

Convergent Multi-Path Routing

Jorge A. Cobb
Department of Computer Science
The University of Texas at Dallas

Richardson, TX 75083-0688
jcobb@utdallas.edu

Abstract
We present a protocol for maintaining multiple paths to
each destination in a network of processes. For each des-
tination, each process in the network maintains a set of
neighbors which are used as next-hops to reach the desti-
nation. This set is known as the successor set. Collectively,
the successor sets from all processes in the network with
respect to a given destination form a spanning, directed,
and acyclic graph, whose only sink is the given destina-
tion. The protocol we present has two interesting proper-
ties. First, the graph is maintained acyclic at all times,
even though the successor set is dynamic. Second, the
protocol tolerates all types of transient faults, even those
which may not be detected. Therefore, if the protocol is
started from an arbitrary initial state, it will converge to a
normal operating state in which a spanning, directed, and
acyclic graph is obtained and subsequently maintained.

1. Introduction
Consider a network of processes, consisting of a set of

processes and communication channels between these
processes. To maintain a route from every process to a
given destination process, a routing spanning tree is
maintained in the network, where the root of the tree is the
given destination process. This routing tree is maintained
by making every process (other than the root process)
store the identity of its "parent" in this routing tree.

In general, there are two approaches to build the above
routing tree. One approach is link-state routing, also
known as broadcast routing. Here, each process broadcasts
the status of its incident channels to all other processes in
the network. Each process receives these broadcasts, and
recreates in its memory the topology of the network. Then,
each process builds in its memory a spanning tree of the
stored topology, and chooses as its parent in the routing
tree the same parent it chose in the spanning tree it
constructed. Examples of link-state routing protocols
include [15] and [23].

Although link-state routing quickly obtains a spanning
tree, it incurs significant message and storage overhead.
To remedy this, another approach is distributed routing,

also known as distance vector routing. In this approach,
each process forwards to each neighbor a copy of its
metric to the given destination. Based on this information,
each process chooses its parent in the routing tree and
updates its metric accordingly. Examples of distributed
routing protocols include [9][12][13]. Distributed routing
protocols have the advantage of requiring less memory
and message overhead. However, they suffer from long-
lived loops and the counting to infinity problem [5], which
can deteriorate performance.

To eliminate the disadvantage of long-lived loops in
distributed routing protocols, while maintaining their low
message and memory overhead, loop-less distributed
routing protocols were developed [5][6][14][16] (note that
link-state routing does introduce loops, albeit of shorter
term). These protocols achieve a loop-less state by
maintaining at all times a relationship between the metric
of each process and the metric of all the descendants of
this process in the routing tree. This relationship is
maintained through diffusing computations. Thus, loop-
less distributed routing protocols have a quick
convergence to the desired routing tree while maintaining
low memory and message overhead, and furthermore,
have the desirable property of preventing routing loops at
all times.

The loop-less routing protocols presented in
[5][6][14][16] tolerate link failures and fail-safe node
failures. However, they have not been shown to tolerate a
broader class of failures, some of which are hard to detect,
for example, improper initialization of a node, undetected
corrupted messages, hardware/software bugs in lower
layers that manifest themselves on rare occasions, and
temporary disruptions from a network intruder. Since
loop-less routing is based on diffusing computations, these
faults could lead to deadlocks and race conditions from
which the protocol may not recover.

To overcome this weakness, self-stabilizing protocols
for loop-less routing were developed. A protocol is said to
be self-stabilizing iff, starting from any arbitrary state
(such as the state after an undetected fault), the protocol
converges to a normal operating state within finite time.
Self-stabilizing protocols are desirable due to their high

degree of fault-tolerance [18]. They have the advantage of
not requiring a global initialization and they tolerate all
types of transient faults. The first loop-less and self-
stabilizing distributed routing protocol was presented in
[1], followed by the protocols presented in [10][17][3][2].

Recently [21][22][23][26], protocols that maintain
multiple loop-free routes to each destination have been
presented. In [23], it was shown that network performance
might be increased considerably if multiple routes to the
destination are maintained. Therefore, rather than main-
taining a spanning tree rooted at the destination, these
protocols maintain a spanning, directed, and acyclic graph,
in which there is only a single sink node, namely, the de-
sired destination. This graph is maintained by making
every process, other than the destination process, maintain
a set of neighbors, called the successor set. An edge (v, u)
is contained in the graph if process u is contained in the
successor set of process v.

In this paper, we present the first protocol that is multi-
path, loop-free, and stabilizing. Therefore, the protocol
maintains, at all times, a spanning, directed, and acyclic
graph whose only sink node is the destination process.
Also, the protocol tolerates all types of transient faults,
even those which may not be detected. Thus, if the proto-
col is started from an arbitrary initial state, it will converge
to a normal operating state in which a spanning, directed,
and acyclic graph is obtained and subsequently main-
tained.

