally, we define a Tran-
sition Dependence Graph (TDG) as a tuple T =
(S, STT, X, sttype, cfd, dfd) where efd C S x S, dfd C
cfdt, STT = {input, decision, task, output}, sttype C
S x STTis a functional relation (relating a statement
to a statement type), use C S x P(X) is a functional
relation (relating a statement to the set of variable
names which are being used in it), and define C S x X
is a partial functional relation (relating a statement to
the variable name which is being defined in it), satis-
fying the following conditions: 1. an INPUT statement
has exactly one successor, and it is the root of the tree,
2. every TASK node has at most one successor, and an
OUTPUT statement is a leaf of the tree.

3.3 Example SDL processes and TDGs

The example in Figure 1 shows a partial view of the
specification of a process N of which we show only two
transitions.

Figure 1 presents a graphical representation of cor-
responding TDGs starting in nodes S1 and $6. Solid
line arrows represent elements of ¢fd, and dashed line
arrows represent elements of dfd.

A further example of an SDL process named N+1 is
presented in Figure 2. The syntactical analysis leads
to the transition dependence graph 75 shown on the
right hand side of Figure 2. The processes N and N+1
together form the running example of our paper and
we refer to it as Two Layer Stack TLS. N and N+1 are
only partially specified.

?This avoids additional output dependences, see [13].

3The data dependences we consider are purely local to the
processes, we do not consider data dependences between pro-
cesses caused by message flows.



PROCESS N

S2 | Y!H:=const
S3 |YID:=f(X)

Figure 1: SDL specification (left) and TDGs (right)
for process N.

PROCESS N+1

S1OWIH:=h(YIH) -
S11|WID:=k(Y!D) ‘ 513‘ W) ‘

Figure 2: SDL specification (left) and TDGs (right)
for process N+1.

4 Dependence Graphs for Protocol
Stacks

In this section we describe the necessary steps to
combine the transition dependence graphs of different
SDL processes and to remove the communication be-
tween them. First, we label all TDGs of all processes
by so-called input/output labels. Second, we combine
all TDGs with matching input/output labels; elimi-
nate the OUTPUT(X)/INPUT(X) statement pairs, and
perform a cross-layer data dependence analysis. The
result is a graph which we call Mult:-Layer Dependence
Graph.

4.1 Input/Output labeled Transition De-
pendence Graphs (IOTDGs)

We assume that all transitions we consider for the
combination process start with an INPUT statement ac-
cepting a data packet from an adjacent layer process or

from the environment, and end with an OUTPUT state-
ment which delivers the processed packet to the envi-
ronment or the next adjacent layer process. Hence, we
assume that all the processing for a packet in a layer
process is carried out in the course of one transition,
and that no looping inside a transition occurs. Thus,
our dependence graphs are always trees. Different
transitions starting in different states in one process
may exist, but they only represent the process to be in
different states (e. g. state waiting and state transmis-
sion). Furthermore, we assume that the packet pass-
ing is unidirectional, either from the medium towards
the user or vice versa. To build the input/output la-
beled TDGs we simply label each input and output
statement with the name of the signal they are in-
puting our outputing. A formal definition of IOTDGs
can be found in [10]. In Figure 3 we show the three
IOTDGs representing the TDGs for Example TLS.

