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Abstract
We investigate the preservation of quality of service

guarantees to a flow of packets in the presence of flow ag-
gregation. In flow aggregation, multiple flows, known as
the constituent flows, are merged together resulting in a
single aggregate flow. Packet schedulers located after the
network point where the aggregation occurred are aware of
the aggregate flow, but are unaware of its constituent
flows. In spite of this, we show that quality of service
may still be guaranteed to the constituent flows if the ag-
gregation is performed fairly. Furthermore, contrary to in-
tuition, the quality of service guaranteed to a flow may be
greater under flow aggregation than in the case where no
aggregation is performed.

1 . Introduction
Consider a computer network that consists of a set of

computers interconnected with point-to-point communica-
tion channels.

A flow in the computer network is a potentially infinite
sequence of packets generated by the same source and hav-
ing the same destination in the network.

Each output channel of a computer is equipped with a
scheduler process, as shown in Figure 1. From the input
channels, the scheduler receives packets from flows whose
next hop to the destination is the output channel of the
scheduler.

Whenever its output channel becomes idle, the scheduler
chooses a received packet and forwards the packet to the
output channel.

One type of schedulers, known as guaranteed-rate sched-
ulers, guarantee that the packets of each flow will be for-
warded at a designated rate. Examples of these scheduling
protocols can be found in [16,17].

In all these protocols, the following steps are taken to
reserve bandwidth for a new flow. First, the network finds
a path from the source of the flow to the destination of the
flow. Then, the network reserves for the flow a fraction of
the bandwidth of each output channel along the path. The
new flow is admitted into the network only if there is
enough available bandwidth along the entire path.

Due to the reservation of bandwidth, the network can
provide service guarantees to each flow, such as end-to-end
packet delays, provided the rate of the flow does not exceed

the agreed-upon rate. These service guarantees are of par-
ticular importance to real-time applications, such as inter-
active audio and video [5].

In this paper, we investigate the effects of aggregating
multiple flows, known as the constituent flows, into a
single aggregate flow. Once the aggregation is done, the
remaining schedulers along the path will have no knowl-
edge of the constituent flows of the aggregate flow, and
will treat the aggregate flow as a single flow whose rate is
the sum of the reserved rates of the constituent flows.

One practical implementation of flow aggregation is
virtual paths in virtual circuit networks [12]. Multiple
virtual circuits may be combined into a single virtual path.
Schedulers along the virtual path are aware only of the
virtual path, and are unaware of the virtual circuits that
constitute the virtual path. Thus, a virtual circuit may be
viewed as a constituent flow, and a virtual path may be
viewed as an aggregate flow.

The purpose of flow aggregation is to improve the effi-
ciency of the schedulers and to simplify the management
of flows. For example, buffer management is simplified,
because only one queue per aggregate flow is required,
rather than one queue per constituent flow. Furthermore,
rerouting an aggregate flow in the event of a failed channel
along its path is much more efficient than rerouting each
of the constituent flows individually.

In this paper, we examine if it is possible to provide
quality of service guarantees to the constituent flows. In
particular, we consider end-to-end delay guarantees. We
show that if the aggregation of flows is performed fairy,
then an upper bound on end-to-end delay is guaranteed for
the constituent flows, even though schedulers are unaware
of these flows. Furthermore, we show that, contrary to in-
tuition, the upper bound on end-to-end delay for the con-
stituent flows may be lower under flow aggregation than
in the case where no aggregation is performed.

The paper is organized as follows. In Section 2, we
review how packet timestamps are computed to provide
bounded packet delays at a scheduler. In Section 3, we
review the concept of rate-proportional schedulers, which
will be the foundation for computing end-to-end delays. In
Section 4, we define flow aggregation and present
examples. In Section 5, we identify the property that the
aggregation must satisfy in order to preserve a low end-to-
end delay. In Section 6, we show how to implement
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Figure 1: A computer with input channels and output
channels.

process  scheduler

inputs
idle : is the output channel idle?
R.f : rate of flow f

variables
f : flow, 0 . . N-1
i : packet index (integer)
queue.f : packet queue of flow f
L.f.i : length of packet p.f.i
T.f.i : timestamp of packet p.f.i
V : virtual time function

begin
  receive p.f.i from any f →

update(V);
T.f.i := max(V, T.f.(i-1)) + L.f.i/R.f;
append(p.f.i, queue.f)

  idle ∧ (∃ f : : queue.f ≠ empty)   →
f := least(queue);
p.f.i := head(queue.f);
forward p.f.i;
queue.f := tail(queue.f);

end

Figure 2: Timestamp Scheduler

schedulers that satisfy this property. Future work is given
in Section 7.

