
Signaling for Internet Telephony

Henning Schulzrinne
Columbia University

M/S 0401
1214 Amsterdam Avenue

New York, NY 10027
hgs@cs.columbia.edu

Jonathan Rosenberg
Bell Laboratories

Rm. 4C-526
101 Crawfords Corner Rd.

Holmdel, NJ 07733
jdrosen@bell-labs.com

Abstract

Internet telephony must offer the standard telephony ser-
vices. However, the transition to Internet-based telephony
services also provides an opportunity to create new services
more rapidly and with lower complexity than in the existing
public switched telephone network (PSTN). The Session Ini-
tiation Protocol (SIP) is a signaling protocol that creates,
modifies and terminates associations between Internet end
systems, including conferences and point-to-point calls. SIP
supports unicast, mesh and multicast conferences, as well
as combinations of these modes. SIP implements services
such as call forwarding and transfer, placing calls on hold,
camp-on and call queueing by a small set of call handling
primitives. SIP implementations can re-use parts of other
Internet service protocols such as HTTP and the Real-Time
Stream Protocol (RTSP). In this paper, we describe SIP, and
show how its basic primitives can be used to construct a
wide range of telephony services.

1. Introduction

Internet telephony requires a range of protocols, rang-
ing from those needed for transporting real-time data across
the network, to quality-of-service-aware routing protocols,
to resource reservation, QOS-aware network management
and billing protocols. In addition, Internet telephony, de-
fined here as synchronous voice or multimedia communi-
cation between two or more parties, requires a means for
prospective communications partners to find each other and
to signal to the other party their desire to communicate. We
refer to this functionality asInternet telephony signaling.
The need for signaling functionality distinguishes Internet
telephony from other Internet multimedia services such as
broadcast and media-on-demand services.

IPtel signaling as we understand it creates and manages
calls. We define a call as a named association between ap-

plications that is explicitly set up and torn down. Examples
of calls are two-party phone calls, a multimedia conference
or a multi-player game. A call may encompass a number
of connections, where a connection is a logical relationship
between a pair of end systems in a call. For example, a
non-bridged three party audio only call will have three con-
nections, creating a full mesh among the participants. A
media stream or sessionis the flow of a single type of me-
dia among a set of users. This flow can either be unicast (in
which case it is between two users), or multicast. A media
session is associated with one or more connections. In the
above three party call example, if the media is distributed
using unicast, there will be one audio session per connec-
tion. If the audio is distributed via multicast, there will be
one audio session associated with all three connections. We
do not require that calls have media streams associated with
them, but this is likely to be the common case.

We see Internet telephony signaling encompassing a
number of functions:Name translation and user location
involves the mapping between names of different levels of
abstraction, e.g., a common name at a domain and a user
name at a particular Internet host. These translations may
involve simple table lookups at the server or may involve
locating the party, as described in Section 3.2.

Feature negotiationallows a group of end systems to
agree on what media to exchange and their respective pa-
rameters such as encodings. The set and type of media need
not be uniform within a call, as different point-to-point con-
nections may involve different media and media parameters.
Many software codecs are able to receive different encod-
ings while being restricted to sending one type of media for
each stream.

Any call participant can invite others into an existing call
(thus establishing connections) and terminate connections
with others; we call this function (call participant man-
agement). Call participant management also encompasses
transfer, hold, and transitions among unicast, multicast, and
bridged media distribution.



Feature changesmake it possible to adjust the compo-
sition of media sessions during the course of a call, either
because the participants require additional or reduced func-
tionality or because of constraints imposed or removed by
the addition or removal of call participants.

Not all of these functions have to be addressed by one
protocol. For example, H.323 [30] may be used to estab-
lish sessions between the end system and the gateway, while
the Session Initiation Protocol (SIP), the protocol described
here, might be responsible for gateway-to-gateway signal-
ing.

In Section 2 we motivate the need for SIP, and discuss the
basics of SIP operation, its addressing structure, message
syntax and transport. In Section 3, we discuss how SIP can
be used for telephony services, focusing on how services are
constructed from simple primitive tools. We then mention
related work in Section 4, and conclude in Section 5.

2. The Session Initiation Protocol

2.1. Motivation

The study of protocols for conference control is cer-
tainly not new. In fact, numerous protocols have even been
standardized for conference services in the Internet, most
prominent among them the H.323 suite from the ITU-T.
However, we find that H.323 suffers from a number of seri-
ous drawbacks [28]:

Complexity The H.323 specifications are over 700 pages
and growing; implementations in C++ require near
100,000 lines of code.

Scalability H.323 was engineered for conferences on a
LAN. It relies on a central conference server for al-
most all functions, and doesn’t scale to large confer-
ences (in fact, a separate specification was written to
address broadcast environments). Its naming and call
routing functions are non-existent, making its use for
wide area telephony problematic.

Extensibility As its based on ASN.1 and the Packed En-
coding Rules, adding new elements, features, and
headers, and managing compatibility across different
versions, is not easily done. H.323 also only works
with a small number of standardized ITU speech and
video codecs.

It was therefore our goal with SIP to leverage off the
work on distributed conferencing services [6, 21, 25] and
existing Internet protocols (namely the Hypertext Transfer
Protocol (HTTP) [8] and the Simple Mail Transfer Protocol
(SMTP) [18, 5, 4] to create a powerful, flexible, simple, and
scalable protocol that could serve as a real foundation for
true wide area Internet telephony.

2.2. Role of SIP

As mentioned previously, the role of SIP is to seek out,
locate, and invite participants to an IP telephony call. While
we will use the term “Internet telephony” or “IP telephony”
(IPtel) throughout the paper, it should be understood that
all of the protocols mentioned are applicable not just to
voice, but to general multimedia services, including video,
text “chat”, collaborative browsing, and application sharing.
This is also true for SIP. Note also that a participant can be
a human user, an automaton (such as a media server), or a
gateway to some other network, such the the PSTN or an
H.323 network.