The objective of most routing protocols is to find a
path to the destination which is optimal with respect to a
given metric (e.g., path length [4], bandwidth [24], etc.).
In this paper, we make no assumptions about the opti-
mality of the paths chosen from each process to the
destination. Each process is free to add or remove any
neighbor to or from its successor set. Our only restriction
is that a loop is not formed when a neighbor is added to
the successor set of a process, and that each process
remains connected to the graph, i.e., its successor set never
becomes empty. However, if it is desired to find an
optimal path to the destination, the protocol can easily be
extended to do so. We discuss how to perform this
extension in the concluding remarks.

The paper is organized as follows. In Section 2, we
present the loop-avoidance technique used in our protocol.
In Section 3, we discuss the problems encountered while
trying to obtain a stabilizing loop-free protocol. Sections 4
and 5 present two components of the overall solution to
the problem. In Section 6, we combine these two
components into a single self-sufficient protocol. In
Section 7, we discuss some implementation details of the
protocol. A comparison of our protocol with existing
protocols is given in Section 8.

Due to lack of space, the proofs have been deferred to
the full paper.

2. Loop Avoidance
Consider a network of processes, which consists of a set of
processes and a set of channels. Each channel allows the
exchange of messages between two processes. We say that
processes u and v are neighbors iff there are joined by a
channel.

One process in the network is a distinguished process,
called the destination. We consider the problem of
maintaining multiple paths from each process to the
destination process. These paths are represented by each
process having a set of successors. The successor set of a
process contains those neighbors that may be used as the
next hop in the route to the destination process. Therefore,
if we combine all edges of the form (v, u), where u is in
the successor set of v, then these edges form an acyclic
graph which spans all the processes in the network, and
whose only sink node is the destination process. We refer
to this graph as the routing graph.

If process u is in the successor set of process v, we say
that v is a predecessor of u, and u is a successor of v. If,
starting from process w, process v can be reached by
following a path in the routing graph, then we say that w is
a descendant of v and v is an ancestor of w.

Each process has the freedom to arbitrarily choose
which neighbors to add to its successor set, and which
neighbors to remove from its successor set. However, to
maintain a consistent routing graph, we impose two
restrictions. First, the successor set of a process cannot
become empty, since this would disconnect the node from
the graph. Second, a neighbor is not allowed to be placed
in the successor set of a process if by doing so a loop is
formed. Thus, the requirement that the routing graph
constitute an acyclic graph must be satisfied at all times,
and not only at a steady sate of the network.

The routing graph is maintained free of loops as
follows. Each process v maintains a non-negative integer
variable, rk.v, known as the rank of process v. This rank
will be used to maintain an order on the processes. When a
process adds a neighbor to its successor set, it must
preserve this order, and in doing so it avoids loops. We
explain this in detail below.

We say that the ordered rank property holds at process
v, iff, for each process w, where w is a descendant of v,
rk.w ≥ rk.v.

If the ordered rank property holds at v, then a simple
technique to avoid the formation of loops is as follows.
Process v adds neighbor u to its successor set only if rk.v
> rk.u. That is, if rk.v > rk.u, then u cannot be a
descendant of v, because all descendants of v have a rank
at least rk.v. Thus, v may add u to its successor set without
creating a loop. This is illustrated in Figure 1(a), where d
is the destination process.

The above restriction on choosing successors is
sufficient to prevent loops, whenever the ordered rank
property holds at a node. However, it is necessary to allow
each process the freedom to change its rank value, which
in turn may temporarily violate the ordered rank property.
For example, if v wants to choose u as a new successor,
and rk.v ≤ rk.u, then v must increase rk.v to a value greater
than rk.u before making u its successor. However, this
increase may violate the ordered rank property at v.
Therefore, we must carefully consider the effects of an
increase or decrease of the rank of a process, which we do
next.

First, assume that process v wants to decrease its rank.
If the ordered rank property holds at v, then decreasing
rk.v preserves this property at v. However, for an ancestor
u of v, this decrease in the rank of v may violate the
ordered rank property at u (i.e., rk.v < rk.u could occur).
Note that this occurrence is unknown to u. Thus, u may
decide to choose v as a successor, and a loop is formed.
This scenario is illustrated in Figure 1(b).

To prevent the above scenario, although we do allow
each process v to decrease its rank, its new value should
be at least the maximum of the ranks of its current
successors. Therefore, the scenario depicted in Figure 1(b)
is avoided.

Consider now when process v increases its rank. For
any ancestor u of v, if the ordered rank property holds at u,
then it continues to hold as v increases its rank. However,
the ordered rank property may no longer hold at v, since
its rank may be greater than that of one of its descendants.
Therefore, v must initiate a diffusing computation along
its descendants, forcing them to increase their rank to at
least the rank of v. During this diffusing computation, v
may not choose a new successor, since the ordered rank
property does not hold at v. When this diffusing
computation terminates, then the ordered rank property is

restored at v, and v may choose new successors. This is
illustrated in Figure 2.