A note on notation: throughout the paper we use
quantifications of the form

(⊕ x : R(x) : B(x))

Above, ⊕ is a commutative and associative operator, such
as +, -, max, min, ∀ (conjunction), or ∃ (disjunction).
R(x) is a boolean function defining the range of values for
the dummy variable x, and B(x) is a function defining the
value given as an operand to ⊕. For example,

(min x : 1 ≤ x ≤ 3 : x2)

denotes the minimum of 12, 22, and 32. If R(x) is omitted,
all values in the type of x are included.

2 . Timestamp scheduling
We next review the use of timestamps in guaranteed rate

schedulers.
To guarantee that the packets of a flow are forwarded at

a rate of at least the rate reserved for the flow, the scheduler
assigns a timestamp to each received packet. The times-
tamp is a function, among other things, of the flow's re-
served rate. Then, the scheduler forwards the packets in or-
der of increasing timestamp. Below, we examine in more
detail how this timestamp is computed.

We adopt the following notation for a scheduler.

• N number of input flows of the scheduler.
• R.f forwarding rate (in bits/sec.) reserved for flow f.
• p.f.i ith packet received from flow f, i ≥ 0.
• A.f.i arrival time into the scheduler of packet p.f.i.
• T.f.i Timestamp assigned to packet p.f.i.
• L.f.i packet length (in bits) of packet p.f.i.
• E.f.i exit time of packet p.f.i, i.e., when the output

channel finishes forwarding packet p.f.i.
• L.fmax upper bound on packet length for flow f.
• Lmax upper bound on packet length for all flows.
•  C capacity in bits/sec. of the output channel of the

scheduler.

The goal of the scheduler is to forward the packets of
each flow f at a rate of at least R.f. Since N flows share
the output channel, the following constraint is necessary.

(+ f : 0 ≤ f < N : R.f)  ≤  C

Each packet timestamp T.f.i is computed as follows.

T.f.i := max(V, T.f.(i-1)) + L.f.i/R.f

In this assignment, T.f.-1 is defined to be zero, and V is a
function, known as the virtual time function, whose value
monotonically increases with time.

The protocols of Virtual Clock [14,15], Weighted Fair
Queuing [10,11], Self-Clocking Fair Queuing [7], and
Time-Shift Scheduling [3], among others ([1,13]) all use
the above formula to compute packet timestamps. The
difference between these protocols is the value chosen for
V. For example, in Virtual Clock scheduling [15], V is
the arrival time of packet p.f.i, while in Self-Clocking
Fair Queuing [7], V is the timestamp of the packet
currently in the output channel.

Therefore, a scheduler based on assigning timestamps to
packets may be defined as in Figure 2 (using the notation
presented in [8] and [9].)

The inputs to the scheduler are the reserved rate of each
flow, and a boolean flag indicating if the output channel is
idle at this moment.

The scheduler consists of two actions. In the first ac-
tion, the scheduler receives a packet from a flow. The
scheduler first updates the value of V to make sure it is
current before the timestamp is computed. Then, the
timestamp of the packet is computed, and the packet is ap-
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Figure 3: Aggregation of flows into flow aggregates.

pended to the queue of its flow. Notice that T.f.i > T.f.(i-
1), and thus, maintaining the queue of flow f in first-in-
first-out order also maintains the queue of f in increasing
timestamp order.

In the second action, the scheduler detects that the out-
put channel is currently idle, and that packets remain to be
forwarded. Then, function least(queue) examines the
packet at the head of the queue of each flow, and returns
the flow whose packet timestamp is the smallest. Then,
the scheduler removes the packet at the head of the queue
of this flow and forwards the packet to the output channel.