SIP performs its function of “seeking out” a user by
defining mechanisms for SIP call invitations to traverse
servers throughout the network. A server either knows the
location for a user, or it forwards the invitation to a server
which it believes knows the location of a user. This allows
for mobility services; the type and range of which is defined
by program logic on each server.

SIP is also responsible for basic call management. This
includes the ability to initiate a call, terminate a call, and to
add and remove users from a call. SIP is also responsible
for setting and changing the media content of the session. It
accomplishes this by delivering opaque media session de-
scriptions.

SIP is independent of the conference model and size. It
works in the same manner whether calling a single party
for a “classic” phone call, setting up a small conference or
inviting another participant into an existing large multicast
conference with thousands of members.

SIP can be used to initiate multicast or unicast media
sessions. SIP messages themselves can be either unicast or
multicast. Not all combinations make sense, of course. For
example, inviting somebody to a multicast conference (e.g.,
of the type found on the Mbone [7]) requires unicast signal-
ing. For automatic call distribution (ACD), where a caller
wants to reach the first available person, multicast signaling
may be useful, yet the conference may be unicast. Finally,
one may want to invite groups of people to a multicast con-
ference, in which case multicast signaling is appropriate.
The last mode differs in that, to avoid request implosion, in-
vitees should not respond to the invitation, except possibly
in a carefully rate-controlled way [20]. Multicast signaling
also requires that potential invitees already expect an invi-
tation, i.e., subscribe to the multicast group.

2.3. Overview

SIP is a client-server protocol, with requests issued by
the client and responses returned by the server. In the case
of IP telephony, the caller acts as client, and the callee acts
as a server. A single call may involve several servers and



clients, as requests may be forwarded. This is similar to the
HTTP model of clients, origin and proxy servers. A single
host may well act as client and server for the same call, as
discussed in Section 2.6.

As in HTTP, the client requests invokemethodson the
server. Requests and responses are textual and contain
header fields which convey call properties and service infor-
mation. SIP reuses many of the header fields used in HTTP,
such as the entity headers (e.g.,Content-type) and authen-
tication headers. This allows for code reuse, and simplifies
integration of SIP servers with web and mail servers.

Calls in SIP are uniquely identified by the a call identi-
fier, carried in theCall-ID header field in SIP messages. The
call identifier is created by the creator of the call and used by
all call participants. Connections have the following proper-
ties: Thelogical connection sourceindicates the entity that
is requesting the connection (the originator). This may not
be the entity that is actually sending the request, as proxies
may send requests on behalf of other users. In SIP mes-
sages, this property is conveyed in theFrom header field.
Thelogical connection destinationcontained in theTo field
names the party who the originator wishes to contact (the
recipient). Themedia destinationconveys the location (IP
address and port) where the media (audio, video, data) are
to be sent for a particular recipient. This address may not
be the same address as the logical connection destination.
Media capabilitiesconvey the media that a participant is
capable of receiving and their attributes. Media capabili-
ties and media destinations are conveyed jointly as part of
the payload of a SIP message. Currently, the Session De-
scription Protocol (SDP) [11] serves this purpose, although
others are likely to find use in the future. SDP expresses
lists of capabilities for audio and video and indicates where
the media is to be sent to. It also allows to schedule media
sessions into the future and schedule repeated sessions.

SIP defines several methods, described in detail below.
The first three manage or prepare calls:INVITE invites a
user to a conference,BYE terminates a connection between
two users in a conference,OPTIONS solicits information
about capabilities, but does not set up a call.STATUS
informs another server about the progress of signaling ac-
tions that it has requested via theAlso header (see below).
ACK is used for reliable message exchanges for invitations.
CANCEL terminates a search for a user. Finally,REGIS-
TER conveys location information to a SIP server.

2.4. SIP Transport

SIP makes minimal assumptions about the underlying
transport protocol. It can directly use any datagram or
stream protocol, with the only restriction that a whole SIP
request or response has to be either delivered in full or not
at all. SIP can thus be used with UDP or TCP in the In-

ternet, and with X.25, AAL5/ATM, CLNP, TP4, IPX or
PPP elsewhere. Network addresses within SIP are also not
restricted to being Internet addresses, but could be E.164
(Public Switched Telephone Network (PSTN)) addresses,
OSI addresses or private numbering plans.

2.5. Addressing and Naming

To be invited and identified, the called party has to be
named. Since it is the most common form of user address-
ing in the Internet, SIP chose an email-like address of the
form “user@domain”, “user@host”, “user@IP address”
or “phone-number@gateway”. The domain name can be
either the name of the host that a user is logged in at the
time, an email address or the name of a domain-specific
name translation service. Addresses of the form“phone-
number@gateway”designate PSTN phone numbers reach-
able via the named gateway.

SIP uses these addresses as part of SIP URLs, such as
sip:j.doe@example.com . This URL may well be
placed in a web page, so that clicking on the link initiates a
call to that address, similar to amailto [17] URL today.

We anticipate that most users will be able to use their
email address as their published SIP address. Email ad-
dresses already offer a basic location-independent form of
addressing, in that the address does not have to designate a
particular Internet host, but can be a domain, which is then
resolved into one or more possible domain mail server hosts
via DNS MX (mail exchange) records. This not only saves
space on business cards, but also allows re-use of existing
directory services such as LDAP [13], DNS MX records (as
explained below) and email as a last-ditch means of deliv-
ering SIP invitations.

