An Efficient Adaptive Search Algorithm
for Scheduling Real-Time Traffic*

Geoffrey G. Xie
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

rie@cs.nps.navy.mil

Abstract

For many service disciplines that provide delay guar-
antees, the scheduler of a channel repeatedly searches
for the smallest element in a set of priority values
(or deadlines). It is required that each search fin-
wshes within a time bound. Furthermore, the search
algorithm should be highly efficient. To meet these re-
quirements, we have developed a search algorithm based
upon a new data structure, called adaptive heap; it
behaves like a heap most of the time, but adaptively
changes its strategy when necessary to satisfy the time
bound. We show that the algorithm has optimal worst-
case time complerity and good average performance.
To further improve efficiency, the basic algorithm is
extended to include the use of group scheduling. We
present empirical results on the performance of adap-
tive heap search with and without group scheduling.
We conclude that adaptive heap search performs as in-
tended, and that group scheduling provides a substantial
reduction in the scheduler’s work when channel utiliza-
tion is high.

1 Introduction

To transport real-time traffic flows in packet switch-
ing networks, many service disciplines have been pro-
posed for packet scheduling. The majority of them
can be described generally as follows [1, 4, 5, 6, 7,
11, 12, 14]: Consider a channel shared by a set of
M flows, each of which represents a sequence of pack-
ets. A priority value is associated with each packet.
During every packet transmission, a scheduler searches
for a ready packet with the smallest priority value to
transmit next.! The service disciplines differ in how
priority values are determined. (For most of the ser-
vice disciplines, the priority value of a packet can also
be interpreted as a deadline.)

*This work was done while G. Xie was a graduate student in
the Department of Computer Sciences, the University of Texas at
Austin. Research supported in part by National Science Founda-
tion grant no. NCR-9506048, an Intel Graduate Fellowship, and
the Texas Advanced Research Program grant no. 003658-220.

I'We follow the convention that a packet with the smallest
priority value has the highest priority. Also, each packet trans-
mission, once begun, will not be preempted by the arrival of a
higher-priority packet.

0-8186-7453-9/96 $05.00 © 1996 IEEE

14

Simon S. Lam
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712-1188
lam@cs.utezas.edu

Note that the number of ready packets over all flows
can be very large. Searching over the set of ready
packets is a difficult problem. In (almost) all service
disciplines that have been proposed to provide delay
guarantees, packets within the same flow are served
in FIFO order. For these disciplines, it is sufficient
for the scheduler to store just one priority value per
flow. More specifically, a FIFO queue is maintained
for each flow. Whenever a flow is active (i.e., it has a
nonempty queue), the flow’s priority value is defined to
be the priority value of the packet at the head of the
queue. Consequently, the scheduler searches over the
set of active flows rather than the set of ready packets.

For networks of the future, it is likely that a high-
speed channel will be shared by hundreds, perhaps,
thousands of flows. To repeatedly perform the task of
finding the smallest element in a set of priority values,
an efficient search algorithm is needed. Furthermore,
it 1s required that each search be completed within a
time bound, i.e., by the end of the current packet trans-
mission. Otherwise, the channel would be idled, ready
packets would incur additional delays, and delay guar-
antees might not hold.

The design of search algorithms for packet schedul-
ing has not received much attention to date. A sorted
priority queue, e.g., a heap, is often cited in the net-
working hterature as an appropriate solution. In the
algorithms literature, various sorted-priority-queue im-
plementations have been developed for the pending
event set in discrete-event simulation [2, 8]. These al-
gorithms, however, were designed to optimize average
performance, with worst-case performance either not
considered or, in fact, sacrificed. For service disciplines
that provide delay guarantees, it is more important to
design search algorithms for optimal worst-case perfor-
mance {even though good average performance is still
important). This 1s because, given a fixed processing
capacity allocated to the scheduler, the algorithm must
finish a worst-case search within the transmission time
of a minimum-size packet.

In this paper, we propose a search algorithm based
upon a novel data structure, called adaptive heap,
which behaves like a heap most of the time, but adap-
tively changes its strategy to optimize the worst-case
performance. We will refer to the algorithm as adaptive
heap search or, in short, adaptive search. We performed

experiments using discrete-event simulation driven by
traces of MPEG video sequences to evaluate the algo-
rithm.

