
Formalizations and Algorithms for Optimized Parallel ProtocolImplementationStefan Leue Philippe OechslinInstitute for Informatics Computer Network Lab LTIUniversity of Berne Swiss Federal Institute of TechnologyCH-3012 Berne CH-1015 LausanneAbstractWe propose a formalized method that allows to au-tomatically derive an optimized implementation fromthe formal speci�cation of a protocol. Our methodstarts with the SDL speci�cation of a protocol stack.We �rst derive a data and control 
ow dependencegraph from each SDL process. Then, in order to per-form cross-layer optimizations we combine the depen-dence graphs of di�erent SDL processes. Next, we de-termine the common path through the multi-layer de-pendence graph. We then parallelize this graph wher-ever possible which yields a relaxed dependence graph.Based on this relaxed dependence graph we interpretdi�erent optimization concepts that have been sug-gested in the literature, in particular lazy messagesand combination of data manipulation operations. To-gether with these interpretations the relaxed depen-dence graph can be be used as a foundation for acompile-time schedule on a sequential or parallel ma-chine architecture. The formalization we provide al-lows our method to be embedded in a more compre-hensive protocol engineering methodology.1 IntroductionOptimized protocol implementation has become animportant �eld of research as network speed has in-creased much faster than computer processing powerover the last decade. We present a method for themainly automated derivation of e�cient implementa-tions of protocol stacks, starting from formal speci�-cations. The rigor in the formalization is useful whenimplementing our method as a tool, which we are cur-rently doing. In the paper we formalize and general-ize optimization approaches that can be found in theliterature, in particular in the literature on optimalprotocol implementation.

Overview. In Section 2 we discuss the sort oflayered SDL speci�cations we consider in the paper.Here, we also argue why a direct and faithful im-plementation of SDL speci�cations would lead to in-e�cient implementations. Next we construct a de-pendence graph representing control-
ow and datadependences among statements in an SDL speci�ca-tion. This leads us to so-called Transition DependenceGraphs (Section 3). The dependence graph construc-tion is an application of methods known from the do-main of compiler optimization and parallel compila-tion as they are for example described in [8] and [2].In the next step of our method we perform an opti-mization and parallelization of the operations whichare caused by the processing of a packet. We con-sider the way the packet takes from the point whereit enters the protocol stack to where it exits. There-fore we construct a so-called Multi-Layer Dependencegraph (Section 4). Third, we identify the path a packettakes through the protocol stack in the so-called com-mon case. The resulting graph is called Common PathGraph. We will apply our later optimizations only tothe common case part of the speci�cation. Fourth, inSection 6 we relax dependences within the commonpath graph. This is accomplished in two steps, �rstthe anticipation of the common case along the com-mon path (Section 6.1), and second the parallelizationof the operations in the common path graph (Section6.2). The result is a relaxed dependence graph. Fi-nally, in Section 7 we show how suggestions that havebeen made in the literature to optimize the implemen-tation of communication protocols can be interpretedbased on the relaxed dependence graph. We referto the concepts of Lazy Messages (see [12]), and, inparticular, Grouping of Data Manipulation Operations(see [5], [6] and [1]). The optimized and parallelizedgraph now serves as a foundation for an implementa-tion on either a sequential or a parallel machine ar-

http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-64962
http://www.ub.uni-konstanz.de/kops/volltexte/2008/6496/


chitecture. The discussion of implementation aspectssuch as scheduling is outside the scope of this paper.We refer the reader to [11] and [10] for further discus-sion.Related work. Aspects of hardware and soft-ware architecture that increase an implementation'se�ciency are discussed in [5], [6], [12], [7] and [14]. Theparallelization of protocol implementations as pro-posed for example in [4] depends entirely on the in-tuition of the designer and thus its e�ciency may benon-optimal. Others ([9]) analyze the data- and mes-sage 
ow dependences between communicating pro-cesses, whereas we restrict ourselves to the analysis oflocal dependences inside processes.Precursors. Precursors of our work appeared in[11] where we describe the application of our methodto a IP/TCP/FTP protocol stack. More technical de-tail, in particular the algorithms discussed in this pa-per, can be found in [10].The role of SDL. The formal speci�cation tech-nique we consider is the CCITT standardized Speci�-cation and Description Language SDL [3]. We chosethis language not because we particularly advocate itssuitability as an implementation language, but ratherbecause it enjoys wide acceptance in the protocol en-gineering community. The choice of a formal descrip-tion technique as starting point connects our methodto existing techniques and methods in the domain ofprotocol engineering. Parts of our method are spe-ci�c to features of SDL. However, we claim that formany other procedural speci�cation methods an easyadaptation is possible.2 A Discussion of SDL Speci�cations2.1 SDL Speci�cations of Protocol StacksAn SDL speci�cation of a protocol stack can usu-ally be structured into di�erent concurrent processes,each one representing the functionality of one protocollayer. A process is structured into transitions whichdescribe its dynamic behaviour. Processes communi-cate via asynchronous signal queues. For reasons ofconciseness of the presentation we abstract away fromthe SDL mechanism of mapping between output andinput signals by signal routes and identify sender andreceiver of messages simply by identity of the messagetype.