3 . Rate proportional schedulers
We define the rate-proportional deadline, D.f.i, of the ith

packet received from flow f as follows.

a) D.f.0 = A.f.0 + L.f.0/R.f
b) D.f.i = max(A.f.i, D.f.(i-1)) + L.f.i/R.f, where i > 0.

In essence, the rate proportional deadline of a packet is
the time at which the packet would exit a constant rate
server whose rate is R.f bits/sec. and whose sole input is
f.1

We say that a scheduler is a rate proportional scheduler
[2,6] with scheduling constant α, α > 0, iff, for all f and
i,

E.f.i ≤ D.f.i + α
That is, each packet will exit the scheduler at a time at
most the rate-proportional deadline of the packet plus α.

Many timestamp protocols, such as Virtual Clock,
Self-Clocking Fair Queuing, Weighted Fair Queuing,
Time-Shift Scheduling, among others, have been shown in
the literature to be rate-proportional schedulers [3, 11, 14,
15, 1, 13]. Thus, all these schedulers guarantee a deadline
to each packet that is independent of the arrival patterns of
packets from other flows, and depends solely on the arrival
patterns of packets from its own flow.

A flow will traverse a path of multiple schedulers before
it reaches its destination. Some values associated with a
packet vary from one scheduler to another along this path,
and thus we make explicit the scheduler in question by the
following change in the notation.

• A.s.f.i arrival time of packet p.f.i at scheduler s
• T.s.f.i timestamp of packet p.f.i at scheduler s
• D.s.f.i rate-proportional deadline of packet p.f.i at

scheduler s
• E.s.f.i exit time of packet p.f.i from scheduler s
• α .s scheduling constant of scheduler s.

The following theorem has been shown independently
and using different proof techniques in [2] and [6].

1Notice that the rate-proportional deadline of a packet is the same
as the timestamp of the packet under Virtual Clock scheduling. Thus,
Virtual Clock scheduling forwards packets in order of increasing rate
proportional deadlines.

Theorem 1
Let the path of flow f have k rate-proportional schedulers,
t1, t2, . . . , tk, k > 1. Then,

E.tk.f.i ≤ D.t1.f.i + (k-1)·L.fmax/R.f +
      (+ j : 1 ≤ j ≤ k : α.tj)

D.tk.f.i ≤ D.t1.f.i + (k-1)·L.fmax/R.f +
      (+ j : 1 ≤ j < k : α.tj)

♦
Therefore, the end-to-end delay of the packets of a flow

is composed of two parts. The delay encountered due to the
burstiness of the flow, which is represented by the D.t1.f.i
term above, and an extra delay of L.fmax/R.f + α for each
hop in the path of the flow. The latter delay is non-trivial,
and may be significant for flows with long paths to their
destinations.

4 . Flow aggregation
We next introduce the new concepts of simple and ag-

gregate flows.
A simple flow is a potentially infinite sequence of pack-

ets generated by the same source and having the same des-
tination in the network. That is, the flows considered in
earlier sections were simple flows.

An aggregate flow f of level k is a sequence of packets
with the following additional properties:

a) If k = 0, f is a simple flow.
b) If k > 0, then f is the merging of the packets from at

least two aggregate flows of level less than k, of
which at least one is of level k - 1.

If the packets of aggregate flow f, where f ≠ g, are also
packets of aggregate flow g, then f is a constituent of g.
Aggregate flow f is an immediate constituent of aggregate
flow g if f is a constituent of g and the level of g is one
greater than the level of f. We say that flow g is the root
of flow f if f is a constituent of g, and g is not a con-
stituent of any other flow.

For example, consider Figure 3, where f, h, and e are
simple flows, i.e., aggregate flows of level 0. Assume f
and h are aggregated together to form aggregate flow g, and
also g and e are aggregated together to form aggregate flow
d. Then, the immediate constituents of g are f and h, and
the immediate constituents of d are g and e. The level of g
is one, and the level of d is two. Furthermore, d is the root
of g, e, f, and h.
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Figure 4: Example of aggregate flows

The reserved rate R.g of aggregate flow g is the sum of
the reserved rates of the immediate constituent flows of g.
Thus, inductively, the reserved rate of aggregate flow g is
the sum of the rates of all the simple flows which are con-
stituents of g. In the example, R.d = R.g + R.e, and R.g =
R.f + R.h.