4.2 Multi-layer
(MLDG)

Dependence Graph

What we have obtained so far i1s a set 7 =
{T1,...,T,} of IOTDGs. T represents the depen-
dences of all transition of the specification that we
analyze. In this section we describe an algorithm that
transforms 7 into a set M of Multi-Layer Dependence
Graphs (MLDG). Each MLDG represents the depen-
dences of the processing of one packet or protocol data
unit in adjacent layers of the protocol stack. We are
interested in following the processing of one packet
from the code location where it enters into the pro-
tocol stack to the location where it exits. In our ex-
ample this means that we will derive a connected con-
trol flow dependence graph from statement S1, where
the packet X enters the processing in process N, to the
statements S12 and S14, where it exits the stream
of processing in process N+1 as a message of type W.
Thus we have to compose the individual IOTDGs in
7. The criterion for composing two IOTDGs will be
that they exchange a message with identical names, e.
g. one JIOTDG ends with an OUTPUT(Y) statement and
another IOTDG begins with an INPUT(Y) statement.
We assume that the names of the types of the messages
exchanged are unique at the interfaces between two
processes, and that the direction of the message flow
i1s uniquely determined by the message type names.
Also, we assume that every OUTPUT statement can be
mapped to a unique INPUT statement. Note that SDL
transitions are deterministic on INPUT signals, i. e. in
one state the future behavior is uniquely determined
by the type of the message that is consumed next.



MLDG Construction Algorithm. The algo-
rithm starts with an TDG such that its root node
corresponds to an input of a packet from the environ-
ment. It then appends to each of its leaf nodes TDGs
with matching input labels on their root node. The
algorithm terminates when all possible compositions
have been carried out.

As a result we obtain a set of MLDGs M. Each
M € M is a multi-edged labeled tree (S,STT, X,
SIG, sttype, cfd, dfd). However, not all of the condi-
tions we required for IOTDGs still hold. For example,
it is not true any more that a node of type input has no
predecessor in the cfd relation. For a MLDG M we say
that a node in root(M) is an entry node, that a node
with more than one successor is a branching node, and
that leaf nodes are exit nodes. An entry node repre-
sents a statement where a message (in most cases a
packet or protocol data unit) is accepted from the en-
vironment, and an exit node refers to a statement in
the code where a message is delivered to the environ-
ment. Details of the MLDG construction algorithm
can be found in [10].

Example MLDGs Figure 4 shows the set M of
MLDGs which we obtain by applying our algorithm
to the IOTDGs of our example TLS. It contains two
MLDGs, one with root S1 and one with root S6. In
order to illustrate the input/output labeling we also
retained the respective labels at the nodes. The nodes
S4 and S9 have been eliminated, reflecting the elimi-
nation of the OUTPUT(Y) / INPUT(Y) statement pair.
The additional ¢fd pair (D1, D2) has been added. Fur-
thermore, data dependences between statements of
the two merged graphs have been added, so for ex-
ample (52, D2).

\
\ [fadse \ true !
/

GDED

Figure 3: IOTDGs for Example TLS.

Justification for MLDG construction. When
building the MLDG we modified the original SDL
specification in two ways. Firstly, we ignored the
asynchronous queue communication mechanism, and

Figure 4: MLDGs for Ex- Figure 5: Labeled MLDG
ample TLS. for Example TLS.

secondly, we eliminated the corresponding OUTPUT /
INPUT statement pair. The justified question arises
whether these modifications preserve the correctness
of the original specification. We argue that ignoring
the queue can be justified because this is a refinement
step which preserves two essential queue properties,
namely 1. the safety property that i1t is always true
that if something is received it must have been sent be-
fore, and 2. the liveness property that it is always true
that if something is sent it will eventually be received.
The safety property is trivially satisfied because the
order of the OUTPUT(X) and INPUT(X) statements is
preserved. The liveness property is satisfied if we as-
sume our implementation to be live, namely that every
transition which is continuously enabled will eventu-
ally be taken. The elimination of the OUTPUT / INPUT
statement pair can be justified by the fact that we
preserved all control flow and data flow dependences.
Concluding we can say that out of the many inter-
leavings of events which are possible according to the
original specification we only implement one possible
representative, namely the interleaving where a packet
is accepted at one end of the protocol stack, entirely
processed, and finally handed over at the other end
before the next packet is accepted for processing.