In presenting the above restrictions on the methods in
which a successor is chosen and the rank is updated, the
least possible restrictions were presented, in order to
ensure the generality of the protocol. In particular, no
semantic meaning was assigned to a rank. We simply
presented some general restrictions for the sole purpose of
avoiding the formation of loops. Thus, a rank may be
implemented in various ways.

One implementation choice is to allow a higher level
protocol to make a recommendation on which neighbors
should be added to and removed from the successor set,
and let our protocol follow these indications. Our protocol
could ensure through the use of ranks that loops are
always avoided.

Another implementation choice is to set the rank to a
routing metric. For example, assume the rank is the cost to
the destination. The cost of a process would be set to the
maximum, over all successors, of the cost of the successor
plus the cost of the link between the process and the
successor. Notice that this satisfies the requirement above
that a process must set its rank (i.e., cost) to at least the
maximum rank (costs) of all its successors.1 To minimize
its cost, a process would remove from its successor set
neighbors with higher costs and add to it neighbors with
lesser costs. Other routing metrics such as bottleneck
bandwidth, packet loss probability, etc., may also be used
to implement a rank.

3. Fault Recovery
In this section, we discuss how the loop avoidance
mechanism is affected by faults, and how it may recover
from them.

1 Assuming no negative edge costs.

u (2)

x (5)

v (3)

w (5)

d (0)

(a) v may add u as a successor,
since rk.u < rk.v

successor

(rank)

new successor

(b) x decreases rk.x below rk.w,
allowing u to choose x as its
successor, forming a loop

u (2)

x (1)

v (3)

w (5)

d (0)

Figure 1

If faults occur in the network, they may alter the vari-
ables of a process in such a way that a loop is formed,
even though loops do not occur during normal execution.
If a loop exists due to a fault, it may cause a diffusing
computation along the loop, which may never terminate.
Since a process cannot change successors until the
diffusing computation of its rank update has finished, the
processes involved in the loop may remain in it forever.

Therefore, a technique to accurately detect the pres-
ence of loops is required. If loops exist, the processes in-
volved in the loop must be able to detect this condition
within finite time. This allows the processes to change
successors in an attempt to break the loop. Furthermore,
the technique should not incorrectly indicate that a loop
exists if none is present. This would cause the processes to
change successors unnecessarily.

A simple technique to detect if a loop exists is for each
process to keep an estimate of the length of the path to the
destination along the routing tree. We refer to this as the
hop count of the process, which is periodically updated to
the maximum of the hop counts of the successors of the
process plus one. We assume that all simple paths in the
network have a length less than D, for some constant D
known to all processes. Thus, a process only adds a
neighbor to its successor set if the neighbor's hop count is
less than D - 1. Furthermore, if a process detects that one
of its successors has a hop count of at least D - 1, the
process removes this successor from its successor set in an
attempt to break the loop.

This simple technique, however, has its drawbacks.
Since successors are based on rank and not on hop count,
it is possible to obtain a race condition in which no loop is
ever created, yet the hop count of the processes increases
without bound (an example of this race condition may be
found in [25]). Thus, a process may incorrectly believe it

is involved in a loop. Although there are techniques for
loop detection that do not rely on hop count [3][25], these
are not amenable for the case of multiple successors.

To solve the loop detection problem, we must prevent
the hop count from reaching a value of D during normal
operation. We accomplish this by introducing a sequence
number which originates at the destination process and
propagates downward throughout the entire routing graph.
That is, when all the successors of a process v have the
same sequence number, and this sequence number is
different from v's sequence number, then v adopts the
sequence number of its successors.

Once the sequence number has reached all processes in
the routing graph, then the destination process can change
its sequence number. Since a new sequence number is not
introduced until the previous one has finished propagating,
a sequence number in the range 0 .. 1 suffices.

When a process changes its sequence number, the
process may increase or decrease its rank. However, while
the process maintains the same sequence number, it does
not increase its rank, it may only decrease it. If the
process wishes to increase its rank, it must do so the next
time its sequence number changes.

Therefore, the approach can be considered as a
periodic global diffusing computation that begins at the
destination process, and expands throughout the entire
routing graph.

As an example, consider Figure 3(a). Here, all
processes have the same sequence number, namely one,
and the rank of each process is at least the rank of its
successors. Since all processes have the same sequence
number, the destination process changes its sequence
number to zero, and this sequence number propagates
down the routing graph, as shown in Figure 3(b). As it
propagates, each process updates its rank, which may now

u (5)

x (5)

v (3)

w (5)

d (0)

(a) Initial state

successor

(rank)

new successor

b) v increases its rank to
add u to i ts successor set

u (5)

x (5)

v (6)

w (5)

d (0)

u (5)

x (6) w (6)

d (0)

c) v forces all its descendants to
increase their ranks to at least
v's rank

v (6) u (5)

x (6) w (6)

d (0)

d) v now may add u to its
successor set

v (6)

Figure 2

be greater than before. Notice, however, that the ranks of
any path from a process to the destination are decreasing,
provided there is no change in the sequence number along
the path. Thus, the ordered rank property holds for
processes sharing the same sequence number. This allows
a process to choose as its successor any neighboring
process with the same sequence number and smaller rank,
without forming a loop.