At a scheduler, the rate proportional delay of each packet
of aggregate flow g is calculated in the same manner as if
g were a simple flow with reserved rate R.g.

As mentioned in the introduction, the objective of this
paper is to investigate the possibility of aggregating mul-
tiple flows into a single flow, and determine if the quality
of service provided to the constituent flows is maintained
by the scheduler, even though the scheduler is only aware
of the aggregate flow and not the individual constituent
flows.

Thus, the input to a scheduler is now a set of aggregate
flows. For each aggregate flow g, the scheduler is unaware
of the constituent flows contained by g. It simply sched-
ules the packets of g as if g were a simple flow with re-
served rate R.g.

A scheduler which receives as inputs a set of aggregate
flows and produces as output a single aggregate flow
whose immediate constituents are the input aggregate
flows is called an aggregator.

A separator is a process that receives as input an aggre-
gate flow, and produces as output the immediate con-
stituents of the input flow. We assume a separator intro-
duces no additional packet delay. Separators are the only
processes which are aware of the immediate constituents of
an aggregate flow.

Consider for example Figure 4. In Figure 4(a), the first
computer receives two input flows, f and h. These flows
are given as input to an aggregator, which produces
aggregate flow g. Flow g is then the input to the computer
in Figure 4(b), and is aggregated with flow e to produce
flow d. Flow d and another input flow, c, are given as
input to a scheduler, which forwards these two flows
(without aggregating them) to the output channel.

Then, flows c and d traverse multiple computers until
they arrive to the computer in Figure 4(c). Here, flow d is
separated into its constituent flows, e and g. The
destination of flows c and e is this computer, so they are
not forwarded further. However, flow g must be forwarded
further to its destination, so it is given as input to a
scheduler. The scheduler forwards flow g and another input
flow b to the output channel, and so on.

Later on in the path of g, before the destinations of
flows f and h are reached, flow g will be separated into its
constituent flows f and h.

Several points are worthy of being stressed. First, the
root of a flow may change as it traverses the network. For
example, flow g is the root of flow f when g is between
the computers in Figures 4(a) and 4(b). However, when g
is aggregated into flow d in Figure 4(b), the root of f
becomes d. Then, after d is separated into e and g in Figure
4(c), g is once again the root of f.

Note also that the level of a flow does not change as it
traverses the network. E.g., the level of flow g is 1 and the
level of f is 0 throughout the network. In addition, a flow
is always separated only into its immediate constituents.
For example, flow f cannot be separated from flow d, since
flow f is not an immediate constituent of flow d.

Finally, in some cases, flows will be aggregated and
then directly forwarded to the output channel (Figure 4(a)),
while in other cases, flows will be aggregated and then
given as input to another scheduler before being forwarded
to the output channel (Figure 4(b)). In the latter case, both
the aggregator and the next scheduler are in the same
computer. The aggregator may be viewed as having an
output channel of infinite capacity, that makes the packet
forwarded by the aggregator immediately available to the
next scheduler.

5 . Fair aggregators
We now address the type of behavior that is needed from

an aggregator in order to retain quality of service guaran-
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tees to the constituent flows even though the succeeding
schedulers are unaware of them.

Consider Figure 5. The scheduler is not aware that g
consists of two flows, f and h. Thus, the scheduler only
guarantees that it will forward the packets of g at a rate of
R.g, where R.g = R.f + R.h.

Assume that packets from h arrive at a rate greater than
R.g, and no packets are received from flow f. If the aggre-
gator simply forwards these packets to the scheduler as
soon as they arrive, it is possible that they will cause a
significant increase in the queue of g at the scheduler.
Then, if packets from f are received and forwarded to the
scheduler, they will be placed at the end of the queue of g.
Thus, the next packet forwarded from flow f will not exit
the scheduler until the queue of g empties.