5 Determination of the Common Path
Graph

In the later steps of our optimization method we op-
timize the processing of a packet only for the ‘common
case’. We consider our common path determination a
generalization of the Common Path optimization as
advocated in [5]. A major part of the functionality of



Figure 6: Common Figure 7: The Relaxed De-
Path Graph for Ex- pendence Graph for Example
ample TLS. TLS

a protocol typically aims at detection and treatment
of many kinds of exceptions and errors which are usu-
ally uncommon in typical high speed communication
environments. Due to the low probability of uncom-
mon cases we do not risk a degradation of the overall
protocol performance even if the handling of these un-
common cases is inefficient. Not all branching in the
control flow can be classified so that one branch is
common and all others are uncommon. It may as well
be the case that more that one alternative is a com-
mon choice, in particular when the branching does not
aim at handling exception cases.

Technically, we distinguish the decision edges (out-
going cfd-edges of a node with outdegree > 1) of the
cfdrelation of an MLDG M disjointly into those which
are taken with a probability above a certain value (the
common ones, labeled with ‘C’) and those for which
the probability is below a certain value (the uncom-
mon ones, labeled with ‘U’). The labeling of the deci-
sion edges is described in Section 5. It defines a com-
mon path graph which is a subgraph of the c¢fd graph.
In order to obtain what we call the Common Path
Graph (CPG) we drop those subgraphs of M which
start with an edge labeled as uncommon from every
decision node.

Labeling of MLDGs. Figure 5 presents and exam-
ple of a common / uncommon labeled MLDG. Note
that the labeling of the branching edges yields a tree
which represents the common path of the processing of
a packet. This tree, which is indicated by bold solid

line ¢fd edges in Figure 5, is obtained by traversing
an MLDG so that no decision edge with label U is
traversed. Whether a decision edge is common or un-
common depends in part on the environment in which
a protocol is running. The common/uncommon at-
tributes can thus not be automatically derived from
the protocol specification. The attribution has to
be provided by the implementor as an input for our
method.

Common Path Graph (CPG). The algorithm for
the construction of the CPG can be found in [10]. Tt
simply prunes all those subtrees of the labeled MLDG
which start with an edge labeled U’ in a decision node.
In Figure 6 we present the CPG derived from the com-
mon / uncommon labeled MLDG in Figure 5. The
subgraph that has been removed is the graph start-
ing with the edge (D1, S5). The subgraphs starting in
node D2 have both been retained as they both repre-
sent common decisions.

6 Construction of the Relaxed Depen-
dence Graph

In this Section we will construct a relaxed depen-
dence graph (RDG) based on which the original spec-
ification can be implemented. We conjecture that the
implementation of the RDG will be functionally equiv-
alent to the faithful implementation, but will execute
faster. We propose the following steps to generate an
RDG: anticipation of the common case, and relazation
of dependences.

6.1 Anticipation of the Common Case

The CPG may contain decisions with only one out-
come in the CPG. As we will see in the next transfor-
mation decisions enforce an execution order and thus
limit potential parallelism. To enhance potential par-
allelism we anticipate the outcome of decisions that
have only one outcome in the CPG. In [10] we discuss
the handling of the uncommon cases in an implemen-
tation and argue that there is always a way to handle
them consistently. Basically it is done by performing
a roll-back to a consistent state when an uncommon
case 1s detected. Anticipation of the common case is
applied to the CPG by changing the type of those de-
cision nodes which have only one successor in the cfd
relation of the CPG to task. The algorithm can be
found in [10]. In our example, anticipating the com-
mon case results in changing the statement type of D1
from decision to task.