It is easy to show that the hop count of each process
under the above scheme will never reach the value D
under a fault-free execution. Therefore, a process will not
falsely detect the presence of a loop. However, in an
execution with faults, a loop may occur, causing the hop
count of a process to reach D. Thus, to break loops, a
process should remove from its successor set any neighbor
whose hop count is at least D - 1.

We assume each process has a time-delayed
knowledge of the sequence number of the destination.
That is, each process eventually learns the correct
sequence number of the destination, even though its
successors have a different sequence number than the
destination. Processes use this knowledge in the selection
of successors: a successor is added to the successor set
only i f it has the same sequence number as the destination.
This is necessary for the protocol to converge from an
arbitrary state to a normal operating state.

Below, we present two protocols. The first protocol is
the ordered rank protocol, and is based on the above
assumption of knowledge of the destination's sequence
number. The second is a core tree protocol, which is used
to implement the above assumption. Finally, we combine
both protocols into a single self-sufficient protocol.

4. Ordered Rank Protocol
For clarity and simplicity, the processes in the ordered
rank protocol are specified using a shared memory
notation. A message-passing version of the protocol will
be presented in detail in the full version of the paper. In
this notation, each process is specified by a set of con-
stants, inputs, a set of variables, an optional parameter,
and a set of actions as follows (similar notations for de-
fining network protocols are discussed in [7] and [8]).

process <process name>
const <constant name> : <type>
inp <input name> : <type>
var <variable name> : <type>
par <parameter name> : <type>
begin
 <action>
[]
 <action>
end

The inputs declared in a process may only by read by
the process, and the values of inputs may change over
time. The variables declared in a process can be read and
written by the process. Also, a process may read, but not
write, the variables of its neighboring processes.

Every action in a process is of the form <guard>
�

<statement>. The <guard> is a Boolean expression over
the variables, inputs, and the parameter declared in the
process and the variables declared in the neighbors of that
process. The <statement> is a sequence of skip,
assignment, and conditional (if fi) statements that update
only the variables declared in that process. We assume that
the execution of actions is fair, that is, an action whose
guard continuously evaluates to true will be eventually
executed.

successor

seq # (metric)

 1(0)

 1(5)

 1(6)

 1 (7)

 1(7)

 1(3)

 1(5)

 1(8) 1(9)

 1(9)

 (a)

 0(0)

 0(7)

 0(11)

 1(7)

 0(10)

 0(6)

 1(5)

0(15) 1(9)

 1(9)

 (b)
Figure 3

The parameter declared in a process is used to write a
set of actions as one action, provided these actions differ
only by the parameter value. For example, let j be a pa-
rameter whose type is the range 0 . . 1. The action

 x < j
�

 y[j] := true

is a shorthand notation for the following two actions.

 x < 0
�

 y[0] := true
 []

 x < 1
�

 y[1] := true

When referring to the variables of a process, we use
the process name as a suffix. Thus, x.v is variable x in
process v. When it is clear from the context to which
process we are referring, we omit the suffix. In particular,
in the code of each process v, variables without suffix
correspond to variables of v.

Each non-destination process v in the ordered rank
protocol has three inputs: D, G, and ds. Input D is an
upper bound on the length of any simple path in the
network. We assume all processes are given the same
value for D. Input G is the set of neighboring processes of
v. Input ds is the sequence number of the destination
process. Although v cannot read directly the sequence
number of the destination if the destination is not a
neighbor, in the next section we show how v can obtain a
time-delayed estimate of this value.

Process v has four variables, S, rk, sn, and hc, which
are, respectively, the set of successors of v, the rank of v,
the sequence number of process v, and an estimated hop
count of the longest path to the destination via the
successor set.

Finally, process v has a parameter g, which is instanti-
ated with the identity of any neighbor of v.

The specification of a non-destination process v is as
follows.
process v

const D : integer { network diameter}

inp G : set { u | u is a neighbor of v} ,
ds : 0 . . 1 { destination seq. #}

var S : subset of N, { set of successors}
rk : integer, { rank}
sn : 0 . . 1, { sequence #}
hc : 0 . . D { hop count to dest.}

par g : element of N { any neighbor}

begin
 sn ≠ ds ∧ (∀ u, u ∈ S, sn.u = ds) ∧ S ≠ ∅

�

 sn := ds;
 hc := min(D, max{hc.u | u ∈ S} + 1);
 rk := atleast(max{ rk.u | u ∈ S})
[]
 (∃ u, u ∈ S, sn.u = sn)

�

 hc := min(D, max{hc.u | u ∈ S ∧ sn.u = sn} + 1);
 rk := min(rk, atleast(max{ rk.u| u∈S ∧ sn.u=sn}))