For email, finding the mail exchange host is often suffi-
cient to deliver mail, as the user either logs in to the mail
exchange host or uses protocols such as IMAP or POP to
retrieve their mail. For interactive audio and video commu-
nications, however, participants are typically sending and
receiving data on the workstation, PC or Internet appliance
in their immediate physical proximity. Thus, SIP has to be
able to resolve“name@domain”to “user@host”. A user
at a specific host will be derived through zero or more trans-
lations. A single externally visible address may well lead to
a different host depending on time of day, media to be used,
and any number of other factors. Also, hosts that connect
via dial-up modems may acquire a different IP address each
time.

2.6. Basic Operation

The most important SIP operation is that of inviting new
participants to a call. A user first obtains an address where
the user is to be called, of the formname@domain. The user



then tries to translate this domain to an IP address where a
server may be found. This translation is done by trying, in
sequence, DNS SRV records [10], MX, CNAME and finally
A records. Once the server’s IP address has been found, the
user sends it anINVITE message using either UDP or TCP.

The server which receives the message is not likely to be
the host where the user is actually located. Because of this,
we define three different server types: proxy, redirect and
user agent. Aproxy serverreceives a request and then for-
wards the request towards the current location of the callee.
For example, the server responsible forexample.com
may forward the call forjohn.doe@example.com to
doe@sales.example.com . A Via header traces the
progress of the invitation from server to server, allows re-
sponses to find their way back and helps servers to detect
loops. Aredirect serverreceives a request and informs the
caller of the next hop server. The caller then contacts the
next-hop server directly. Finally, auser agent serverre-
sides on the host where the user is situated. It is capable
of querying the user about what to do with the call: accept,
reject, or forward. Figures 1 and 2 show the behavior of SIP
proxy and redirect servers, respectively.

1

2

200 OK

From: cz@cs.tu-berlin.de
To: henning@cs.columbia.edu
Call-ID: 19970827@lion.cs

ACK hgs@play
From: cz@cs.tu-berlin.de

Call-ID: 19970827@lion.cs
To: henning@cs.columbia.edu

From: cz@cs.tu-berlin.de
200 OK

To: henning@cs.columbia.edu
Call-ID: 19970827@lion.cs

From: cz@cs.tu-berlin.de
INVITE hgs@play

To: henning@cs.columbia.edu
Call-ID: 19970827@lion.cs

INVITE henning@cs.columbia.edu
From: cz@cs.tu-berlin.de
To: henning@cs.columbia.edu
Call-ID: 19970827@lion.cs

ACK henning@cs.columbia.edu
From:cz@cs.tu-berlin.de
To: henning@cs.columbia.edu
Call-ID: 19970827@lion.cs

?

he
nn

in
g

hg
s@

pl
ay

cs.columbia.edu

tunelion

hgsplay

location server

3

cz@cs.tu-berlin.de

cs.tu-berlin.de

6

4
5

7

8 9

Figure 1. SIP invitation in proxy mode

Once the user agent server has been contacted, it sends
a response back to the client. The response has a response
code and reason phrase. The codes fall into classes 100
through 600, similar to HTTP.

Unlike other requests, invitations cannot be answered
immediately, as locating the callee and waiting for a hu-
man to answer may take several seconds. Calls may also be
queued, e.g., if the callee is busy. Responses of the 100 class
(denoted as 1xx) indicate call progress; they are always fol-
lowed by other responses indicating the final outcome of the
request.

While the 1xx responses are provisional, the other
classes indicate the final status of the request: 2xx for suc-
cess, 3xx for redirection, 4xx, 5xx and 6xx for client, server
and global failures, respectively. 3xx responses list in a
Location header alternate places where the user might be
contacted. To ensure reliability even with unreliable trans-
port protocols, the server retransmits final responses until
the client confirms receipt by sending anACK request to

1 2 3

4

7

5

8

ACK hgs@play.cs.columbia.edu
From: cz@cs.tu-berlin.de
To: henning@cs.columbia.edu
Call-ID: 970827@lion.cs

200 OK
From: cz@cs.tu-berlin.de
To: henning @cs.columbia.edu
Call-ID: 970827@lion.cs

INVITE hgs@play.cs.columbia.edu
From: cz@cs.tu-berlin.de
To: henning@cs.columbia.edu
Call-ID: 970827@lion.cs

6

ACK henning@cs.columbia.edu
From:cz@cs.tu-berlin.de
To: henning@cs.columbia.edu
Call-ID: 970827@lion.cs

cz@cs.tu-berlin

?

he
nn

in
g

pl
ay

.c
s.

co
lu

m
bi

a.
ed

u

play
hgs@play

cs.columbia.edu

tune

cs.tu-berlin.de

lion

Call-ID: 970827@lion.cs
To: henning @cs.columbia.edu
From: cz@cs.tu-berlin.de
Location: hgs@play.cs.columbia.edu
302 Moved temporarily

Call-ID: 970827@lion.cs
To: henning@cs.columbia.edu
From: cz@cs.tu-berlin.de
INVITE henning@cs.columbia.edu

location server

Figure 2. SIP invitation in redirect mode

the server.
All responses can include more detailed information. For

example, a call to the central “switchboard” address may
return a web page that includes links to the various depart-
ments in the company, providing navigation more appropri-
ate to the Internet than an interactive voice response system
(IVR).

2.7. Proxy Servers

A proxy server (or a redirect server, for that matter),
has as its main function the forwarding or redirection of
requests to some other server. To determine which server
should be contacted for a particular call, the server invokes
aLocator Service. The locator service is a completely local
operation, and may be the result of a database lookup, fin-
ger operation, or result of some programmatic operation on
the incoming request.