2.2 Inadequacy of `Faithful' Implementa-tionsBy the term faithful we refer to an implementationwhich follows in its structure and in the sequence ofoperations exactly the original SDL speci�cation fromwhich it is derived. This may for example mean thatevery statement in the SDL speci�cation is mappedto a statement in the implementation, that every SDLprocess corresponds to a process in the implementa-tion, and that the processes in the implementationcommunicate using the SDL asynchronous communi-cation mechanism via in�nite queues. However, as weargue in the following, such a faithful implementationis potentially ine�cient.No explicit parallelism: Although SDL processesrun concurrently the processing inside an SDL processis strictly sequential. This means that the structuringof the speci�cation into processes, which in many casesis in
uenced by general design decisions, determinesthe degree of parallelism of a speci�cation.Structuring of the speci�cation into processes: Thestructure of the speci�cation often means that there isone process per protocol layer peer entity of the pro-tocol. Though from a structured-design point of viewa layered design may be desirable, we stipulate thatin order to derive e�cient parallel protocol implemen-tations such a layered design is obstructive. Similararguments can be found in [7].Asynchronous inter-layer communication via in�-nite queues: An e�cient implementation of a proto-col stack for one peer entity will usually be a non-distributed system. Apparently it is very ine�cient toimplement the exchange of data in a non-distributedsystem via asynchronous queues.The objectives of our method are therefore to re-move the boundaries between processes, to remove theasynchronous communication between processes, andto analyze dependences between statements in order toenable parallel and combined execution of statementsbelonging to di�erent processes.3 Dependence Analysis for SDL Pro-cessesIn this section we explain how a Dependence Graphcan be obtained by syntactical analysis from an SDLspeci�cation. We �rst analyze dependences insideSDL transitions and then analyse entire protocolstacks.Syntactic structure of an SDL transition. Atransition in an SDL speci�cation is a construct which



describes the transition of an SDL process from onesymbolic state into a successor symbolic state. Thebody of a transition consists of a collection of state-ments which we group in the set of statements S.We only consider a limited subset of SDL-statements,namely INPUT, TASK, DECISION and OUTPUT state-ments, and we identify one of these four statementtypes with every element of S. For the sake of con-ciseness we have limited our considerations to this lan-guage subset but we conjecture that it is adequatelyexpressive (see [10]).3.1 Control Flow and Data Flow Depen-dencesThe syntactical analysis of the SDL speci�cationsthat we describe in this Section yields a graph struc-ture over the set of statements S. This so-calleddependence graph represents the two types of de-pendences between the statements of a speci�cation,namely control 
ow and data 
ow dependences.Statements, which according to the syntactical andsemantical rules of SDL are direct successors, are partof the control 
ow dependence relation cfd over the setS. A statement of type DECISION has two or more di-rectly succeeding statements, all pairs of a DECISIONstatement and it successor statements are part of thecfd relation. The execution of a statement directlysucceeding a DECISION statement depends on the run-time evaluation of the decision predicate. This is rep-resented by a branching of the cfd graph.A statement usually describes operations on processvariables in which these are usually referenced in twodi�erent ways.� We say that a statement Sn uses a variable xi� it references the variables current value with-out modifying it. Typically a variable used by astatement is found on the right hand side of anassignment statement.� We say that a statement Sn de�nes a variable xi� it assigns an initial or new value to the variablewithout referencing its previous value. A typicalexample is the de�nition of a variable on the lefthand side of an assignment statement.A pair of statements (s1; s2) is in the data 
ow de-pendence relation dfd if (s1; s2) is in the transitive clo-sure of the cfd-relation1 and s2 uses a variable which1Thus our de�nition of the data dependence implies that an`earlier' statement in the control 
ow cannot be data dependenton a `later' one.