[]
 g ∈ S

�
 if hc.g ≥ D-1 ∨ |S| > 1

�
 S := S - { g}

 [] hc.g < D-1
�

 skip
 fi
[]
 sn.g = ds ∧ ds = sn ∧ hc.g < D-1 ∧ rk.g < rk

�
 S := S ∪ { g}

[]
 S = ∅

�
 if sn.g = ds ∧ sn ≠ ds

�

S := S ∪ { g} ;
 sn := ds;
 rk := atleast(rk.g);
 hc := min(D, hc.g + 1)

 [] sn.g ≠ ds ∨ sn = ds
�

 hc := D
 fi
end

Process v has five actions. In the first action, v checks
if it should change its sequence number. Process v should
change its sequence number if it is different from the
destination's sequence number. Before doing so, process v
must wait for all of its successors to have the same
sequence number as the destination. This is required to
avoid the following scenario. Assume ds = 0, sn.v = 1, and
assume v sets sn.v to 0. Assume v still has a successor x
with sn.x = 1, and x changes sn.x to 0. Since x changed its
sequence number, it is allowed to increase its rank to any
value. If x increases its rank to a value larger than v's rank,
then the ordered rank property is violated for sequence
number 0.

If the sequence number is changed, the hop count and
rank are updated. The hop count is one greater than the
maximum of the hop counts of all successors. The rank is
set to any value at least as large as the maximum rank over
all successors, as required in Section 2.

In the second action, process v updates its rank and
hop count from its successors, but without changing its se-
quence number. However, since v is not changing its
sequence number, it must update its rank relative only to
the ranks of its successors with the same sequence number
as v. Notice that the rank of v is not allowed to increase in
this action. This is necessary to maintain the ordered rank
property and avoid the formation of loops, as described in
Section 3.

In the third action, process v removes a neighbor from
its successor set. If the neighbor's hop count is at least D -
1, it implies that the neighbor may be involved in a loop,
and must be removed. To be flexible, we leave it as an
option whether the neighbor should be removed or not
when the neighbor's hop count is less than D - 1. Hence, if
hc.g < D - 1, either branch of the if statement may be
taken, as desired. However, the successor set should not be
allowed to be empty, since this would leave v without a
path to the destination.

In the fourth action, a neighbor is added to the succes-
sor set. This neighbor is added only if it has the same se-
quence number as v and as the destination, if it will not
cause v's hop count to become D (i.e., hc.g < D-1), and if
no loop will be formed (i.e., rk.g < rk.v).

Note that in the third action we remove successors
whose hop count is at least D - 1. Therefore, if all the
successors of v have a hop count of at least D - 1, it is
possible for v's successor set to become empty. If this is
the case, the last action has two choices. If a neighbor is
found whose sequence number is the same as the
destination's, and v's sequence number is different, then
this neighbor is chosen as a successor, and the sequence
number, rank, and hop count are updated. A process with
the same sequence number as v is not chosen since it may
cause a new loop to be formed. If no such neighbor is
found, the hop count is set to D to indicate all predecessors
that the destination is not reachable via this process.

We next present the specification of the destination
process d.

process d
const
 h : 0,
 rk : 0
var
 sn : 0 . . 1
begin
 (∀ v, v ≠ d, ds.v = sn ∧ sn.v = sn)

�
 sn :=(sn+1) mod 2

end
The hop count and rank of the destination are constants

whose values are always zero. The destination sequence
number is variable sn. When the sequence number has
propagated throughout the entire network, the destination
changes its sequence number. Although the destination
cannot read the variables of non-neighboring processes,
we will see in the next section how the destination can
implement the guard of its action.

The above protocol can be proven correct, provided
the following assumptions hold.

a) sn.d remains constant until, for all v, where v ≠ d,
sn.d = ds.v = sn.v.

b) if ds.v ≠ sn.d, eventually ds.v = sn.d.
c) if ds.v = sn.d, then ds.v remains constant until sn.d

changes.
d) if for all v, where v ≠ d, sn.d = ds.v = sn.v, then

eventually sn.v changes.

In the next section, we show one method to implement
the above assumptions.

5. Core Tree Protocol
In this section, we present an abstract protocol to allow
each non-destination process v a time-delayed estimate of
the destination sequence number, and to allow the

destination to know that all processes have received and
adopted the destination's sequence number. The protocol
is abstract in the sense that it deals only with sequence
numbers, and not with ranks and successor sets. However,
in the next section we combine both protocols to obtain a
complete version of the multi-path protocol.

To allow each process v to learn about the destination's
sequence number, we build a spanning tree in the network,
whose root is the destination d. We propagate the
destination's sequence number along this tree from the
root (i.e. destination) towards the leaves. We refer to this
tree as the core tree.

The core tree should be stable, and should not fluctuate
with changes in the ranks of processes or other network
conditions. Therefore, we choose to build the core tree as a
minimum hop tree, i.e., the path from any process v to the
root d along the tree is a minimum hop path from v to d.