SIP itself provides a simple locator service by means of
theREGISTER message. A SIP client sends this message
to its server, indicating its physical location and a name to
associate with that location. In this fashion, a SIP server
can build up a database of translations for those users in its
domain. SIPREGISTER messages can also be multicast,
so that a client which doesn’t know its server can discover
the nearest one and register with it.

It is possible that the locator service may yield multi-
ple potential locations for a particular user. Proxy servers
can forward an invitation to multiple servers at once, in the
hopes of contacting the user at one of the locations. They
can also forward the invitation to multicast groups, effec-
tively contacting multiple next hops in the most efficient
manner.



When an a call invitation is forwarded by a proxy to mul-
tiple servers at once, it becomes possible for the invitation
to generate multiple call acceptances. SIP allows for this
condition, so that a proxy server can return several posi-
tive responses to the client. However, a proxy server can
only ever return a single negative response, and only if it
never returned a positive one. As a result, a caller will
know definitively that the call is not accepted if a negative
response comes back. However, if it receives an accept,
the caller can choose to wait for further acceptances if it
desires, or just speak with the first. There are many possi-
ble actions a caller can take upon receiving multiple accep-
tances. They can reject all but one of the parties, choosing
the most appropriate one (for example, if a human user and
an answering machine pick up, the user can choose to speak
to the human. SIP conveys information about the endpoint
when it answers a call, so a caller can easily make the dis-
tinction), they can talk to all of them, forming a multiparty
conference, or they can place some of them on hold. The
possibilities are limited only by the software in the calling
system.

A SIP proxy server also has the option of being stateless
or stateful. A stateless server receives a request, forwards
to the next hop server, and forgets. TheVia field in the re-
quest and response carry the only piece of state necessary
for operation: the previous hop of the request. Therefore,
when a stateless proxy receives a response, it simply looks
at theVia field and extracts the previous hop to forward the
response to. SIP also allows for a server to transition from
stateful to stateless mid-transaction. This allows for fail-
ure modes and for operation with fixed amounts of mem-
ory, improving scalability. Larger SIP servers can operate
in stateless mode, while smaller, stateful servers at domain
peripheries can operate in a stateful manner.

3. Services

The model for development of telephony services (such
as multi-party calls, call transfer, hold, etc.) using SIP is
substantially different from other telephony architectures,
such as H.323 and Q.931. These differences stem from the
need for extensibility and growth. The Internet has thrived
because it enabled rapid development and deployment of
new applications without centralized control or “forklift up-
grades” of all systems involved. Similarly, we would like
the protocols that provide Internet telephony services to al-
low for quick development and deployment of new services.
Furthermore, we would like these services to be available to
existing endpoints, if possible.

These requirements, in fact, are much like those which
pushed the Intelligent Networking standards. However, un-
like IN, which focuses on allowing service providers to
rapidly deploy services inside the network, our goal is to

expose these kinds of features to end systems.
To realize this goal, we have defined a set of tools that a

SIP client has at its disposal in order to construct services.
The behavior of a server in response to the invocation of
these tools is also well defined. This allows clients to con-
struct services by applying particular tools in a certain order.

The tools fall into two categories. The first are request
methods. There are three request types which can be used
as tools for creating services:INVITE, BYE, and OP-
TIONS. The other SIP request methods are not used for
creating call services directly. The second type of tool are
the header fields, primarilyCall-Disposition, Also, Loca-
tion, andReplaces. Each header field causes the server
to perform a well-defined operation. Server behavior in re-
sponse to receiving any combination of these three are also
well defined. There are other header fields, of course, but
these are either independent of those used for call services
(the authentication headers being an example), or provide
additional information which may be needed for call ser-
vices (Call-ID, for example).

The header fields and message types are orthogonal.
That is, the semantics defined for the four call service
header fields are independent of which request or response
message they are present in. This both simplifies implemen-
tation and allows for richer service offerings.

The next section discusses these tools and their opera-
tion. The sections which follow show how these tools can
be used to construct a variety of advanced telephony ser-
vices. For brevity, “A invites (drops)B with Also: C”
means that partyA sends anINVITE (BYE) request to party
B, with theAlso header value ofC. “A accepts” indicates
thatA returns a response of200 OK.

3.1. Primitives

The tools described here essentially allow for construct-
ing and destroying pieces of acall mesh, where this mesh
represents the endpoints involved in the call (which may be
users, bridges, media players, or any other relevant device),
and the branches represent the logical connections which
have been established between them.

The message tools areINVITE, OPTIONS, andBYE.
Each of these request messages are sent from a client to a
server. The server behavior in each of the three cases is
simple.

The INVITE request indicates that client wishes to es-
tablish communication, or change some aspect of the com-
munication, with the server. The server knows which is the
case based on theCall-ID field. If the Call-ID field in the
message is new (that is, the server has no other calls with
thatCall-ID), the call is new. If theCall-ID is not new, and
the originator of the request is already in the call, the mes-
sage is either a duplicate (known by theCseq field, which is



a simple sequence number), or contains an update about the
call. An update is usually silently executed by the server,
without informing the user, as the user has already accepted
the call. If theCall-ID is not new, but the originator of the
request is not in the call, then this is a new party being added
to the existing call.

TheBYE message indicates that the client wishes to ter-
minate communication with the server. TheBYE message
must contain aCall-ID which is already active with the orig-
inator of the request.

The OPTIONS message is a null operation. It does
not establish or tear down a call between client and server.
However, several things do happen. First, the server re-
turns an OK response to the client containing SDP which
describes its capabilities. Secondly, the server will execute
the actions specified by the header fields in the message.
For example, anOPTIONS message can contain anAlso
field.