is de�ned in s1. For simplicity we assume that no re-de�nition of variable names inside transitions occurs2.Also, we assume that every variable name used in atransition is de�ned inside of the transition, there-fore no data dependences from statements in othertransitions exist. Assignments to structured variablesare decomposed into component-wise assignments. AnINPUT(X) statement is a de�ne statement with respectto a variable named X, an OUTPUT(Y) statement is ause statement with respect to variable named Y 3.3.2 Transition Dependence Graphs(TDG)De�nition Transition Dependence Graph.Let S, STT and X denote pairwise disjoint sets,the elements of which we call statements, statementtypes and variables. Formally, we de�ne a Tran-sition Dependence Graph (TDG) as a tuple T =(S; STT; X; sttype; cfd; dfd) where cfd � S � S, dfd �cfd+, STT = finput; decision; task; outputg, sttype �S � STT is a functional relation (relating a statementto a statement type), use � S � P(X) is a functionalrelation (relating a statement to the set of variablenames which are being used in it), and de�ne � S�Xis a partial functional relation (relating a statement tothe variable name which is being de�ned in it), satis-fying the following conditions: 1. an INPUT statementhas exactly one successor, and it is the root of the tree,2. every TASK node has at most one successor, and anOUTPUT statement is a leaf of the tree.3.3 Example SDL processes and TDGsThe example in Figure 1 shows a partial view of thespeci�cation of a process N of which we show only twotransitions.Figure 1 presents a graphical representation of cor-responding TDGs starting in nodes S1 and S6. Solidline arrows represent elements of cfd, and dashed linearrows represent elements of dfd.A further example of an SDL process named N+1 ispresented in Figure 2. The syntactical analysis leadsto the transition dependence graph T3 shown on theright hand side of Figure 2. The processes N and N+1together form the running example of our paper andwe refer to it as Two Layer Stack TLS. N and N+1 areonly partially speci�ed.2This avoids additional output dependences, see [13].3The data dependences we consider are purely local to theprocesses, we do not consider data dependences between pro-cesses caused by message 
ows.



Y!H:=const
Y!D:=f(X)

true

Z const;

false

ST1 ST2

D1

U, V, X, Y
mess_type;

dcl

S2

UX

V:=g(U)

PROCESS N

S4

p(Y)

ZY

V

ST1

S8

S7

ST1

S1 S6

S5

S3

S1

S2

S3

S4

D1

S5

S6

S7

S8

truefalseFigure 1: SDL speci�cation (left) and TDGs (right)for process N.
’A1’

W:=l(Y)

S9

p(Y!H)

S13

’A2’

S10
S11

ST1

Y

S14W

D2

W

PROCESS N+1

W!D:=k(Y!D)

Y, W
mess_type;

S12

W!H:=h(Y!H)

dcl

ST1ST1

S9

S10

S11

S13

D2

S12

S14

A1A2Figure 2: SDL speci�cation (left) and TDGs (right)for process N+1.4 Dependence Graphs for ProtocolStacksIn this section we describe the necessary steps tocombine the transition dependence graphs of di�erentSDL processes and to remove the communication be-tween them. First, we label all TDGs of all processesby so-called input/output labels. Second, we combineall TDGs with matching input/output labels, elimi-nate the OUTPUT(X)/INPUT(X) statement pairs, andperform a cross-layer data dependence analysis. Theresult is a graph which we callMulti-Layer DependenceGraph.4.1 Input/Output labeled Transition De-pendence Graphs (IOTDGs)We assume that all transitions we consider for thecombination process start with an INPUT statement ac-cepting a data packet froman adjacent layer process or