To build this tree, each non-destination process v
needs to maintain a parent variable p, with its parent on
the tree, and a hop count i to the destination2. We
implement a simple greedy approach based on the
Bellman-Ford technique to find the minimum hop path to
the destination.

Process v has a variable ds, which contains its estimate
of the sequence number of the destination. Also, in
variable sn it keeps its own sequence number. Process v
adopts the root's sequence number when it assigns ds to
sn.

Process v also needs an additional bit, called end,
which indicates if all processes below v on the core tree
have received the new sequence number from the
destination and adopted the sequence number. Thus, once
the end bit is true at the destination process, the
destination may change its sequence number.

The specification of a non-destination process v
follows.
process v

const D : integer

inp G : set { u | u is a neighbor of v}

var p : N, { parent}
 i : 0 . . D, { hop count to dest.}
 ds : 0 . . 1, { dest. seq. number}
 sn : 0 . . 1, { local sequence #}
 end : Boolean { end of seq. # propagation}
par g : element of G

begin
 i ≠ min(D, i.p + 1)

�
 i := min(D, i.p + 1)

[]
 i.g + 1 < i

�
 p := g; i := min(D, i.g + 1)

2 Note that his hop count is different from the hop count in

the ordered rank protocol. The former is the hop count along the
core tree, and the latter the hop count along any path to the
destination via the routing graph.

[]
 ds ≠ ds.p

�
 ds := ds.p; end := false

[]
 sn ≠ ds

�
 sn := ds

[]
 end ≠ (∀ w, p.w = v, sn.w = ds.w ∧ ds.w = ds ∧ end.w)

�
 end := ¬end

end
In the first action, the hop count is updated from the

hop count of the parent of v. In the second action, if a
neighbor provides a shorter hop count to the destination,
this pro??cess is chosen as the new parent. In the third
action, if the parent's destination sequence number ds.p is
different from v's, v updates ds.v to ds.p. It also sets end to
false since this new sequence number needs to be
propagated down the tree.

In the fourth action, process v adopts ds as its own se-
quence number sn. This represents the behavior of the
ordered rank protocol, which will eventually choose ds as
v's local sequence number sn. Finally, in the last action,
end is updated to reflect if the sequence number has
propagated down the tree. This will be true if all children
of v on the tree have learned and adopted the new
sequence number, and their end bits are equal to true.

The specification of the destination process follows.
process d
const i : 0
var ds : 0 . . 1,

end : Boolean
begin
 end ≠ (∀ w, p.w = d, sn.w = ds.w ∧ ds.w = ds ∧ end.w)

�
 end := ¬end

[]
 end

�
 ds := (ds + 1) mod 2; end := false

end
In the first action, the root updates its end bit. In the

second action, if end is true, it changes its sequence num-
ber and sets end to false, waiting for the sequence number
to propagate down the tree.

6. Complete Protocol
Now that we have both the ordered rank protocol and the
core tree protocol, we can combine both protocols into a
single self-sufficient protocol. The protocol consists of
merging the actions of both protocols, with the exception
that the fourth action of process v in the core tree protocol
is removed, since it is an abstraction of how the sequence
number is changed by the decreasing metric protocol, and
an additional action is added to the destination process.

The complete protocol is as follows.
process v

const D : integer { network diameter}

inp G : set { u | u is a neighbor of v} ,
var S : subset of N, { set of successors}

sn : 0 . . 1, { sequence #}
rk : integer, { metric}
hc : 0 . . D { distance to root}

 ds : 0 . . 1 { root sequence #}
 p : N, { parent}
 i : 0 . . D, { hop count to root}
 end : Boolean { end of seq. # propagation}
par g : element of N { any neighbor}

begin
 sn ≠ ds ∧ (∀ u, u ∈ S, sn.u = ds) ∧ S ≠ ∅

�

 sn := ds;
 hc := min(D, max{hc.u | u ∈ S} + 1);
 rk := atleast(max{ rk.u | u ∈ S})
[]
 (∃ u, u ∈ S, sn.u = sn)

�

 hc := min(D, max{hc.u | u ∈ S ∧ sn.u = sn} + 1);
 rk := min(rk, atleast(max{ rk.u| u∈S ∧ sn.u=sn}))
[]
 g ∈ S

�
 if hc.g ≥ D-1 ∨ |S| > 1

�
 S := S - { g}

 [] hc.g < D-1
�

 skip
 fi
[]
 sn.g = ds ∧ ds = sn ∧ hc.g < D-1 ∧ rk.g < rk

�
 S := S ∪ { g}

[]
 S = ∅

�
 if sn.g = ds ∧ sn ≠ ds

�

S := S ∪ { g} ;
 sn := ds;
 rk := atleast(rk.g);
 hc := min(D, hc.g + 1)

 [] sn.g ≠ ds ∨ sn = ds
�

 hc := D
 fi
[]
 i ≠ min(D, i.p + 1)

�
 i := min(D, i.p + 1)