To make adaptive heap search even more efficient,
particularly when channel utilization is high, the algo-
rithm has been extended to implement group schedul-
tng. The idea of group scheduling, proposed in [10],
is based upon the following observation: A large ap-
plication data unit (such as a file or a video frame) is
typically segmented and transported by a network as a
sequence of packets. The end-to-end delay of such an
application data unit is a more important performance
measure than the end-to-end network delays of indi-
vidual packets. With group scheduling, consecutive
packet arrivals in a flow are partitioned into groups;
packets in the same group have the same priority value.
Group sizes can be designed such that the end-to-end
delay bounds for applicasion data units are unaffected
[10]. Note that group scheduling subsumes individual
scheduling as a special case (by specifying one packet
per group).

Group scheduling reduces the work of heap search
(adaptive or not) over active flows. With group
scheduling, a flow changes its priority value less fre-
quently, 1.e., from group to group instead of from
packet to packet. Empirical results show that such re-
duction in work is very iraportant for a heavily utilized
channel.

The balance of this paper is organized as follows. In
Section 2, the system model for algorithm design and
analysis is described. In Section 3, heap search based
upon a sorted priority queue is discussed. In Section
4, adaptive heap search is motivated, described, and
analyzed. An algorithm specification is presented. Em-
pirical results from our experimental investigation are
presented in Section 5.

2 System Model

Flow Queue 1
T
Flow Queue 2

1%

channel I
scheduler >
Channel

Flow Queue M

|

A

Figure 1: System model.

Our design and analysis of search algorithms are
based upon the model shown in Figure 1. Consider
a channel shared by M flows, each of which is a se-
quence of packets. Packets are of variable, bounded
size; packet transmission times are bounded by a max-
imum 7y, and a minimum Tmi,. A FIFO queue is
maintained for the ready packets of each flow. A flow

15

is said to be active whenever it has at least one packet
in its queue.?

The priority value of a flow, P,,, is defined to be
the priority value of the head packet in its queue, for
m = 1,2,...,M. For the purpose of this paper, there
is no need to know how priority values are computed.
(The reader is referred to [1, 4, 5, 6, 7, 11, 12, 14]
on computation methods for a variety of service dis-
ciplines.) To find the next packet to transmit, the
scheduler uses a search algorithm to find a flow, de-
noted by nezt flow, that has the smallest value in the
set of priority values of all active flows. If there is no
active flow at the end of the current packet transmis-
sion, the channel becomes idle at that time.

When a packet is being transmitted, it is required
that the next flow be found by the end of the packet
transmission, denoted by t.,4. More specifically, if
there is at least one flow active at ¢4, 1t is required
that the next flow be selected and transmission of its
head packet begin immediately after t., 4. This require-
ment, however, is not always satisfiable. Consider the
following scenario: Suppose a large number of previ-
ously inactive flows become active {due to new arrivals)
an instant before tenq. In this case it would be impos-
sible for any search algorithm to find the next fiow by
tend 1D Zero time. .

For this reason, the concept of a gate at ¢ seconds
before the end of the current packet transmission is
needed (see Figure 2). A previously inactive flow that
becomes active after the gate may be excluded from
the set of active flows being searched by the scheduler
during the current packet transmission; if this happens,
it will be included during the next packet transmission.

gate of current
packet transmission

| \]lé— —
T /? Time

start of current end of current
packet transmission packet transmission /
start of next

Figure 2: Concept of a gate.

Clearly, gating causes extra delays for some packets.
These extra delays, however, are bounded. Specifi-
cally, if ¢ is chosen to be less than the current packet
transmission time, the extra delays are bounded by
Tmaz, the transmission time of a maximume-size packet.
(With gating, the delay guarantee provided by a ser-
vice discipline should be increased by mma..) Note
that gating is needed to ensure a nonzero time interval
for searching, irrespective of which search algorithm is
used.

Moreover, € cannot be arbitrarily small. Consider
a worst-case scenario, and let w4, denote the search
algorithm’s work to find the next flow in this scenario.

2For some service disciplines, a packet arrival to a switch may
be buffered first and does not join the flow’s queue until some
jitter constraint is satisfied [6].