The above is undesirable, since it violates the quality of
service guarantees of flow f. That is, if the scheduler were
aware of flows f and h, the next packet of f would ex-
perience a delay of at most L.fmax/R.f + α. Therefore, the
aggregator must not forward packets from h at a rate
greater than R.g when no packets from f are present.

Assume now that both input flows are generating pack-
ets at a rate greater than their reserved rate. Assume the ag-
gregator forwards packets from f at a rate of exactly R.f,
but it forwards the packets from h at a rate greater than
R.h. Notice that this still satisfies the definition of a rate-
proportional scheduler, since the packets of f will exit the
aggregator by their rate-proportional deadline.

Also in this case, it is possible that the queue of g will
grow significantly, since packets of g arrive at a rate
greater than R.g = R.f + R.h. Thus, the packets of f will
be delayed excessively at the scheduler, because in the
queue of g there is an excessive number of packets of h in
between any two packets of f.

To prevent the above, the aggregator should forward
packets from f and h in a fair manner. That is, the ratio of
bits forwarded from h vs. the number of bits forwarded
from f should be kept as close as possible to R.h/R.f.

The above desired behavior for an aggregator is captured
succinctly by the following definition.

Definition 1
Let s be an aggregator, f be an aggregate input flow of s,
and g be the aggregate output flow of s. Let g be an input
flow of scheduler t. Furthermore, let packet p.f.i = p.g.j,
i.e., the ith packet of f is the jth packet of g. We say that s

is a fair aggregator, iff s is a rate-proportional scheduler,
and

D.t.g.j ≤ D.t.f.i + β.s

for some aggregating constant β.s.

♦
Thus, the rate-proportional deadline of packet of an im-

mediate constituent flow increases by at most β.s when the
flow of the packet is aggregated with other flows.
Furthermore, since an aggregator is a rate-proportional
scheduler, packet p.f.i exits aggregator s no later than time
D.s.f.i + α.s.

We will see next how this ensures an upper bound on
end-to-end delay similar to the upper bound when flows
aren't aggregated. We first consider the case when a simple
flow goes only through a single aggregator, i.e., the level
of the root flow is at most one. We then consider the more
general case when the root may have any level.

Theorem 2
Let f be an input flow of a fair aggregator s with schedul-
ing constant α.s and aggregating constant β.s. Let g be the
output flow of the aggregator, and let g pass through k
rate-proportional schedulers, t1, t2,  . . . , tk. Then,

E.tk.f.i ≤ D.s.f.i + L.fmax/R.f + (k-1)·L.gmax/R.g +
     β.s + α.s + (+ j : 1 ≤ j ≤ k : α.tj)

Proof:

Consider a packet p.f.i of f. Assume that p.f.i = p.g.j,
i.e., the jth packet of g is the ith packet of f. From the
definition of a fair aggregator

D.t1.g.j ≤ D.t1.f.i + β.s

Since the aggregator is a rate-proportional scheduler, and
from Theorem 1,

D.t1.g.j ≤ D.t1.f.i + β .s ≤ D.s.f.i + L.fmax/R.f +
                                 α .s + β .s  

From Theorem 1

E.tk.g.j ≤ D.t1.g.j + (k-1)·L.gmax/R.g +
      (+ j : 1 ≤ j ≤ k : α.j) 

Combining the above two relations,

E.tk.g.j ≤ D.s.f.i + L.fmax/R.f + (k-1)·L.gmax/R.g +
       β.s +  α.s + (+ j : 1 ≤ j ≤ k : α.j)

♦
Theorem 3
Let f be an input to a fair aggregator s with scheduling
constant α.s and aggregating constant β.s. Let g be the
output of the aggregator, and p.f.i = p.g.j. Let g pass
through multiple schedulers, the first one being t, and the
last one being u. Also, assume

E.u.g.j ≤ D.t.g.j + ϕ
If after u, flow f or flow g is given as input to scheduler v,
then



D.v.f.i ≤ D.s.f.i + 2·L.fmax/R.f + α.s + β.s + ϕ

Proof

From Theorem 1 and s is a rate-proportional scheduler,

D.t.f.i ≤ D.s.f.i + L.fmax/R.f + α.s

From definition of an aggregator,

D.t.g.j ≤ D.t.f.i + β.s

Since p.f.i = p.g.j, from the assumption in the theorem,
and the above two relations

