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Abstract 

In this paper we investigate the fundamental trade-offs in 
aggregate packet scheduling for support of guaranteed de- 
lay service. In our study, besides the simple FIFO packet 
scheduling algorithm, we consider two new classes of aggre- 
gate packet scheduling algorithms: the static earliest time$rst 
(SETF) and dynamic earliest timefirst (DETF). Through these 
two classes of aggregate packet scheduling, we show that, 
with additional time stamp information encoded in the packet 
header for scheduling purpose, we can significantly increase 
the maximum allowable network utilization level, while at the 
same time reducing the worst-case edge-to-edge delay bound. 
Furthermore, we demonstrate how the number of the bits used 
to encode the time stamp information affects the trade-off be- 
tween the maximum allowable network utilization level and 
the worst-case edge-to-edge delay bound. In addition, the 
more complex DETF algorithms have far better performance 
than the simpler SEW algorithms. These results illustrate the 
fundamental trade-offs in aggregate packet scheduling algo- 
rithms and shed light on their provisioning power in support 
of guaranteed delay service. 

I. INTRODUCTION 

Because of its potential scalability in support of Internet 
QoS guarantees, lately aggregate packet scheduling has at- 
tracted a lot of attention in the networking community. For 
instance, in the DiffServ framework [ 2 ] ,  it is proposed that the 
simple FIFO packet scheduling be used to support the EF (ex- 
pedited forwarding) per-hop behavior (PHB) [6]. Namely, at 
each router, EF  packets from all users are queued at a single 
FIFO buffer and serviced in the order of their arrival times at 
the queue,. Clearly, use of FIFO packet scheduling results in a 
very simple implementation of the EF  PHB. However, the abil- 
ity of appropriately provisioning a network using FIFO packet 
scheduling to provide guaranteed rate/delay service-as the 
EF  PHB is arguably intended to support [7]-has been ques- 
tioned [ 11, [3]. 

In a recent work by Charny and Le Boudec [3], it is shown 
that in order to provide guaranteed delay service using FIFO, 
the overall network utilization level must be limited to a small 
fraction of its link capacities. More specifically, in a network 
of FIFO schedulers, the worst-case delay at each router is 
bounded only when the network utilization level is limited to 
a factor smaller than 1 / ( H *  - l), where H’, referred to as the 
network diameter, is the number of hops in the longest path of 
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the network. Furthermore, given the network utilization level 
a < l / ( H *  - l), the worst-case delay bound is inverselypro- 
portional to 1 - a ( H *  - 1). Hence as the network utilization 
level a gets closer to the utilization bound l/(H* - l), the 
worst-case delay bound approaches rapidly to infinity. 

The elegant result of Charny and Le Boudec raises several 
interesting and important questions regarding the design and 
provisioning power of aggregate packet scheduling. In this pa- 
per we will take a more theoretical perspective and attempt to 
address the fundamental trade-offs in the design of aggregate 
packet scheduling algorithms and their provisioning power in 
support of (worst-case) guaranteed delay service. In particu- 
lar, we study the relationships between the worst-case edge- 
to-edge delay (i.e., the maximum delay experienced by any 
packet across a network domain), the maximum allowable net- 
work utilization level and the “sophisticatiodcornplexity ” of 
aggregate packet scheduling employed by a network. A la the 
Internet DiffServ paradigm, we consider a framework where 
user trafJic is only conditioned (i.e., shaped) at the edge of 
a network domain, whereas inside the network core, packets 
are scheduled based solely on certain bits (referred to as the 
packet state) carried in the packet header. In other words, the 
aggregate packet scheduling algorithm employed inside the 
network core maintains no per-flowher information, thus it  
is core-stateless. 

In our framework, besides the conventional “TOS” bits, we 
assume that additional control information may be carried in 
the packet header for scheduling purpose. By encoding cer- 
tain timing information in the packet header, we design two 
new classes of aggregate packet scheduling algorithms: the 
static earliest time$rst (SETF) and dynamic earliest time first 
(DETF) algorithms. In the class of SETF packet scheduling 
algorithms, packets are stamped with its entry time at the net- 
work edge, and they are scheduled in the order of their time 
stamps (i.e., their network entry times) inside the network 
core; the class of DETF algorithms work in a similar fashion, 
albeit with an important difference-the packet time stamps 
are updated at certain routers (hence the term dynamic). In 
both classes, the granularity of timing information encoded in 
the packet state-as is determined by the number of bits used 
for packet state encoding-is a critical factor that affects the 
provisioning power of aggregate packet scheduling. 