Let ¢ be the processing capacity allocated to the search
algorithm. Then to finish a worst-case search by the
end of the current packet transmission, the following is
required:
Wmazx
£> —— (1)
c

On the other hand, note that ¢ may be less than
the transmission time of a minimum-size packet, Ty, .
Thus to finish a worst-case search during the transmis-
sion of a minimum-size packet, the search algorithm
requires a processing capacity of at least wy,az/Timin.
It should be clear that a desirable design objective for
the search algorithm is to minimize work for the worst
case.

Lastly, observe that using a value of ¢ larger than the
current packet transmission time would not reduce the
lower bound, Wmar/Tmin, on the processing capacity.
To explain this observation, let tpcg4, denote the be-
ginning of the current packet transmission. Note that
even if gating for the current packet transmission oc-
curs before tpc4n, the search cannot always begin at
the gate. This 1s because the previous search may not
finish until an instant before tpegir .

In the balance of this paper, the metric to be used
for quantifying the work of a search algorithm is the
number of active flows searched to find the next flow.
Searching an active flow involves reading the flow’s pri-
ority value, comparing it to another priority value, and
associated bookkeeping. This metric is a relative mea-
sure of work suitable for comparing different search
algorithms. (The actual work of a particular search
algorithm is implementation dependent.)

3 Heap Search

In the networking literature, numerous service dis-
ciplines have been proposed to provide delay guar-
antees, but not much work has been done on search
algorithms needed to implement these disciplines. A
sorted priority queue is often cited as an appropriate
data structure for such search algorithms [13]. Keshav
presented a specific implementation using heap search
[9]. His priority-based scheduler, called PERC, was
designed for the Fair Queueing service discipline [4].
Heap search was found to have good average perfor-
mance, but worst-case performance was not considered.

We next describe a heap search algorithm similar to
the one used by Keshav. It will serve as a base upon
which we develop the adaptive heap search algorithm
in Section 4.

A search algorithm based on a heap can be specified
as follows. Consider Figure 3. A heap of active flows
is maintained by the scheduler. The priority value of
a flow is used as the flow’s heap key. A heap is con-
structed such that the flow on top of the heap has the
smallest priority value among those on the heap. The
heap changes dynamically as the priority values of flows
change, and as flows change from being inactive to ac-
tive and vice versa. An inactive flow becomes active
upon the arrival of a new packet to its queue; the flow
is then added to the heap. An active flow becomes
inactive when the last packet in its queue completes
transmission; the flow is then removed from the heap.

16

T next flow

heap_min()

(m, Py

insertion requests from
flows not on heap

Figure 3: Heap

The following actions are performed by the search al-
gorithm to access and maintain the heap (the current
heap size is denoted by h):3

heap_insert (m)
Insert flow m to heap; flow m, previously not
on heap, has become active. Its current P,
value is used as the heap key. This action’s
work is upper bounded by [log(h + 1)].

heapmin()
Return the index of the flow on top of heap;
return 0 if heap 1s currently empty. This action
requires no search of flows.

heap_extract min()
Remove the top flow from heap because the

flow is now inactive. This action’s work is up-
per bounded by 2{logh].

heap_update min()
Rearrange heap because the priority value of
the flow on top of heap has changed; the flow
is still active. This action’s work is upper

bounded by 2{log(h + 1)].

The algorithm ensures that a flow is on heap only
if it is active. Also, the heap preserves the partial or-
dering of active flows whose priority values have been
compared.

From results in [9] as well as our own experimental
studies, we conclude that heap search has good average
performance. The average work of heap search to find
the next flow is O(log M). (Note that this is not as
good as the average performance of some search algo-
rithms for discrete-event simulation [2, 8].)

Next we investigate the worst-case performance of
heap search. Observe that upon completion of a
packet transmission, if the top flow has become inac-
tive the heap_extractmin action is needed; else the
heap.update min action is needed. We assume that
either of these actions is carried out at the beginning

The reader is referred to textbooks on algorithms, e.g. [3]

1
on how to implement these actions.

of the current packet transmission and is completed be-
fore the gate of the current packet transmission. Subse-
quently, multiple heap_insert actions, up to M, may
be performed for previously inactive flows that have
become active prior to the end of the current packet
transmission.