from the environment, and end with an OUTPUT state-ment which delivers the processed packet to the envi-ronment or the next adjacent layer process. Hence, weassume that all the processing for a packet in a layerprocess is carried out in the course of one transition,and that no looping inside a transition occurs. Thus,our dependence graphs are always trees. Di�erenttransitions starting in di�erent states in one processmay exist, but they only represent the process to be indi�erent states (e. g. state waiting and state transmis-sion). Furthermore, we assume that the packet pass-ing is unidirectional, either from the medium towardsthe user or vice versa. To build the input/output la-beled TDGs we simply label each input and outputstatement with the name of the signal they are in-puting our outputing. A formal de�nition of IOTDGscan be found in [10]. In Figure 3 we show the threeIOTDGs representing the TDGs for Example TLS.4.2 Multi-layer Dependence Graph(MLDG)What we have obtained so far is a set T =fT1; : : : ; Tng of IOTDGs. T represents the depen-dences of all transition of the speci�cation that weanalyze. In this section we describe an algorithm thattransforms T into a setM of Multi-Layer DependenceGraphs (MLDG). Each MLDG represents the depen-dences of the processing of one packet or protocol dataunit in adjacent layers of the protocol stack. We areinterested in following the processing of one packetfrom the code location where it enters into the pro-tocol stack to the location where it exits. In our ex-ample this means that we will derive a connected con-trol 
ow dependence graph from statement S1, wherethe packet X enters the processing in process N, to thestatements S12 and S14, where it exits the streamof processing in process N+1 as a message of type W.Thus we have to compose the individual IOTDGs inT . The criterion for composing two IOTDGs will bethat they exchange a message with identical names, e.g. one IOTDG ends with an OUTPUT(Y) statement andanother IOTDG begins with an INPUT(Y) statement.We assume that the names of the types of the messagesexchanged are unique at the interfaces between twoprocesses, and that the direction of the message 
owis uniquely determined by the message type names.Also, we assume that every OUTPUT statement can bemapped to a unique INPUT statement. Note that SDLtransitions are deterministic on INPUT signals, i. e. inone state the future behavior is uniquely determinedby the type of the message that is consumed next.



MLDG Construction Algorithm. The algo-rithm starts with an TDG such that its root nodecorresponds to an input of a packet from the environ-ment. It then appends to each of its leaf nodes TDGswith matching input labels on their root node. Thealgorithm terminates when all possible compositionshave been carried out.As a result we obtain a set of MLDGs M. EachM 2 M is a multi-edged labeled tree (S; STT; X;SIG; sttype; cfd; dfd). However, not all of the condi-tions we required for IOTDGs still hold. For example,it is not true any more that a node of type input has nopredecessor in the cfd relation. For a MLDGM we saythat a node in root(M ) is an entry node, that a nodewith more than one successor is a branching node, andthat leaf nodes are exit nodes. An entry node repre-sents a statement where a message (in most cases apacket or protocol data unit) is accepted from the en-vironment, and an exit node refers to a statement inthe code where a message is delivered to the environ-ment. Details of the MLDG construction algorithmcan be found in [10].Example MLDGs Figure 4 shows the set M ofMLDGs which we obtain by applying our algorithmto the IOTDGs of our example TLS. It contains twoMLDGs, one with root S1 and one with root S6. Inorder to illustrate the input/output labeling we alsoretained the respective labels at the nodes. The nodesS4 and S9 have been eliminated, re
ecting the elimi-nation of the OUTPUT(Y) / INPUT(Y) statement pair.The additional cfd pair (D1; D2) has been added. Fur-thermore, data dependences between statements ofthe two merged graphs have been added, so for ex-ample (S2; D2).
S1 X

S2

S3

S4 Y

D1

S5 Z

S6 U

S7

S8 V

truefalse

S9 Y

S10

S11

S13

D2

S12 W

S12 W

A1A2Figure 3: IOTDGs for Example TLS.Justi�cation for MLDG construction. Whenbuilding the MLDG we modi�ed the original SDLspeci�cation in two ways. Firstly, we ignored theasynchronous queue communication mechanism, and