[]
 i.g + 1 < i

�
 p := g; i := min(D, i.g + 1)

[]
 ds ≠ ds.p

�
 ds := ds.p; end := false

[]
 end ≠ (∀ w, p.w = v, sn.w = ds.w ∧ ds.w = ds ∧ end.w)

�
end := ¬end

end

process r
const i : 0
 hc : 0,
 rk : 0

var sn, ds : 0 . . 1,
end : Boolean

begin
 ds ≠ sn � ds := sn

[]
 end ≠ (∀ w, p.w = r, sn.w = ds.w ∧ ds.w = ds ∧ end.w)

�
 end := ¬end

[]
 end

�
 ds := (ds + 1) mod 2; sn := ds; end := false

end

7. Protocol Implementation
As mentioned earlier, ranks may be implemented in many
possible ways. One of these ways is to set the rank to a
routing metric, such as the sum of the cost of the edges to
the destination. If routing metrics are used as ranks, then
finding an optimum path to the destination would be
desired. To obtain this optimum path, the routing metric
must satisfy the properties of monotonicity and
boundedness, as described in [11].

To ensure that each process has in its successor set the
neighbor along the optimum path to the destination, we
only need to restrict the behavior of the protocol a little.
When process v is about to change its sequence number, v
keeps in its successor set the neighbor g which, if used as
next hop, would give v the best metric, and v removes all
others neighbors from its successor set. Process v then
updates its sequence number and metric from the values in
g. Finally, after updating its metric, v adds to its successor
set those neighbors which have a better metric than v's
metric (even though they don't offer the best path, since
the weight of their channel with v may be very high). It is
straightforward to show that with this modification, the
optimum path to the destination is always found, while at
the same time maintaining multiple successors to the
destination.

Finally, the protocol can be implemented using
message passing in a similar way as the usual distance
vector routing protocol. Periodically, each process collects
the values of its variables and forwards them in a message
to all its neighboring processes. In particular, the process
must include the following information in the message it
forwards to all its neighbors. For each destination, the
process includes: a) its rank, b) the sequence number sn, c)
the sequence number ds of the destination, d) the end bit,
e) the hop count h, and f) the hop count i. Thus, the
overhead would be four additional bits and two small
integers per destination.

8. Related Work
In our protocol above, it is possible for all processes to
choose having a single successor at all times. In this case,
the routing graph would simply be a routing tree.
Furthermore, if the rank of a process is implemented via a
routing metric, then this protocol can be used as a loop-
less routing protocol. Below, we compare other loop-less
routing protocols with our protocol under the restriction
that only a single successor is chosen at all times.

In our protocol, we use sequence numbers. The use of
sequence numbers to propagate information in a network
of processes and to aid in their self-stabilization was
introduced in [20]. The use of sequence numbers in a
loop-less routing protocol was first presented in [1]. Here,
although the routing tables were loop-less at all times, the
protocol did not necessarily converge to the best route to
the destination. This is because the protocol was designed
for networks with unstable links, and the protocol follows
any route as soon as it is found, even though it may not
necessarily be the best route.

In [10][17], another self-stabilizing loop-less routing
protocol was presented which also propagates sequence
numbers. In this protocol, sequence numbers propagate
between any pair of nodes. Therefore, in [10][17], the
protocol takes two rounds of sequence number
propagation to find the best route. The first round is used
to enforce an ordering on the metrics similar to the ordered
rank property. During this first round, processes may not
change parents in the routing tree. During the second
round, processes are allowed to change parents and
converge to the best route to the destination.

In our approach, sequence numbers propagate only
from parent to child along the routing tree. Also, a node
may begin to change parents immediately after changing
its sequence number, without having to wait for the
sequence number to propagate throughout the entire tree.

It is difficult to estimate which of the two protocols
above will reach the best route sooner. On one hand, the
protocols in [10][17] allow for a faster propagation of the
sequence number, since it propagates between any pair of
nodes, and on the other hand, our protocol allows a node
to immediately begin to change parents in search for the
best path, rather than having to wait for the next round of
sequence number propagation.

In [2], we presented an additional loop-less and
stabilizing routing protocol (with a single successor to the
destination). This protocol uses a combination of the
diffusing computations presented in [3] and the sequence
number propagation presented in [10][17]. The protocol
presented in [2] has the advantage that no temporary loops
are introduced when links fail. Unfortunately, the
complete protocol of Section 6 may introduce a temporary
loop in the event of a link failure. However, the likelihood
of a loop forming can be reduced significantly i f we
increase the range of the sequence number. Furthermore,
the protocol of Section 6 has the advantage of allowing
multiple successors to the destination.