Notation

i positive integer; index of a packet in the
sequence of packet transmissions (over all
flows)

h; heap size (number of flows on heap) at the
gate of the ith packet transmission

¢; number of pencing heap insertions at the
gate of the 7th packet transmission

w; upper bound on the work to process pending
heap insertion requests at the gate of the ith
packet transmission

With gating, only the heap insertion requests pending
at the gate need to be performed. Thus, we have

¢
w; =y |log(h +)] (2)
i=1

The most work to be performed by heap search at
the gate of a packet transmission is Max wi, which
l—

is O(Mlog M). In the next section, we present an
adaptive strategy to improve on this worst-case per-
formance.

4 Adaptive Heap

T next flow

heap_min {)

(m By, -

Heap Insertion Request Queue

insertion requests from
flows not on heap

Figure 4: Adaptive heap

The idea of an adaptive heap was motivated by the
following observation from studying heap search: Much

of the algorithm’s work to perform heap insertions is
for maintaining the heap and not required for finding
the next flow. Consider this example. Suppose ¢; =
10 and h; = 30. From (2), w; is 49. That is, the
algorithm may search up to 49 flows to process the
10 heap insertions. However, at the gate, it is known
that the next flow is one of only 11 flows, i.e., the 10
flows with insertion requests plus the flow on top of
the heap. A linear search over the 11 flows would find
the next flow. This example suggests that the worst-
case performance of heap search can be significantly

improved with an adaptive strategy.*

To design the adaptive strategy, the heap data struc-
ture is extended to include a component for holding
heap insertion requests. The new data structure, which
we call adaptive heap, is illustrated in Figure 4. All
pending heap insertion requests are stored in the Heap
Insertion Request Queue (HIRQ).®

For the adaptive heap, the search algorithm makes a
decision at the gate of every packet transmission as fol-
lows: If the work to process all heap insertion requests
currently in HIRQ is not too large (we will quantify
this later), the algorithm continues to behave like (reg-
ular) heap search, and it calls heap min to obtain the
next flow at the end of the packet transmission. Other-
wise, the algorithm stops performing heap insertions,
and uses linear search over HIRQ and heapmin() to
find the next flow. After the linear search, it resumes
processing heap insertion requests.

Suppose the processing capacity ¢ allocated to the
algorithm is enough to search N; flows over the time
interval from the gate to the end of the ith packet
transmission. Note that N; depends upon both ¢ and
€. Because packet transmission times vary, we decided
not to use a fixed ¢ for all 7. This is because, with a
fixed €, the time interval between the start of a packet
transmission and its gate is of variable length, and it is
difficult for the scheduler to generate the gating event
with precise timing. Furthermore, it may have to inter-
rupt a heap action and incur some attendant context
switching cost. '

Thus, to facilitate implementation, we specify that
gating occurs immediately after the heap_extract min
or heap.updatemin action that follows the start of
every packet transmission. In this case, N; depends
upon ¢ and the duration of the ith packet transmission.
The condition for the algorithm to make an adaptive
change at the gate of the ith packet transmission is

w; < N; (3)

where w; is given by (2). If the condition holds, the
algorithm knows that 1t has enough time to complete
all pending insertion requests before the end of the cur-
rent packet transmission and does not have to search
HIRQ at this time.

Note that it may not be easy to compute w; in (2)
on the fly. There are two methods to speed up w;’s

4Linear search over the entire set of active flows (pure linear
search) should not be used because its average performance is
poor.

SHIRQ can be efficiently implemented by a doubled linked
list.

derivation. First, it can be shown that the right hand
side of (2) is tightly upper bounded by ag; +h; —2% +1
where a = |log(h;+¢:)|. Better yet, there is no need to
compute w; it a table of values for the right hand side
of (2), indexed by (gi, h;), has been built in advance.

4.1 Worst-case performance

We consider two versions of the adaptive search al-
gorithm. Version 0 is the one described above. Version
1 is described below.

For the ¢th packet transmission, the work of the
adaptive search algorithm (version 0) is upper bounded
by

<hi <M

2log h; M — h; 11
{Mog +()+ h,«_:O (4)

where 2log h; bounds the work of a heap_update min
or heap extractmin action that follows the start of
the packet transmission. Because of the adaptive strat-
egy, the work to find the next flow is upper bounded
by the work to search every flow in HIRQ plus the top
flow on heap, which is (M — h;) + 1.