  E.u.f.i = E.u.g.j ≤ D.t.g.j + ϕ
≤ D.t.f.i + β.s + ϕ
≤ D.s.f.i + L.fmax/R.f + α.s + β.s + ϕ

Thus, the schedulers from s up to u, from the point of
flow f, may be viewed as a single rate-proportional sched-
uler whose scheduling constant equals

L.fmax/R.f + α.s + β.s + ϕ
From Theorem 1, we obtain the desired result.

D.v.f.i ≤ D.s.f.i + 2·L.fmax/R.f + α.s + β.s + ϕ
♦
Corollary 1
Let f be an input to a fair aggregator s with scheduling
constant α.s and aggregating constant β.s. Let g be the
output of the aggregator, and let g pass through k rate-pro-
portional schedulers, t1, t2, . . . , tk. After tk, f is sepa-
rated from g and is given as input to scheduler v. Then,

D.v.f.i ≤ D.s.f.i + 2·L.fmax/R.f +(k-1)·L.gmax/R.g +
      β.s + α.s + (+ j : 1 ≤ j ≤ k : α.j)

Proof

Let p.g.j = p.f.i. From Theorem 1,

         E.tk.g.j ≤ D.t1.g.j + (k-1)·L.gmax/R.g +
(+ j : 1 ≤ j ≤ k : α.j)

From Theorem 3 (replacing t by t1 and u by tk).

      D.v.f.i ≤ D.s.f.i + 2·L.fmax/R.f +(k-1)·L.gmax/R.g +
       β.s + α.s + (+ k : 1 ≤ j ≤ k : α.j)

♦
The crucial point of the above theorems is that quality

of service may be provided to a flow even though it is ag-
gregated with other flows. In particular, when flow f is ag-
gregated into flow g, the rate-proportional deadline of a
packet p.f.i increases by L.gmax/R.g + α.j along the jth
hop in the path. On the other hand, if it is not aggregated,
its delay increases by L.fmax/R.f + α.j.

Note that R.g > R.f, and assume L.fmax ≈ L.gmax.
Then, the delay using flow aggregation may actually be
smaller than the delay when flow aggregation is not used.
Thus, this yields the counter-intuitive result that aggregat-
ing flows may reduce the packet delay incurred due to long
network paths, even though the scheduler is unaware that
an input flow is an aggregation of multiple flows.

Notice, however, that the delay increases by β.s, due to
the fair aggregator. However, if β.s is not very large, and
the number of schedulers after the aggregator is significant,
the overall effect may be a reduction in packet delay when
compared to the case of no aggregation.

We next consider the general case when the root of a
flow may have any level.

Theorem 4
Let f traverse k schedulers, t1, t2, . . . , tk, k > 2, any of
which may be an aggregator. Then, for any i, 0 ≤ i,

E.tk.f.i ≤ D.t1.f.i + (+ x : 1 ≤ x < k : L.rxmax/R.rx) +
                  (+ x : 1 ≤ x ≤ k : α.tx) +
                  (+ x : 1 ≤ x < k ∧ tx is an aggregator : β.tx)

D.tk.f.i ≤ D.t1.f.i + (+ x : 1 ≤ x < k-1 : L.rxmax/R.rx)
                  + L.fmax/R.f + (+ x : 1 ≤ x < k : α.tx) +
                  (+ x : 1 ≤ x < k ∧ tx is an aggregator : β.tx)
where

a) rx is the root flow of flow f when f is the input to
tx, provided f does not go through a separator be-
tween tx and tx+1,

b) rx is the root flow of f when f is the input to tx+1,
provided f goes through at least one separator be-
tween tx and tx+1.