S1 X

S2

S3

D1

S10 S13

D2

S11

S5 Z

S6 U

S7

S8 V

false true

S12 W

S14 W

A1 A2Figure 4: MLDGs for Ex-ample TLS.
S1

S2

S3

D1

S10 S13

D2

S11

S5

S6

S7

S8

U, false C, true

S12

S14

C, A1 C, A2Figure 5: Labeled MLDGfor Example TLS.secondly, we eliminated the corresponding OUTPUT /INPUT statement pair. The justi�ed question ariseswhether these modi�cations preserve the correctnessof the original speci�cation. We argue that ignoringthe queue can be justi�ed because this is a re�nementstep which preserves two essential queue properties,namely 1. the safety property that it is always truethat if something is received it must have been sent be-fore, and 2. the liveness property that it is always truethat if something is sent it will eventually be received.The safety property is trivially satis�ed because theorder of the OUTPUT(X) and INPUT(X) statements ispreserved. The liveness property is satis�ed if we as-sume our implementation to be live, namely that everytransition which is continuously enabled will eventu-ally be taken. The elimination of the OUTPUT / INPUTstatement pair can be justi�ed by the fact that wepreserved all control 
ow and data 
ow dependences.Concluding we can say that out of the many inter-leavings of events which are possible according to theoriginal speci�cation we only implement one possiblerepresentative, namely the interleaving where a packetis accepted at one end of the protocol stack, entirelyprocessed, and �nally handed over at the other endbefore the next packet is accepted for processing.5 Determination of the Common PathGraphIn the later steps of our optimizationmethod we op-timize the processing of a packet only for the `commoncase'. We consider our common path determination ageneralization of the Common Path optimization asadvocated in [5]. A major part of the functionality of



S1

S2

S3

D1

S10 S13

D2

S11

true

S12

S14

A1 A2Figure 6: CommonPath Graph for Ex-ample TLS.
S1

S2

S3

D1 S10S13

D2

S11

S12S14

A1A1A2Figure 7: The Relaxed De-pendence Graph for ExampleTLSa protocol typically aims at detection and treatmentof many kinds of exceptions and errors which are usu-ally uncommon in typical high speed communicationenvironments. Due to the low probability of uncom-mon cases we do not risk a degradation of the overallprotocol performance even if the handling of these un-common cases is ine�cient. Not all branching in thecontrol 
ow can be classi�ed so that one branch iscommon and all others are uncommon. It may as wellbe the case that more that one alternative is a com-mon choice, in particular when the branching does notaim at handling exception cases.Technically, we distinguish the decision edges (out-going cfd-edges of a node with outdegree > 1) of thecfd relation of an MLDGM disjointly into those whichare taken with a probability above a certain value (thecommon ones, labeled with `C') and those for whichthe probability is below a certain value (the uncom-mon ones, labeled with `U'). The labeling of the deci-sion edges is described in Section 5. It de�nes a com-mon path graph which is a subgraph of the cfd graph.In order to obtain what we call the Common PathGraph (CPG) we drop those subgraphs of M whichstart with an edge labeled as uncommon from everydecision node.Labeling of MLDGs. Figure 5 presents and exam-ple of a common / uncommon labeled MLDG. Notethat the labeling of the branching edges yields a treewhich represents the commonpath of the processing ofa packet. This tree, which is indicated by bold solid

line cfd edges in Figure 5, is obtained by traversingan MLDG so that no decision edge with label U istraversed. Whether a decision edge is common or un-common depends in part on the environment in whicha protocol is running. The common/uncommon at-tributes can thus not be automatically derived fromthe protocol speci�cation. The attribution has tobe provided by the implementor as an input for ourmethod.Common Path Graph (CPG). The algorithm forthe construction of the CPG can be found in [10]. Itsimply prunes all those subtrees of the labeled MLDGwhich start with an edge labeled 'U' in a decision node.In Figure 6 we present the CPG derived from the com-mon / uncommon labeled MLDG in Figure 5. Thesubgraph that has been removed is the graph start-ing with the edge (D1; S5). The subgraphs starting innode D2 have both been retained as they both repre-sent common decisions.6 Construction of the Relaxed Depen-dence GraphIn this Section we will construct a relaxed depen-dence graph (RDG) based on which the original spec-i�cation can be implemented. We conjecture that theimplementation of the RDGwill be functionally equiv-alent to the faithful implementation, but will executefaster. We propose the following steps to generate anRDG: anticipation of the common case, and relaxationof dependences.6.1 Anticipation of the Common CaseThe CPG may contain decisions with only one out-come in the CPG. As we will see in the next transfor-mation decisions enforce an execution order and thuslimit potential parallelism. To enhance potential par-allelism we anticipate the outcome of decisions thathave only one outcome in the CPG. In [10] we discussthe handling of the uncommon cases in an implemen-tation and argue that there is always a way to handlethem consistently. Basically it is done by performinga roll-back to a consistent state when an uncommoncase is detected. Anticipation of the common case isapplied to the CPG by changing the type of those de-cision nodes which have only one successor in the cfdrelation of the CPG to task. The algorithm can befound in [10]. In our example, anticipating the com-mon case results in changing the statement type of D1from decision to task.