6.2 Relaxation of Dependences

In this transformation we remove dependences from
the CPG graph to allow its parallel execution. More
precisely we remove all dependences and replace them
by a smaller set of relared dependences. There are
three precedence relations that the relaxed depen-
dence graph must enforce. Data flow dependences:
a node using a variable may not be executed before
a node which defines that variable. Control flow de-
pendences: a node which is (directly or transitively)
control flow dependent of a decision node may not
be executed before this decision has been taken. Fi-
nal execution of exit nodes: Exit nodes must be the
last nodes to be executed because they are the point
where a protocol interacts with its environment and
makes the result of the processing visible. Thus all
statements which are no exit nodes must be executed
before executing an exit node. The result of the trans-
formation is a relaxed common path graph (RDG) in
which the c¢fd and dfd relations have been replaced by
a relaxed dependence relation rzd. We create the rzd
relation in three steps. First we include all elements
of the original CPG’s dfd relation in rzd. This ensures
that data dependences are respected. Then we exam-
ine each node of the RDG to see if it already depends
(directly or transitively) from its nearest preceding de-
cision node in the c¢fd relation. If not, we add a de-
pendence between the examined node and the nearest
decision node. This ensures that a node is not exe-
cuted before the last decision it depends on. Finally
we check that all exit nodes reachable from a given
node in the CPG are also dependent of that node in
the RDG. If this is not the case, we add relaxed de-
pendences between the given node and the concerned
exit nodes. An algorithm performing this transforma-
tion is given in [10]. We call the resulting directed
graph the relaxed dependence graph RDG of a CPG.
It should be noted that the RDG is not a tree. Figure
7 shows the RDG for the CPG in Figure 6. We see
that S2 and S3 depend on S1 but not on each other.
This means that once S1 has been executed S2 and S3
can be executed in parallel.

7 Optimizations based on the Relaxed
Dependence Graph

An implementation of the protocol will be based on
the RDG. When scheduling the operations the sched-
uler may take advantage of the relaxation of dependen-
cies in the RDG. The execution of an operation may

be scheduled at a different point of time compared to
its execution according to the sequential SDL specifi-
cation. A further gain in efficiency can be achieved by
combining the execution of so-called Data Manipula-
tion Operations (DMOs).

We call data manipulation operations (DMOs) op-
erations that manipulate entire data parts of protocol
data units. Combining two such operations into one
which performs two manipulations at the same time
saves an extra storing and fetching of all the data and
thus executes much faster ([5], [6] and [1]). Particu-
larly, it is more efficient to wait for all decisions to have
been taken before executing DMOs since only then it
is known which DMOs will have to be executed ([12]).
The technique is referred to as lazy messages. Our al-
gorithm 1s a generalization of this technique. In order
to enable the joint execution of DMOs the RDG has
to be modified.

An algorithm for grouping of DM Os. We pro-
pose a recursive algorithm that starts at the root of the
RDG. Let B be the name of the node the algorithm is
applied to. The algorithm distributes the DMOs that
depend of B over each decision that depends of B, iff
other DMOs exist which can only be executed after
some more decisions have been taken. Thus the DMO
which depended of B will only be executed after one
more decision has been taken. The algorithm is then
recursively applied to all decisions that depend on B.
An algorithm doing this is described in [10].

Figure 8: Grouped DMOs

The application of the algorithm to our example is



shown in Figure 4.2 and Figure 8. The two DMOs
identified are S3 and S11. S3 is replicated for each
evaluation of D2, yielding S3’1 and S3’2. If D2 eval-
uates to A1’ then a combined DMO S3°1/S11 can be
executed. If D2 evaluates to ’A2’, then 53’2 is exe-
cuted alone.

8 Conclusions

In this paper we presented formalizations and algo-
rithms for the derivation of optimized protocol imple-
mentations from SDL specifications. We started with
a syntactical dependence analysis for SDL processes.
We then showed how multiple dependence graphs can
be combined to multi-layer dependence graphs. Next
we determined the common path graph which repre-
sents the common case of processing of a packet in
the protocol stack. This graph was the basis for an
optimization by anticipating the evaluation of some
decision statements in the CPG, and then by relax-
ing the dependences. We called the result a relaxed
dependence graph. The RDG allows to make more
efficient schedules for either parallel or sequential exe-
cution. In particular we showed how the optimization
concepts of lazy messages and grouping of Data Ma-
nipulation Operations can be interpreted based on the
Relaxed Dependence Graph.