For 1 < h; < M, it can be shown that (4) has a
maximum value of M + 1 at h; = 2. Therefore the
worst-case performance of the adaptive search algo-
rithm (version 0) is- M + 1.

We next introduce a slight modification to the al-
gorithm to improve implementation modularity (the
modified algorithm will be referred as version 1).
Specifically, when the algorithm decides to change
strategy at the gate of a packet transmission, it uses
linear search to find the flow in HIRQ with the smallest
priority value, and then calls heap_insert to process
it. As a result, the next flow is always determined by
calling heap min at the end of a packet transmission.
We pay a small price in worst-case performance for the
modularity. Specifically, for the ith packet transmis-
sion, the work of the adaptive search algorithm (version
1) is upper bounded by

2oghi + (M — hi) +log(h; +1) 1<h; <M

M h;i =0
: ®)
where log(h; + 1) is an upper bound on the work to
perform heap_insert for the flow in HIRQ found by
linear search. From (5), it can be shown that the
worst-case performance of the adaptive search algo-
rithm (version 1) is M + 2, which is larger than M +1
for version 0.

4.2 Comparison with other algorithms

For M flows, the worst-case performance of pure lin-
ear search 18 M. No algorithm can do better than that
in the worst case. Pure linear search, however, has poor
average performance and should not be used. Thus the
worst-case performance of adaptive heap search (M +1)
can be considered optimal.

The worst-case performance of heap search is
O(M log M). Tt can be calculated more precisely using
the tight bound in (2).

Let us consider an example. Suppose h; = 0 and
¢i = M = 64. The work of heap search to find the next

18

flow is 264 from (2), as compared to 66 from M + 2 for
adaptive heap search (version 1).

To improve worst-case performance, adaptive heap
search pays a small price in average performance, i.e.,
some extra work to search HIRQ once in a while. Em-
pirical results in Section 5 show that this price is very
small because the need for searching HIRQ is statis-
tically infrequent. Therefore, over a long period of
time, the average work of adaptive heap search is only
slightly more than that of heap search.

The algorithm, Calendar Queues [2], designed for
discrete-event simulation, has the best average perfor-
mance. However, its worst-case performance is O(M?),
which is not even as good as heap search.

There are some well known modifications to the
standard heap data structure for better performance
when a large number of insertions are waiting to be
performed [3]. However, they were designed to op-
timize average performance; none of the modified al-
gorithms was designed to achieve optimal worst-case
performance for the type of search discussed in this
paper. For example, a new heap can be built first for a
large number of insertions using a heapify function; the
new heap is then merged with the existing heap. For
this modified algorithm, we can show that its worst-
case performance is at least 3M, which is much larger
than M +1. Another example is Fibonacci heap, which
has a worst-case performance of O(M) with a large
constant factor. Moreover, its implementation com-
plexity is too high for it to be viable in high speed
networks.

4.3 Algorithm specification (version 1)

The heap insertion request queue (HIRQ) is a
doubly-linked list which is accessed with the following
actions:

HIRQ-enqueue(m)
append flow m to the tail of HIRQ

HIRQ.dequeue()

remove and return the flow at the head of
HIRQ

HIRQ length()
return the number of flows in HIRQ

HIRQmin()
return index of the flow with the smallest pri-
ority value in HIRQ

HIRQ makehead(m)
move flow m to the head of HIRQ

All of the actions, except HIRQmin (), require no search
of flows (i.e., negligible work). The work of HIRQ.min ()
is the number of flows in HIRQ each of which is
searched.

In our specification of the adaptive search algorithm,
we use the heap actions, heap_insert(m), heapmin(),
heap_extractmin(), and heap.updatemin(), intro-
duced in Section 3. Additionally, the following proce-
dures and functions are also used:

heap_size() return the number of flows currently on
heap
active(m) return TRUE if and only if flow m is active
work(q,h) return worst-case work when there are
g pending insertion requests and h flows
on heap; this may be calculated using
equation (2)