6.2 Relaxation of DependencesIn this transformation we remove dependences fromthe CPG graph to allow its parallel execution. Moreprecisely we remove all dependences and replace themby a smaller set of relaxed dependences. There arethree precedence relations that the relaxed depen-dence graph must enforce. Data 
ow dependences:a node using a variable may not be executed beforea node which de�nes that variable. Control 
ow de-pendences: a node which is (directly or transitively)control 
ow dependent of a decision node may notbe executed before this decision has been taken. Fi-nal execution of exit nodes: Exit nodes must be thelast nodes to be executed because they are the pointwhere a protocol interacts with its environment andmakes the result of the processing visible. Thus allstatements which are no exit nodes must be executedbefore executing an exit node. The result of the trans-formation is a relaxed common path graph (RDG) inwhich the cfd and dfd relations have been replaced bya relaxed dependence relation rxd. We create the rxdrelation in three steps. First we include all elementsof the original CPG's dfd relation in rxd. This ensuresthat data dependences are respected. Then we exam-ine each node of the RDG to see if it already depends(directly or transitively) from its nearest preceding de-cision node in the cfd relation. If not, we add a de-pendence between the examined node and the nearestdecision node. This ensures that a node is not exe-cuted before the last decision it depends on. Finallywe check that all exit nodes reachable from a givennode in the CPG are also dependent of that node inthe RDG. If this is not the case, we add relaxed de-pendences between the given node and the concernedexit nodes. An algorithm performing this transforma-tion is given in [10]. We call the resulting directedgraph the relaxed dependence graph RDG of a CPG.It should be noted that the RDG is not a tree. Figure7 shows the RDG for the CPG in Figure 6. We seethat S2 and S3 depend on S1 but not on each other.This means that once S1 has been executed S2 and S3can be executed in parallel.7 Optimizations based on the RelaxedDependence GraphAn implementation of the protocol will be based onthe RDG. When scheduling the operations the sched-uler may take advantage of the relaxation of dependen-cies in the RDG. The execution of an operation may

be scheduled at a di�erent point of time compared toits execution according to the sequential SDL speci�-cation. A further gain in e�ciency can be achieved bycombining the execution of so-called Data Manipula-tion Operations (DMOs).We call data manipulation operations (DMOs) op-erations that manipulate entire data parts of protocoldata units. Combining two such operations into onewhich performs two manipulations at the same timesaves an extra storing and fetching of all the data andthus executes much faster ([5], [6] and [1]). Particu-larly, it is more e�cient to wait for all decisions to havebeen taken before executing DMOs since only then itis known which DMOs will have to be executed ([12]).The technique is referred to as lazy messages. Our al-gorithm is a generalization of this technique. In orderto enable the joint execution of DMOs the RDG hasto be modi�ed.An algorithm for grouping of DMOs. We pro-pose a recursive algorithm that starts at the root of theRDG. Let B be the name of the node the algorithm isapplied to. The algorithm distributes the DMOs thatdepend of B over each decision that depends of B, i�other DMOs exist which can only be executed aftersome more decisions have been taken. Thus the DMOwhich depended of B will only be executed after onemore decision has been taken. The algorithm is thenrecursively applied to all decisions that depend on B.An algorithm doing this is described in [10].
S1