We are currently developing a toolset for the sup-
port of our method. The toolset will consist in an SDL
parser which generates dependence graphs, and a set
of graph optimizing routines. Furthermore, we have
implemented a prototype tool to support the schedul-
ing aspect of the implementation. The fact that we
have provided a rigorous formal description of our
method clearly supports the implementation of such
a toolset. It also connects our method well to other
formally supported steps of an overall protocol engi-
neering methodology, like testing and validation.

Acknowledgments. The work of both authors
was supported by the Swiss National Science Founda-
tion. We would like to thank Peter Ladkin for very
helpful commentary on an earlier draft of this paper.

References

[1] M. Abbott and L. Peterson. Increasing net-
work throughput by integrating protocol layers.
IEEE/ACM Transactions on Networking, 1(5), Oc-
tober 1993.

(2]

(3]

[10]

[11]

[12]

[13]

[14]

U. Banerjee, R. FEigenmann, A. Nicolau, and
D. Padua. Automatic program parallelization. Pro-
ceedings of the IEEE, 81(2):211-243, Feb 1993.

F. Belina, D. Hogrefe, and A. Sarma. SDL with Ap-
plications from Protocol Specification. Prentice Hall
International, 1991.

T. Braun and M. Zitterbart. Parallel transport sys-
tem design. In A. Danthine and O. Spaniol, editors,
Proceedings of the 4th IFIP conference on high per-
formance networking, 1992.

D. D. Clark, V. Jacobson, J. Romkey, and H. Sal-
wen. An analysis of TCP processing overhead. [FEFE
Communications Magazine, 27(6):23-29, June 1989.

D. D. Clark and D. L. Tennenhouse. Architectural
considerations for a new generation of protocols. In
Proceedings of the ACM SIGCOMM °90 conference,
Computer Communication Review, pages 200-208,
1990.

J. Crowcroft, [. Wakeman, 7. Wang, and D. Sirovica.
Is layering harmful? [IFEF Network Magazine, pages
20-24, january 1992.

J. Ferrante, K. J. Ottenstein, and J. D. Warren. The
program dependence graph and its use in optimiza-
tion. ACM Transactions on Programming Languages
and Systems, pages 319-349, July 1987.

P.B. Ladkin and B.B. Simons. Compile-time anal-
ysis of communicating processes. In Proceedings of
the Sizth ACM International Conference on Super-
computing, pages 248-259. ACM Press, 1992.

S. Leue and Ph. Oechslin. A formal approach to op-
timized parallel protocol implementation. Technical
Report TAM-94-03, University of Berne, Institute for
Informatics, Berne, Switzerland, 1994.

S. Leue and Ph. Oechslin. Optimization techniques
for parallel protocol implementation. In Proceedings
of the Fourth IEEE Workshop on Future Trends in
Distributed Computing Systems, Lisbon, Sep. 1993.

S. W. O’Malley and L. L. Peterson. A highly lay-
ered architecture for high-speed networks. In M. J.
Johnson, editor, Protocols for High Speed Networks
II, pages 141-156. Elsevier Science Publishers (North-
Holland), 1991.

D. A. Padua and M. J. Wolfe. Advanced compiler
optimizations for supercomputers. Communications
of the ACM, 29(12):1184-1201, Dec 1986.

Y.H. Thia and C.M. Woodside. High-speed OSI pro-
tocol bypass algorithm with window flow control. In
B. Pehrson, P.Gunningberg, and S. Pink, editors, Pro-
tocols For High-Speed Networks III C, volume C-9,
pages 53-68. IFIP, NORTH-HOLLAND, 1993.



	Text11: First publ. in: Proceedings of the International Conference on Network Protocols, November 7 - 10, 1995, Tokyo, Japan / 
ed. by Ming T. (Mike) Liu ... Los Alamitos : IEEE Computer Soc. Press, 1995
	Text12: Konstanzer Online-Publikations-System (KOPS)
URL: http://www.ub.uni-konstanz.de/kops/volltexte/2008/6496/
URN: http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-64962