In conjunction with these messages, the header fields
provide tools for additional services. Perhaps the most pow-
erful of these is theAlso header. This header contains a
URL (generally a SIP URL, but not necessarily), which con-
tains another entity that the server should call (by sending
an INVITE to that URL). There may be manyAlso header
fields, in which case the server should send anINVITE to
all. When the server (now acting as a client) sendsINVITE
messages in response to anAlso, it uses the sameCall-ID
from the originalINVITE. Furthermore, the server will in-
sert theRequested-By field into the invitation, containing
the SIP URL of the client who sent the original request.
This allows for some advanced services, some of which will
be described below. TheAlso header can be present in any
query.

As authoritative responses from theAlso spawned invi-
tations come back, the server should send provisional re-
sponses back to the client, indicating the result of those
invitations. When an authoritative response has been re-
ceived from all entities listed inAlso fields, the server sends
an authoritative response back to the client, indicating the
number of parties in theAlso fields which were finally con-
nected. Since the informational responses may delay the
transmission of the authoritative response, the client can
specify whether the server should send the informational
responses, or just send an authoritative response indicating
the status of the client server connection. This service is
specified with theCall-Disposition header.

The Location header is similar in function to theAlso
header when present in a request, except that it indicates
alternatives to be tried until the first success. Thus, when
there is only oneLocation header in the query, its func-
tion is identical toAlso. When there are multipleLocation
headers in the request or response, the recipient chooses one
of the URLs, and sends it anINVITE. The Location ad-

dresses may refer to different modes of communicating with
the same person, or to different people. Since theLocation
header involves a choice, it can include parameters for pro-
viding the recipient with information in order to make that
choice. These parameters include callee preference, prior-
ity, mode of communication (e.g., fax, pager, PSTN or In-
ternet telephony) language spoken, whether the URL is for
a mobile user, or whether the URL is for home or business.

TheReplaces field is best described by analogy –Also
is to INVITE asReplaces is to BYE. When present, the
Replaces header indicates that the user should send aBYE
to the parties indicated. It is allowed for theReplaces
header to include a * as the URL. This indicates that this
connection replaces all other connections with other parties
with the sameCall-ID.

In any message, there must be onlyAlso header fields
or Location header fields. There may also beReplaces
header fields. In that case, the recipient of the message
should first execute theAlso or Location invitations. Then,
when authoritative responses have been received, theRe-
places is executed. This ordering can be reversed by so
indicating in theCall-Disposition header.

The Call-Disposition header has been mentioned re-
peatedly. It is a powerful mechanism for expressing client
preferences about call handling. The client can indicate that
the call should not be forwarded (“do-not-forward”). It may
also request that the call should be queued if the callee is
busy (“queue”), implementing a type of camp-on service.
A disposition of “status” asks the server to send back infor-
mational responses about the status of theAlso invitations.
New values can be added as needed, with a well-defined
mechanism to ensure that the client requests are understood.

The orthogonality of the functions provided by these
headers and messages achieves two goals simultaneously.
First, it simplifies processing, since complex relationships
need not be tested. Second, the orthogonality causes an ex-
ponential increase in the number of possible services which
can be created by including these fields.

Using these logical building blocks, we can construct
a wide variety of services. The following sections dis-
cuss some of the possibilities for forwarding, user location,
transfer and conferencing services, but are by no means ex-
haustive.

3.2. Forwarding and User Location Services

The telephone network defines a range of forwarding and
number translation services for different conditions, such as
call forwarding busy, call forwarding no response, andse-
lective call forwarding. 800 and 900-number services are
also examples of such services. SIP generalizes forward-
ing to these and any other observable condition, result of a
user location query or user preference. User preference can



be expressed as rules or manual response to a call, e.g., by
clicking on a “do not disturb” button when a call arrives.

The forwarding location can be determined in a number
of ways. First, a SIP user agent can let the SIP server of
a domain know of its presence via aREGISTER message.
Other methods include the finger protocol [31], database ac-
cesses, for example PSTN Intelligent Network databases, or
a query multicast on a local network.

All call-forwarding functions are usually instantiated
with the Location header field, sent in the 300-class re-
sponse to the originalINVITE message. TheLocation field
contains the possible destinations where the call should be
forwarded to. The callee’s user agent server or some other
server can send a redirection response based on any number
of reasons, such as the caller, the time of day or availability
of callee. When the decision to send a redirect response is
made at the user agent end, the decision logic can be pro-
grammed in any desired way, with or without user interac-
tion. When the decision is made by a redirect server, the
decision can be made based on local policy at the redirect
server, and by user specified preferences. We are proposing
that user specified preferences are indicated by uploading a
simple call processing directive function to the SIP server.
This upload is accomplished by using the SIPREGISTER
message. As SIP messages can contain any MIME type, the
REGISTER message contains the directive, expressed as
some script. When a call arrives for that user, the SIP server
executes the script to arrive at a decision. This is much like
the operation of the PSTN Intelligent Network, except the
features are exposed to clients in a simple and scalable man-
ner.

The caller invites the addresses listed in theLocation
headers. TheLocation header, as mentioned in Section 3,
contains additional fields which can help the caller decide
which address to use. These decisions can either be auto-
mated, or made through user interaction.

SinceLocation URLs can contain any URL, not just SIP
URLs, calls can be forwarded between communication do-
mains, for example, to a regular PSTN phone number, a
web page for further information, an RTSP URL [27] for an
answering machine or amailto URL to leave an email.