In the loop-less protocols presented in [3][5], and the
self-stabilizing loop-less protocol presented in [6], each
process on its own may begin a diffusing computation
whenever it detects a change in the routing metric, as
opposed to having to wait for the next sequence number to
be propagated from the destination. This approach has the
potential advantage of a faster response time to changes in

the routing metric. Unfortunately, we were unable to
obtain a self-stabilizing protocol with similar diffusing
computations and that maintains multiple successors to the
destination. Thus, we chose to use the propagation of
sequence numbers instead. Nonetheless, although a faster
response time is lost, more stability may be gained. The
routing metric is only updated after the destination issues a
new sequence number, which might help in alleviating the
route hoarding problem.

References
[1] A. Arora, M. G. Gouda, and T. Herman, "Composite

Routing Protocols", Proc. of the Second IEEE Symposium
on Parallel and Distributed Processing, 1990.

[2] Cobb, J.A., Gouda M. G., "Stabilization of General Loop-
Free Routing", submitted for journal publication.

[3] Cobb, J. A. and M. Waris, "Propagated Timestamps: A
Scheme for the Stabilization of Maximum-Flow Routing
Protocols", Proceedings of the Third Workshop on Self-Sta-
bilizing Systems, pp. 185-200, 1997.

[4] Dijkstra, E. W., "A Note on Two Problems on Connection
with Graphs", Numerical Mathematics, Vol. 1, pp. 269-271,
1959.

[5] Garcia-Luna-Aceves, J. J., "Loop-Free Routing Using Dif-
fusing Computations", IEEE/ACM Transactions on Net-
working, Vol. 1, No. 1, Feb. 1993.

[6] Garcia-Luna-Aceves, J. J., Murthy S., "A Path-Finding
Algorithm for Loop-Free Routing", IEEE/ACM Transac-
tions on Networking, Vol. 5, No. 1, Feb. 1997.

[7] M. Gouda, "Protocol Verification Made Simple", Computer
Networks and ISDN Systems, Vol. 25, 1993, pp. 969-980.

[8] M. Gouda, The Elements of Network Protocols, Wyley
publishers, 1997.

[9] M.Gouda and M. Schneider, "Stabilization of Maximum
Flow Trees", Proceedings of the third Annual Joint
Conference on Information Sciences, 1994, pp. 178-181.

[10] Gouda, M. G. and M. Schneider, "Maximum Flow Rout-
ing", Proceedings of the Second Workshop on Self-Stabi-
lizing Systems, Technical Report, Department of Computer
Science, University of Nevada, Las Vegas, May 1995.

[11] Gouda, M. G. and M Schneider, "Maximizable Routing
Metrics", Proceedings of the IEEE International Conference
on Network Protocols, pp. 71-78, 1998.

[12] Hedrick, C. "Routing Information Protocol", RFC 1058,
June 1998.

[13] Hinden, R., Sheltzer, A., "DARPA Internet Gateway", RFC
823, September 1982.

[14] Merlin, P. M. and A. Segall, "A Failsafe Distributed Rout-
ing Protocol", IEEE Transactions on Communications, Vol.
COM-27, No. 9, pp. 1280-1288, 1979.

[15] Moy J, "OSPF Version 2", RFC 1247, August 1991.
[16] Segall, A. , "Distributed Network Protocols", IEEE Trans-

actions on Information Theory, Vol. IT-29, No. 1, pp. 23-
35, Jan. 1983.

[17] Schneider, M., "Flow Routing in Computer Networks",
Ph.D. dissertation, The University of Texas at Austin,
December 1997.

[18] Schneider, M., "Self-Stabilization", ACM Computing
Surveys, Vol. 25, No. 1, 1983.

[19] Sur, S. and P. K. Srimani, "A Self-Stabilizing Distributed
Algorithm for BFS Spanning Tree of a Symmetric Graph",
Parallel processing Letters, Vol. 2, pp. 171-179, 1992.

[20] Varghese, G., "Self-Stabilization by Counter Flushing",
Proceedings of the ACM Principles of Distributed
Computing (PODC) conference, 1994.

[21] Vutukury, S., Garcia-Luna-Aceves, J. J., "A Distributed
Algorithm for Multi-Path Computation", Proceedings of the
1999 Global Telecommunications Conference.

[22] Vutukury, S., Garcia-Luna-Aceves, J. J., "An Algorithm for
Multi-Path Computation using Distance-Vectors with
Predecessor Information", Proceedings of the 1999 ICCCN
conference.

[23] Vutukury, S., Garcia-Luna-Aceves, J. J., "A Simple Ap-
proximation to Minimum Delay Routing", Proceedings of
the 1999 SIGCOMM conference.

[24] Wang, Z. and J. Crowcroft, "Bandwidth-Delay Based
Routing Algorithm", Proceedings of the IEEE Global Tele-
communications Conference, 1995.

[25] M. Waris, "Propagated Timestamps: A Scheme for the Sta-
bilization of Maxmum-Flow Routing Protocols", Master's
Thesis, The University of Houston, Fall 1997.

[26] Zaumen, W., Garcia-Luna-Aceves, J.J., "Loop-Free Mul-
tipath Routing Using Generalized Diffusing Computations",
Proceedings of the 1998 INFOCOM conference.