N() return the maximum number of flows
that can be searched prior to end of cur-
rent packet transmission

wait(cond) system call that blocks the calling pro-

gram until cond becomes true

The following variables are used:

boolean, set to TRUE when a new
packet transmission begins

start_trans

next_flow index of top flow on heap

The adaptive search algorithm is made up of three
procedures: request, select, and update. When a
previously inactive flow m becomes active, procedure
request, specified below, is called:

begin
HIRQ_enqueue(m) ;
end

At the end of every packet transmission, procedure
select, specified below, is called:

begin
next flow := heapmin() ;
if (next flow > 0)
then start.trans := TRUE ;

end

The main procedure is update, specified below, which
loops indefinitely:

while (TRUE) do
if (start_trans = TRUE)
then
if (active(next_flow) = TRUE)
then heap updatemin()
else heap_extractmin() ;
start_trans := FALSE ;

// make adaptive decision
if (work(heap.size(), HIRQ length())
> NQ)
then HIRQ.makehead (HIRQmin()) ;
if (HIRQlength() > 0)
then heap_insert(HIRQ.dequeue())

else wait(start.trans = TRUE
or HIRQ_ length() > 0) ;

5 Empirical Results

The adaptive search algorithm was evaluated em-
pirically using discrete-event simulation. We simulated
an output channel of a packet switch SW. The chan-
nel, labeled L1 in Figure 5, is statistically shared by 60
video flows. The source of each video flow is labeled
VS. There is a dedicated channel from the source of
each video flow to SW. (The channel capacities were
20 Mbps for VS1-VS15, 40 Mbps for VS16-VS30, 100
Mbps for VS31-VS45, and 120 Mbps for VS46-VS60.)
The capacity of L1 was varied to achieve different chan-
nel utilizations in different experiments.

1
2

s
s

w

L1

Figure 5: Simulation configuration

MPEG picture bit rate (Mbps)

sequence minimum | maximum | average
‘Terminator 0.14 3.86 1.15
ParentsSon 0.37 5.97 1.51
RedsNightmare 0.89 3.62 0.75
Student 0.48 2.47 1.27
Drivingl 0.17 8.48 1.88
Airwolf 0.14 3.31 0.89

Table 1: Profile of MPEG traces used in experiments

The video flows were generated using traces ob-
tained from MPEG video sequences. A profile of the
video sequences is shown in Table 1, each of which was
used for generating 10 video flows. Encoded pictures
in MPEG video vary greatly in size (number of bits).
The picture bit rate in Table 1 is equal to picture size
divided by 1/30 second. In our experiments, it was as-
sumed that the string of bits representing a picture is
segmented into packets of 53 bytes each.®

Each experiment was performed for one second of
simulated time (except for the ones in Section 5.2).
More than 130,000 packets passed through L1 in an
experiment. The utilization of L1 was varied from 45%
to 95% by changing its capacity. Virtual clock values
were used as priority values for packets [14].

In the empirical results shown below, the work of
adaptive heap search includes not only the number of

5We tried spacing out packets within a flow in different ways.
We also tried using different channel speeds between the video
sources and switch. We found no significant change in the results
reported herein.

active flows searched, but also the number of times the
condition in (3) for an adaptive decision is checked (to
get a fair comparison with non-adaptive heap search).

It was assumed that the algorithm was allocated
enough processing capacity to search 22 flows for each
packet transmission (N; = 22 for all 7), which is about
one-third of the processing capacity needed for the
worst-case (M+2). To determine the next flow, search-
ing HIRQ is almost always faster than heap search.”
However, the work to search HIRQ is additional. In
our experiments, the size of HIRQ was observed to be
8 or less.

8t adaptive heap -+~ /
regular heap -+ p
x 6r
g
LY
(=)
S 41
g
<<
2+

60 70 80 90 100
Channel utilization (%)

Figure 6: Average performance of search algorithms

The additional work done to search HIRQ in adap-
tive heap search, found to be very small, is quantified
in Figure 6. Simulation runs were made for different
channel utilizations. The average work of each search
algorithm was calculated from the total work of the
algorithm divided by the total number of packet trans-
missions in a simulation run. The difference in average
work between adaptive heap and regular heap is due
to additional work performed by the adaptive search
algorithm to check condition (3) for an adaptive deci-
sion and, if the decision is to change strategy, to search
HIRQ. Observe that the additional work is very small.

Figure 6 shows that the average work of each al-
gorithm increases as channel utilization increases. In
Figure 7, we show a breakdown of the work of adap-
tive heap search into three components: (i) work due
to change in a flow’s priority value (heap_update min
), (i) work due to change in a flow’s active sta-
tus (heap-insert and heap_extractmin), and (iii)
work due to adaptivity and searching HIRQ.