The redirect mechanisms described here, when used sev-
eral times, enable a host of forwarding functions which can
range from simple forwards to personal mobility, i.e., the
ability of a callee to be reached under one address regard-
less of the terminal being used). As an example, subscriber
Alice may maintain a permanent, life-time “phone num-
ber” with a professional organization, say “alice@ieee.org”.
When she changed jobs, she notifies that organization to
forward her calls to, say, “alice@employer.com”. The
SIP server atemployer.com has access to the personnel
database and forwards calls to Alice’s department. Alice,
in turn, programs her PC to forward calls to her wireless

laptop she takes to classes at Columbia University, with the
addressalice@cs.columbia.edu . If she is currently
disconnected, one of the alternatives offered in aLocation
header may bepager:1-800-BEEPER?PIN=12345 .

There may be cases where a user wishes to find out
where another user is actually located, and what media they
can understand there, without actually making a call. This
user location servicecan be invoked by sending anOP-
TIONS message to the user, instead of anINVITE. The
same set of forwarding and redirect functions are available,
but no call is actually set up.

3.3. Call Transfer Services

There are a number of different instances of transfer
services possible, depending on whether the new connec-
tion is established before or after the disconnection and
whether the initiator of the transfer is kept informed as to
its progress. In all cases, it is immaterial as to whether the
caller or callee of the original call initiates the transfer.

The simplest type isblind transfer. In this scenario, user
A is in a conversation with a set of usersBi, i ∈ 1 . . . n.
A would like to disconnect from the call and ask userC to
connect with allBi’s instead. The transfer is called “blind”
since UserA does not need any confirmation of whether
the transfer toC has succeeded. To implement this service,
A sends aBYE to all Bi’s with C named in either theLo-
cation or Also header. Prompted by this header, allBi’s
invite C as normal. Except for theRequested-By header
indicatingA, this looks like a normal call toC. If it is de-
sired,A can ask to be informed about the status of the call
by setting theCall-Disposition flag. However, these trans-
fers are limited in that even if the transfer is not successful,
the originating party is still disconnected.

An alternative transfer service which does not suffer this
problem is possible, using a “make-before-break”approach.
Here, the party initiating the transfer asks the other orig-
inal call party to call the transfer destination. For exam-
ple, customerC is in a call with secretaryS. S wishes to
transferC to B1 or B2, shouldB1 not be available. To do
this, S invitesC, with the sameCall-ID as their existing
call, “Also: B1” and “Call-Disposition: status”. This will
causeC to inviteB1, with the “Requested-By: S”. If B1

is a busy, this response is echoed toS. Now, S invitesC
again, this time with “Also: B2”. OnceS finds out the call
C − B2 has been set up, it can now dropC. Note that nei-
therBi norC needs to know anything about this alternate
transfer service.

In the operator-assisted call transferservice, the trans-
ferring user (say, a secretaryS), wants to confer with the
transfer recipient (here, bossB) to confirm that the transfer
of the caller (customerC) is acceptable. Also, it wantsB
to initiate the call toC. The secretary can then either leave



or stay in the call. The customerC invites the secretaryS,
who in turn initiates a new call toB asking for permission.
If granted,S invitesB again, this time with “Also: C”,
theCall-ID of theC-S call and “Call-Disposition: status”.
The secretary may then leave the conference by droppingC
andB, may terminate the call withC, but remain connected
to the boss, or may remain in the call, which has now be-
come a three-way call. Compared to traditional telephony,
all parties have a much clearer picture as to who is currently
participating and what the status of the call transfer is.

3.4. Multi-Party Conferences

One of the advantages of SIP based telephony is that it
enables a wide variety of multi-party conferencing scenar-
ios. These include multicast conferences, bridged confer-
ences, and full-mesh conferences. In a full-mesh confer-
ence, each participant sends media data to every other par-
ticipant and mixes the media from all other participants lo-
cally. While network multicast is more efficient for multi-
party conferences, a full-mesh may be appropriate for, say,
three-party calls or where a bridge or multicast is not avail-
able. A single SIP conference can combine multicast, full-
mesh and a bridge. These services are all possible using
only the tools described in Section 3.

3.5. Unicast-Based Conferences: Bridges and
Meshes

Consider the simplest case, that of a dial-in bridge. In
this scenario, users call up a number which represents a
bridge. This bridge mixes the media from all users con-
nected to it, and then returns it to each user. In SIP, such
a bridge is represented with a SIP URL like any other, e.g.,
sip:conf3224@mcus.com . The caller may not even be
aware that this URL is actually a bridge. Each user invites
the bridge. The acceptance response describes the media
that the bridge can understand, and the port number to send
the media to, as with any other call. All users who send an
INVITE to the same URL are considered part of the confer-
ence. Their media is mixed, and the result is sent to each
user in a format they can understand.

The Real Time Control Protocol (RTCP) [26] is used to
learn about what other parties are in the conference, and
to pass around notes (such as far end mute indications) for
simple conference functions.

SupposeA, who is part of the bridged conference at
MCU M , would like to callB, not through the bridge, and
then inviteB to join the bridged conference. To do this,
A invitesB. After the two connect and talk,A invitesB
again (sameCall-ID), with Also: M . Note that userA’s
SIP application does not know, or need to know, thatM is
actually performing a bridge function. In response to the

Also, B sends anINVITE to the MCU, with “Requested-
By: A”. This lets the MCU know that it wasA that invited
B to join the bridge, and it is thus possible thatA is still
connected toB directly. To change this, the MCU invites
B, with Replaces: A. This causesB to dropA.

If the client does not useRequested-By, the bridge has
no way to know which user to place in theReplaces field.
To deal with this case, the bridge can use “Replaces: *”,
which will tell B to disconnect any mesh that existed out-
side the bridge.

For a full-mesh conference, a participant gets a new par-
ticipantN to join the mesh by sending it a list of all the
other participants it knows about in anAlso header (Fig. 3).
(As in [6], we could have each existing party thatN calls
list the participants it knows about, repairing partially con-
nected meshes.)