♦
The proof of Theorem 4 is deferred to the full paper due

to space restrictions.
Theorem 4 allows us to calculate the exit time and rate-

proportional delay of each packet of a flow at each of the
schedulers along its path. Note that the rate-proportional
delay of a packet of flow f increases by L.rmax/R.r at each
hop, where r is the root of flow f at the scheduler. Thus,
the network can provide quality of service guarantees to
flow f. Furthermore, since R.r > R.f, the network may be
able to guarantee an end-to-end delay to flow f using flow
aggregation that is significantly lower than the end-to-end
delay guaranteed to flow f without flow aggregation.

We next present an example of the application of
Theorem 4. Consider Figure 6. In this example, flow f is
aggregated into flow g at aggregator t2, and flow g is
aggregated into flow h at aggregator t4.

We next calculate E.t4.f.i, D.t4.f.i, E.t6.f.i, D.t6.f.i.
First notice that since there is a separator after t5, then r5
equals g, and not h. Thus, from Theorem 4,

E.t4.f.i ≤ D.t1.f.i + 2·L.fmax/R.f + L.gmax/R.g +
                 α .t1 + α .t2 + α .t3 + α .t4 + β.t2

D.t4.f.i ≤ D.t1.f.i + 3·L.fmax/R.f + α.t1 + α.t2 +
                  α .t3 + β.t2

E.t6.f.i ≤ D.t1.f.i + 2·L.fmax/R.f + 3·L.gmax/R.g +
                  α .t1 + α .t2 + α .t3 + α .t4 +α .t5 + α .t6 +
                  β.t2 + β.t4
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Figure 6: Calculating exit times and delays.

 idle ∧ (∃ f : : queue.f ≠ empty) ∧ next ≤ clock   →
f := least(queue);
p.f.i := head(queue.f);
forward p.f.i;
next := clock + L.f.i/R.g;
queue.f := tail(queue.f);

Figure 7: Basic fair aggregator

D.t6.f.i ≤ D.t1.f.i + 3·L.fmax/R.f + 2·L.gmax/R.g +
                  α .t1 + α .t2 + α .t3 + α .t4 +α .t5 +
                  β.t2 + β.t4

6. Basic fair aggregators
In this section, we provide a simple and straightforward

technique to construct fair aggregators.
In the previous section, we mentioned that if flows f

and h are aggregated into a flow g, then the aggregator
should not forward packets from flow f faster than R.g if
there are no packets available from flow h. In addition, if
packets from both flows are available and the aggregator
forwards packets at a rate faster than R.g, then the packets
of both f and h should be forwarded in relative proportion
to their rates.

Let g be the output flow of the aggregator, and the
channel capacity of the aggregator be C. A simple tech-
nique to construct an aggregator that satisfies both of the
above requirements is the following. Consider a fictitious
rate proportional scheduler whose output channel has ca-
pacity R.g and has the same input flows as the aggregator.
The aggregator assigns the same timestamp to each packet
equal to the timestamp of the same packet in the fictitious
scheduler. After the aggregator forwards a packet of length
L, the aggregator does not forward another packet until
L/R.g seconds later, even though the packet takes only
L/C seconds to transmit.

We call a fair aggregator constructed from the above
technique a basic fair aggregator.  Note that the above ac-
tually defines a whole family of basic fair aggregators, one
family member for each possible type of rate-proportional
scheduler emulated to assign timestamps to packets. E.g.,
we could define a Virtual Clock basic fair aggregator, a
Weighted Fair Queuing basic fair aggregator, etc..

Note that the first of the two requirements is met since
the packets are forwarded at a rate of R.g. In addition, since
the aggregator does not forward packets at a rate greater
than R.g, the second requirement is irrelevant. Finally,
since the aggregator timestamps packets in the same way
that a rate-proportional scheduler with output channel ca-
pacity of R.g, then the aggregator is also a rate-propor-
tional scheduler with the same scheduling constant.

The above requires only a simple change to the code of
Figure 2. One new variable, next, keeps track of the time
when the next packet may be forwarded, and input R.g
specifies the rate of the output flow. All other variables
and inputs remain the same. Only the second action needs
to be modified, and it is shown in Figure 7. The guard of
the action is strengthened so that a packet is not forwarded
until next ≤ clock. If a packet p.f.i is forwarded, the time
when the next packet may be forwarded is calculated as
next := clock + L.f.i/R.g.