When channel utilization increases, the work com-
ponent due to priority change becomes dominant. This
is because when the channel utilization is high, most
of the flows are active and on heap; as a result,
heap_update min accounts for most of the algorithm’s
work.

7Compare (2) with ¢; + 1.

20

100 f

90 r
priosity change ——
80 | active status change -
adaptive linear search e

70 1
60
50 |

40}
30 f
20 \\

Percentage of total work (%)

10 +

60 70
Channet utilization (%)

Figure 7: Work components in adaptive heap search

5.1 Adaptive heap
scheduling

To make adaptive heap search even more efficient,
particularly when channel utilization is high, the algo-
rithm has been extended to implement group schedul-
ing. With group scheduling, consecutive packet ar-
rivals in a flow are partitioned into groups; packets in
the same group have the same priority value. Group
sizes can be designed such that the end-to-end delay
bounds for application data units are unaffected [10]

Group scheduling reduces the work of heap search
(adaptive or not) over active flows. This is because,
with group scheduling, a flow changes its priority value
less frequently, i.e., from group to group instead of from
packet to packet. Specifically, group scheduling reduces
the algorithm’s work due to priority change, which is
the largest work component when channel utilization
is high. :

We repeated the experiments shown in Figure 6 for
the two search algorithms with group scheduling. For
each video flow, a different group size was chosen for
each picture (using a method described in [10]). For
these experiments, the average group size was 4.4. The
simulation results are shown in Figure 8. Note that
group scheduling reduces the work of both heap search
and adaptive heap search. In particular, the average
work levels off as channel utilization increases.

In Figure 9, we show the average performance of
adaptive heap search only, but for three different aver-
age group sizes (1, 4.4, and 19). The first case, average
group size=1, is individual scheduling.

In Figure 10, we show the reduction in the
heapupdatemin work due to group scheduling, as a
percentage of the heap update min work in adaptive
heap search with individual scheduling. Note that the
% reduction is almost constant as a function of chan-
nel utilization. The % reduction is roughly equal to
(g — 1)/g, where g is the average group size.

Table 2 contains data on how many times the search
algorithm made an adaptive change during an experi-
ment. We make two observations. First, the frequency
of adaptive changes is small at a low channel utilization
(because HIRQ 1s short when most flows are inactive),
and also at a high channel utilization (because HIRQ

search with group

2 T T r . 5

adaptive heap ——
regular heap -+

15} E

Average work

Average group size = 4.4

1 1 i " .

50 60 70 80 90

100
Channel utilization (%)

Figure 8: Average performance of search algorithms
with group scheduling

8r individual priority e .

average group size = 4.4 -+
average group size = 19 —e— rd

x 6f ’ 1

s

@

&

< o

Channel utilization (%)

Figure 9: Performance of adaptive heap search for dif-
ferent group sizes

average group size = 4.4 ——
average group size =19 -~
100 f 1
g 920 | N .
<
o
5]
3
o 80 1
o« \\
70]
60 . .

50 60 70 80 90 100

Channel utilization (%)
Figure 10: Reduction of heap updatemin work

is short when most flows are active). Second, the need
for adaptive change is reduced with group scheduling.

5.2 Histograms of work per packet trans-
mission

21

Group size | Channel utilization (%) |
45 | 60 | 75 | 89 | 95

1 0 0 T 24 7

4.4 0 0 3111 1

19 0 0 0 5 1

Table 2: Number of adaptive changes made by algo-
rithm

0.8
Without group priority
0.6 1
)
<
3 04
o
[
0.2 1
0 2 4 6 8 10 12 14
Work in one transmission
0.8
Average group size = 4.4
0.6 1
)
C
S 04
1
[
0.2 4
0 2 4 6 8 10 12 14
Work in one transmission
0.8
| Average group size =19
0.6 1
oy
o
2 041
o
\w
0.2 1
0 2 4 6 8 10 12 14

Work in one transmission

Figure 11: Work per packet transmission in a light load
period

For the adaptive search algorithm, with and with-
out group scheduling, we performed simulation ex-
periments in which the algorithm’s work during each
packet transmission was measured. The results are
shown as histograms in Figures 11 and 12. Figure 11
shows results from experiments in which the channel
utilization was relatively light (60%) with 7,163 packet
transmissions in each experiment. Figure 12 shows re-
sults from experiments in which the channel utilization
was high (almost 100%) with 11,663 packet transmis-
sions in each experiments.