INVITE

Also: A,B

3
2

1

session

2

BYE

Also: B
1

A B

CD

A BBA

CD CD

Figure 3. Establishing a full mesh of confer-
ence participants

3.6. Multicast Conferences

In general, multicast conferences use network resources
more efficiently than meshes and bridges. To transition
from full mesh to multicast, one user (A) obtains a mul-
ticast address, and sends anINVITE to all others in the con-
ference. The invitation contains an SDP description which
indicates thatA wishes to receive its media on the multicast
group. Other endpoints which are multicast capable reply
with a 200-class response, others that cannot, reply with a
600-class response. This will allowA to know from which
users it can expect to receive data through multicast, and
which through unicast. Participants which are multicast ca-
pable treat the invitation as an opportunity to send a similar
invitation themselves. As each participant in the conference
sends a multicast invitation to each other, the participants
will learn which participants can receive on the multicast
group. Those participants which cannot receive multicast
will continue to receive unicast from each of the other par-
ticipants. Furthermore, since each participant will know the
media capabilities of those receiving from the group, each
can send using codecs from the intersection of those capa-
bilities.



If one user (A) wishes to invite a new participant (B)
to the conference, the operation is just as if the conference
were full mesh.A invites with theAlso header listing the
other participants in the conference. The SDP in the in-
vitation contains the multicast address, and the media that
A is capable of. IfB is multicast capable, it replies with
an SDP description echoing the multicast address, and in-
dicating its own media capabilities. IfB is not multicast
capable, it returns an error code to this effect.A can then
resend the invitation indicating a unicast address instead. In
response to theAlso, B will invite the other participants in
the conference, indicating unicast or multicast in the SDP,
as appropriate.

Even though this conference is multicast, it is stilltightly
coupled, in the sense that when a new participant is invited
to the group, it must explicitly invite itself with every other
participant. This does not scale well to very large confer-
ences. To deal with this, at any point in time, a participant
who wishes to invite a new user may switch to aloosely cou-
pledconference mode. To do this,A invitesB, as before,
but omits theAlso list. B will eventually learn about the
other group members through RTCP or other media-specific
membership announcement mechanism.

The loosely coupled conference model scales better
since new members need not know anything about the other
members in the conference. However, the new member can-
not participate if it is not multicast capable, and it will not
be able to communicate with those conference participants
who were still connected with a unicast mesh. Note that
the decision to switch from tight coupling can be made in-
dependently by each participant. There is no need for syn-
chronization.

3.7. Switching from a Mesh to a Bridged Conference

To switch from a full mesh to a bridged conference,
some user in the conference (A), locates a bridgeB, us-
ing a mechanism outside the scope of SIP, and invites the
bridge, withAlso enumerating the other conference partici-
pants, similar to a call transfer. As the bridge works through
the invitation list, it includes all the successfully bridged
members in theReplaces header to the new invitees. The
SDP description in each of the invitations indicates the ca-
pabilities and receive ports of the bridge. Any participant
may then invite new members to the conference in the same
fashion as for the dial-in bridge scenario described above.

Note that except for the initiator and bridge, none of the
conference participants need know how to interact with a
bridge. The participants will all transition to a bridge as
a natural consequence of the behavior defined by theAlso
andReplaces fields. There also is no disruption of the con-
ference. The result of the transition may well be a mixture
of a bridged and meshed conference.

3.8. Mute and Hold Services

The mechanisms described in Section 3 support a wide
range of mute and hold services. Near end mute, where
the client continues to receive media but does not generate
it, requires no protocol assistance. To implement far end
mute, a participant need only send anINVITE to another
participant, indicating a null set of receive capabilities for
any of the media. This will cause the other participant to
cease sending that particular media.

Putting another user on hold is trivially supported by
ceasing to send media. RTCP can be used to send a note,
such as “holding” to assure to user that they are still con-
nected, but put on hold. More interesting services are also
possible. Instead of simply ceasing transmission, a user can
send anotherINVITE indicating a multicast address. This
multicast address could be fed by a media server which is
streaming background music. Since SDP can contain point-
ers to RTSP [27] content, it is even possible to give users
remote control over the music they hear while waiting.

4. Related Work

Efforts to design multimedia applications and protocols
for packet-switched networks [16, 2] date back to the early
days of the Internet; systems have been developed for var-
ious combinations of packet-switched and circuit-switched
networks [3, 22]. In particular, the set of tools commonly
known as the Mbone conferencing tools [7, 15, 9, 24] has
achieved widespread use. Examples of multimedia control
include Etherphone [19], Rapport [1] and MMCC [23, 21].
Etherphone and MMCC are based on a centralized control
model, while SIP has no notion of a conference controller
or similar device. MMCC did not incorporate call control
functionality. The H.323 protocol suite [14], based on the
ISDN Q.931 protocols, is being defined as a framework for
Internet telephony call control services. SIP attempts to of-
fer a generalized set of services which is not encumbered
by H.323’s ISDN legacy. SIP is based on work reported in
[25], [12], and [29].

5. Conclusion and Future Work

We have described a protocol for Internet telephony sig-
naling, the Session Initiation Protocol. SIP provides a
framework for complex and rich telephony services, includ-
ing user location, forward, transfer, multiparty, mute and
hold. It is simple, flexible, extensible, and based on existing
architectures, such as HTTP and DNS. We have described
how to instantiate specific services with the primitives pro-
vided by SIP. Space does not permit to describe other ser-
vices that SIP can support, including automatic call distri-
bution and interactive voice response systems, as well as



possibly a light-weight form of terminal mobility. Our work
continues on defining additional services, and extending the
multiparty scenarios into more advanced cases.