S2

D1’1D1’2

S10

S13

D2

S3’1

S12

S3’2

S14

S11

A1 A2A1 A1

A2Figure 8: Grouped DMOsThe application of the algorithm to our example is



shown in Figure 4.2 and Figure 8. The two DMOsidenti�ed are S3 and S11. S3 is replicated for eachevaluation of D2, yielding S3'1 and S3'2. If D2 eval-uates to 'A1' then a combined DMO S3'1/S11 can beexecuted. If D2 evaluates to 'A2', then S3'2 is exe-cuted alone.8 ConclusionsIn this paper we presented formalizations and algo-rithms for the derivation of optimized protocol imple-mentations from SDL speci�cations. We started witha syntactical dependence analysis for SDL processes.We then showed how multiple dependence graphs canbe combined to multi-layer dependence graphs. Nextwe determined the common path graph which repre-sents the common case of processing of a packet inthe protocol stack. This graph was the basis for anoptimization by anticipating the evaluation of somedecision statements in the CPG, and then by relax-ing the dependences. We called the result a relaxeddependence graph. The RDG allows to make moree�cient schedules for either parallel or sequential exe-cution. In particular we showed how the optimizationconcepts of lazy messages and grouping of Data Ma-nipulation Operations can be interpreted based on theRelaxed Dependence Graph.We are currently developing a toolset for the sup-port of our method. The toolset will consist in an SDLparser which generates dependence graphs, and a setof graph optimizing routines. Furthermore, we haveimplemented a prototype tool to support the schedul-ing aspect of the implementation. The fact that wehave provided a rigorous formal description of ourmethod clearly supports the implementation of sucha toolset. It also connects our method well to otherformally supported steps of an overall protocol engi-neering methodology, like testing and validation.Acknowledgments. The work of both authorswas supported by the Swiss National Science Founda-tion. We would like to thank Peter Ladkin for veryhelpful commentary on an earlier draft of this paper.References[1] M. Abbott and L. Peterson. Increasing net-work throughput by integrating protocol layers.IEEE/ACM Transactions on Networking, 1(5), Oc-tober 1993.

[2] U. Banerjee, R. Eigenmann, A. Nicolau, andD. Padua. Automatic program parallelization. Pro-ceedings of the IEEE, 81(2):211{243, Feb 1993.[3] F. Belina, D. Hogrefe, and A. Sarma. SDL with Ap-plications from Protocol Speci�cation. Prentice HallInternational, 1991.[4] T. Braun and M. Zitterbart. Parallel transport sys-tem design. In A. Danthine and O. Spaniol, editors,Proceedings of the 4th IFIP conference on high per-formance networking, 1992.[5] D. D. Clark, V. Jacobson, J. Romkey, and H. Sal-wen. An analysis of TCP processing overhead. IEEECommunications Magazine, 27(6):23{29, June 1989.[6] D. D. Clark and D. L. Tennenhouse. Architecturalconsiderations for a new generation of protocols. InProceedings of the ACM SIGCOMM '90 conference,Computer Communication Review, pages 200{208,1990.[7] J. Crowcroft, I. Wakeman, Z. Wang, and D. Sirovica.Is layering harmful? IEEE Network Magazine, pages20{24, january 1992.[8] J. Ferrante, K. J. Ottenstein, and J. D. Warren. Theprogram dependence graph and its use in optimiza-tion. ACM Transactions on Programming Languagesand Systems, pages 319{349, July 1987.[9] P.B. Ladkin and B.B. Simons. Compile-time anal-ysis of communicating processes. In Proceedings ofthe Sixth ACM International Conference on Super-computing, pages 248{259. ACM Press, 1992.[10] S. Leue and Ph. Oechslin. A formal approach to op-timized parallel protocol implementation. TechnicalReport IAM-94-03, University of Berne, Institute forInformatics, Berne, Switzerland, 1994.[11] S. Leue and Ph. Oechslin. Optimization techniquesfor parallel protocol implementation. In Proceedingsof the Fourth IEEE Workshop on Future Trends inDistributed Computing Systems, Lisbon, Sep. 1993.[12] S. W. O'Malley and L. L. Peterson. A highly lay-ered architecture for high-speed networks. In M. J.Johnson, editor, Protocols for High Speed NetworksII, pages 141{156. Elsevier Science Publishers (North-Holland), 1991.[13] D. A. Padua and M. J. Wolfe. Advanced compileroptimizations for supercomputers. Communicationsof the ACM, 29(12):1184{1201, Dec 1986.[14] Y.H. Thia and C.M. Woodside. High-speed OSI pro-tocol bypass algorithm with window 
ow control. InB. Pehrson, P.Gunningberg, and S. Pink, editors, Pro-tocols For High-Speed Networks III C, volume C-9,pages 53{68. IFIP, NORTH-HOLLAND, 1993.


	Text11: First publ. in: Proceedings of the International Conference on Network Protocols, November 7 - 10, 1995, Tokyo, Japan / 
ed. by Ming T. (Mike) Liu ... Los Alamitos : IEEE Computer Soc. Press, 1995
	Text12: Konstanzer Online-Publikations-System (KOPS)
URL: http://www.ub.uni-konstanz.de/kops/volltexte/2008/6496/
URN: http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-64962