0.8
Without group priority
0.6 1
g
o
S 041
D
i
0.2 4
T ‘rl_l H L ¥ T T
0 5 10 15 20 25 30
Work in one transmission
0.8
] Average group size = 4.4
0.6 1
g
c
S 04;
o
u.
0.2 1
L _enll
0 5 10 15 20 25 30
Work in one transmission
0.8 =
Average group size = 19
0.6 1
g
=
3 041
@
w
0.2 1
A oo llan o :
0 5 10 15 20 25 30

Work in one transmission

Figure 12: Work per packet transmission in a heavy
load period

With group scheduling, note that the algorithm’s
work was zero for the majority of packet transmissions,
1.e., no flow was searched.

6 Conclusions

For many service disciplines that provide delay guar-
antees, the scheduler of a channel repeatedly searches
for the smallest element in a set of priority values
(or deadlines). It is required that each search fin-
ishes within a time bound. We have developed an
efficient adaptive search algorithm, based upon a new
data structure, called adaptive heap. It behaves like
a heap most of the time, and its average performance
is almost the same as heap search. However, it adap-
tively changes its search strategy when necessary to
satisfy the time bound.

To further improve algorithm efficiency, the adap-
tive scarch algorithm is extended to include group
scheduling. We presented empirical results on the per-
formance of adaptive heap search with and without

22

group scheduling. We found that group scheduling pro-
vides a substantial reduction in the algorithm’s work
when channel utilization is high.

References

{1] Jon C.R. Bennett and Hui Zhang. Hierarchical packet
fair queueing algorithms. To appear in Proceedings of
ACM SIGCOMM '96.
Randy Brown. Calendar queues: A fast O(1) prior-
ity queue implementation for the simulation event set
problem. Communications of the ACM, 31(10):1220~
1227, October 1988.

Thomas H. Cormen, Charles E. Leiserson, and
Ronald L. Rivest. Introduction to Algorithms. MIT
Press and McGraw-Hill Book Company, 1993. Tenth
printing.

(2]

Alan Demers, Srinivasan Keshav, and Scott Shenker.
Analysis and simulation of a fair queuing algorithm.
In Proceedings of ACM SIGCOMM ’89, pages 3-12,
August 1989,

Domenico Ferrari and Dinesh Verma. A scheme for
real-time channel establishment in wide-area networks.

IEEE Journal on Selected Areas in Communications,
pages 368-379, April 1990.

Norival R. Figueira and Joseph Pasquale. Leave-in-
time: A new service discipline for real-time communi-
cations in a packet-switching network. In Proceedings
of ACM SIGCOMM °95, pages 207-218, August 1995.

S. Jamaloddin Golestani. A self-clocked fair queueing
scheme for high speed applications. In Proceedings of
IEEE INFOCOM ’94, pages 636-646, March 1994.

D. W. Jones. An empirical comparison of priority-
queue and event-set implementations. Communica-
tions of the ACM, 29(4):300-311, April 1986.
Srinivasan Keshav. On the efficient implementation

of fair queueing. Journal of Internetworking Research
and Fzperience, 1991.

Simon 8. Lam and Geoffrey G. Xie. Group priority
scheduling. In Proceedings of IEEE INFOCOM ’96,
San Francisco, CA, April 1996.

Abhay K. Parekh and Robert G. Gallager. A gener-
ialized processor sharing approach to flow control in
integrated services networks: The single node case.
IEEE/ACM Trans. on Networking, 1(3):344-357, June
1993,

Dinesh Verma, Hui Zhang, and Domenico Ferrari. De-
lay jitter control for real-time communication in a
packet switching network. In Proceedings of Tricomm
’91, Chapel Hill, North Carolina, April 1991.

Hui Zhang. Service disciplines for guaranteed perfor-
mance service in packet-switching networks. To appear
in Proceedings of IEFEE.

Lixia Zhang. VirtualClock: A new traffic control al-
gorithm for packet switching networks. In Proceedings
of ACM SIGCOMM ’°90, pages 19-29, August 1990.

(10]

(11]

(12]

(13]

(14]