SIP is currently being standardized within the Internet
Engineering Task Force (IETF) [12].

References

[1] S. R. Ahuja and J. R. Ensor. Call and connection manage-
ment: making desktop conferencing systems a real service.
ACM Computer Communication Review, 22(3):10–11, Mar.
1992.

[2] Anonymous. Special issue on packet switched voice and data
communication.IEEE Journal on Selected Areas in Commu-
nications, SAC-1(6), Dec. 1983.

[3] Arango et al. Touring machine system.Communications
ACM, 36(1):68–77, Jan. 1993.

[4] N. Borenstein and N. Freed. MIME (multipurpose internet
mail extensions): Mechanisms for specifying and describing
the format of internet message bodies. RFC 1341, Internet
Engineering Task Force, June 1992.

[5] D. Crocker. Standard for the format of ARPA internet text
messages. RFC STD 11, 822, Internet Engineering Task
Force, Aug. 1982.

[6] C. Elliott. A ’sticky’ conference control protocol.Internet-
working: Research and Experience, 5:97–119, 1994.

[7] H. Eriksson. MBONE: The multicast backbone.Communi-
cations ACM, 37(8):54–60, Aug. 1994.

[8] R. Fielding, J. Gettys, J. Mogul, H. Nielsen, and T. Berners-
Lee. Hypertext transfer protocol – HTTP/1.1. RFC 2068,
Internet Engineering Task Force, Jan. 1997.

[9] R. Frederick. Experiences with real-time software video
compression. InSixth International Workshop on Packet
Video, Portland, Oregon, Sept. 1994.

[10] A. Gulbrandsen and P. Vixie. A DNS RR for specifying the
location of services (DNS SRV). RFC 2052, Internet Engi-
neering Task Force, Oct. 1996.

[11] M. Handley and V. Jacobson. SDP: session description pro-
tocol. RFC 2327, Internet Engineering Task Force, Apr.
1998.

[12] M. Handley, H. Schulzrinne, and E. Schooler. SIP: session
initiation protocol. Internet Draft, Internet Engineering Task
Force, May 1998. Work in progress.

[13] T. Howes, S. Kille, and M. Wahl. Lightweight directory ac-
cess protocol (v3). RFC 2251, Internet Engineering Task
Force, Dec. 1997.

[14] International Telecommunication Union. Visual telephone
systems and equipment for local area networks which pro-
vide a non-guaranteed quality of service. Recommendation
H.323, Telecommunication Standardization Sector of ITU,
Geneva, Switzerland, May 1996.

[15] V. Jacobson. Multimedia conferencing on the Internet. In
SIGCOMM Symposium on Communications Architectures
and Protocols, London, England, Aug. 1994. Tutorial slides.

[16] D. T. Magill. Adaptive speech compression for packet com-
munication systems. InConference record of the IEEE
National Telecommunications Conference, pages 29D–1 –
29D–5, 1973.

[17] L. Masinter, P. Hoffman, and J. Zawinski. The mailto URL
scheme. Internet Draft, Internet Engineering Task Force, Jan.
1998. Work in progress.

[18] J. Postel. Simple mail transfer protocol. RFC STD 10, 821,
Internet Engineering Task Force, Aug. 1982.

[19] P. V. Rangan and D. C. Swinehart. Software architecture
for integration of video services in the Etherphone environ-
ment. IEEE Journal on Selected Areas in Communications,
9(9):1395–1404, Dec. 1991.

[20] J. Rosenberg and H. Schulzrinne. Timer reconsideration for
enhanced RTP scalability. InProceedings of the Conference
on Computer Communications (IEEE Infocom), San Fran-
cisco, California, March/April 1998.

[21] E. Schooler and S. L. Casner. An architecture for multimedia
connection management.ACM Computer Communication
Review, 22(3):73–74, Mar. 1992.

[22] E. M. Schooler and S. L. Casner. A packet-switched multi-
media conferencing system.SIGOIS (ACM Special Interest
Group on Office Information Systems) Bulletin, 10(1):12–22,
Jan. 1989.

[23] E. M. Schooler, S. L. Casner, and J. Postel. Multimedia
conferencing: Has it come of age? InProceedings of the
24th Hawaii International Conference on System Science,
volume 3, pages 707–716, Hawaii, Jan. 1991. IEEE.

[24] H. Schulzrinne. Voice communication across the Internet: A
network voice terminal. Technical Report TR 92-50, Dept.
of Computer Science, University of Massachusetts, Amherst,
Massachusetts, July 1992.

[25] H. Schulzrinne. Personal mobility for multimedia services
in the Internet. InEuropean Workshop on Interactive Dis-
tributed Multimedia Systems and Services (IDMS), Berlin,
Germany, Mar. 1996.

[26] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson.
RTP: a transport protocol for real-time applications. RFC
1889, Internet Engineering Task Force, Jan. 1996.

[27] H. Schulzrinne, R. Lanphier, and A. Rao. Real time stream-
ing protocol (RTSP). RFC 2326, Internet Engineering Task
Force, Apr. 1998.

[28] H. Schulzrinne and J. Rosenberg. A comparison of SIP and
H.323 for internet telephony. InProc. International Work-
shop on Network and Operating System Support for Digi-
tal Audio and Video (NOSSDAV), Cambridge, England, July
1998.

[29] H. Schulzrinne and J. Rosenberg. SIP call control services.
Internet Draft, Internet Engineering Task Force, Feb. 1998.
Work in progress.

[30] G. A. Thom. H.323: the multimedia communications stan-
dard for local area networks.IEEE Communications Maga-
zine, 34(12):–, Dec. 1996.

[31] D. Zimmerman. The finger user information protocol. RFC
1288, Internet Engineering Task Force, Dec. 1991.