We next prove that a basic fair aggregator satisfies the
fair aggregator property. We begin with a lemma whose
proof is deferred to the full paper due to space restrictions.

Lemma 1
Let g be the output flow of a basic fair aggregator, and t

be the scheduler after the aggregator. Let p.g.i, . . . ,
p.g.k, i < k, be a sequence of packets of flow g such that
D.t.g.i = A.t.g.i + L.g.i, and for each j, i < j ≤ k,

D.t.g.j = D.t.g.(j-1) + L.g.j/R.g

That is, A.t.g.j ≤ D.t.g.(j-1). Let p.g.m, i ≤ m ≤ k, be the
largest packet in the sequence. Then,

D.t.g.(k-1) - A.t.g.k = L.g.m/C - L.g.k/C ≤ Lmax/C

♦
Theorem 5
Let v be a rate-proportional scheduler with scheduling con-
stant α.v and output channel rate R.g. Let s be a basic fair
aggregator with output flow g and output channel capacity
C (R.g ≤ C), and s assigns timestamps to packets equal to
the timestamps they would be assigned by v. Then,

a) s is a rate-proportional scheduler
b) α.s = α.v
c) β.s = Lmax/C

Proof
Because s forwards each the next packet after L.p/R.g

seconds elapse from forwarding the previous packet p, and
the output channel rate of v is R.g, then each packet p is
forwarded by s at exactly the same time it is forwarded by
v. Furthermore, since R.g ≤ C, p will exit the output
channel of s no later than the exit time of p in v, and thus
s is also a rate-proportional scheduler, and also α.s = α.v.

Let t be the scheduler after s, f be an input flow of s,
and p.f.i = p.g.k.

If k = 0, then also i = 0, and
D.t.g.0     = A.t.g.0 + L.g.0/R.g



     = A.t.f.0 + L.f.0/R.g
     < A.t.f.0 + L.f.0/R.f
     = D.t.f.0

If k > 0, then from Lemma 1,

D.t.g.(k-1) - A.t.g.k ≤ Lmax/C

Since D.t.g.k = max(D.t.g.(k-1), A.t.g.k) + L.g.k/R.g
and the above,

D.t.g.k ≤ A.t.g.k + L.g.k/R.g + Lmax/C

Since R.g > R.f, and p.g.k = p.f.i,

D.t.g.k < A.t.f.i + L.f.i/R.f + Lmax/C

Note that for any packet p.f.i, D.t.f.i ≥ A.t.f.i +
L.f.i/R.f.  Thus,

D.t.g.k < D.t.f.i + Lmax/C

Thus, β.s = Lmax/C.

♦
Note that if the aggregator is internal (as in the case of

aggregator 2 in Figure 4) then C = ∞, and β.s = 0.
Consider a basic fair aggregator with two input flows f

and h, and one output flow g. The maximum rate at which
it can forward packets is R.f + R.h = R.g. However, the
definition of a fair aggregator may be satisfied by forward-
ing packets at a rate higher than R.g, provided packets are
available from all input flows, and these packets are
merged fairly. In the full version of the paper, we will pre-
sent and prove correct more sophisticated fair aggregators
that may forward packets at a rate higher than the reserved
rate of their output flow.

7 . Concluding remarks.
The advantages of flow aggregation are simplified

scheduling and management of flows, and in some cases, a
reduction in the end-to-end delay. The disadvantage is that
flow aggregation has to be performed by a non-work
conserving scheduler. In the full version of the paper, we
will define more sophisticated flow aggregators which,
although still non-work conserving in some instances, are
more able to make use of unused bandwidth in the output
channel than the basic fair aggregator we presented here.

Some scheduling protocols (e.g., [4,18] among others)
guarantee to each flow f a per-hop delay of δ.f, chosen by
the source of f, rather than the usual per-hop delay of
L.f max/R.f. This is accomplished by enhancing the
algorithm to compute packet timestamps to take into
consideration the δ.f per-hop delay, and accepting a new
flow only if it passes a schedulability condition. In the full
paper, we will show how a more flexible delay of this type
can be guaranteed to a flow even in the presence of flow
aggregation.
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