The objective of our study is to use these two new classes 
(SETF and DETF) of aggregate packet scheduling algorithms, 
in addition to the simple FIFO discipline, to illustrate the fun- 
damental trade-offs in aggregate packet scheduling: 1 )  how 
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with additional control information encoded in the packet 
state, and with added “sophisticatiodcomplexit), ” in aggre- 
gate packet scheduling, the worst-case edge-to-edge delay 
bound and the maximum allowable network utilization bound 
can be improved; and 2 )  how these performance bounds are 
affected by the number of bits available for  packet state en- 
coding. Through analysis and numerical examples, we show 
that when packet time stamps are encoded with the$nest time 
granularity, both the SETF and DETF packet scheduling al- 
gorithms can attain an arbitrary network utilization level (i.e., 
a can be arbitrarily close to I) .  In other words, the maxi- 
mum allowable network utilization bound is independent of 
the network diameter H * .  This is in contrast to the case of 
FIFO, where the maximum utilization level is bounded by 
l / ( H *  - 1). Furthermore, using the more complex DETF, the 
worst-case edge-to-edge delay bound is linear in H’, whereas 
using the simpler SETF, the worst-case edge-to-edge delay 
bound is inversely proportional to (1 - a)”. When packet 
time stamps are encoded using coarser granularity (i.e., the 
number of bits for packet state encoding is limited), the net- 
work utilization level is constrained by the time granularity. 
In addition, the worst-case edge-to-edge delay bound is in- 
creased. With the same number of bits, the more complex 
DETF packet scheduling algorithms have far superior perfor- 
mance over the simpler SETF algorithms. 

The remainder of the paper is organized as follows. In Sec- 
tion I1 we present the basic model and assumptions for our 
analysis. In Section 111, we re-establish the result in [3] us- 
ing our approach. The two new classes of aggregate packet 
scheduling, SETF and DETF, are analyzed and the trade-offs 
discussed in Section IV and Section V, respectively. We con- 
clude the paper in Section VI. 

11. NETWORK MODEL A N D  ASSUMPTIONS 

Consider a single network domain, as shown in Figure 1 ,  
where all traffic entering the network is shaped at the edge 
traffic conditioner before releasing into the network. No traf- 
fic shaping or re-shaping is performed inside the network 
core. We assume that all routers employ the same aggregate 
packet scheduling algorithm (e.g., FIFO) that performs packet 
scheduling using only certain bits (the packet state) carried in 
the packet header. No other scheduling information is used or 
stored at core routers. We refer to the scheduling mechanism 
employed at an outgoing link of a router as a scheduler. Let C 
be the capacity of the corresponding outgoing link of a sched- 
uler S.  We will also refer to C as the capacity of the sched- 
uler S.  We denote the MTU (maximum transmission unit) 
of the link by Lmax, then Lmax/C is the transmission time 
of an MTU-sized packet. Define 4 = max,[~S~s{Lmaz/C}, 
i.e., 4 is the maximum transmission time of any packet in the 
network. We assume that the path of any user flow is pre- 
determined, and fixed throughout its duration. Let H’ be the 
maximum number of hops in the paths that any user flow may 
traverse in the network. We refer to H* as the network diam- 
eter. 

Consider an arbitrary flow j traversing the network. The 
traffic of the flow is shaped at the network edge in such a man- 

ner that it conforms to a token bucket regulated arrival curve 
(oJ, p’) [4]: Let A j ( t ,  t + T )  denote the amount of the flow j 
traffic released into the network during a time interval [t, t f ~ ] ,  
where t 2 0, T 2 0; then Aj(t ,  t + T )  <_ d + p’r. We control 
the overall network utilization level by imposing a utilization 
factor a on each link as follows. Consider an arbitrary sched- 
uler S with capacity C. Let 7 denote the set of user flows 
traversing S.  Then the following condition holds: 

Ed sac. 
j E 3  

Clearly, 0 < a 5 1. We will also refer to the utilization factor 
a as the network utilization level of a network domain. In 
addition to the link utilization factor a,  we will also impose 
an overall bound p 2 0 (in units of time) on the “burstiness” 
of flows traversing any scheduler S: xJEF DJ 5 PC. As we 
will see later, this burstiness factor plays a less critical role 
in our analysis than the network utilization level a. 

From the above edge shaping and network utilization con- 
straints, we can obtain an important bound on the amount of 
traffic going through a given scheduler that is injected at the 
network edge during any time interval. Consider an arbitrary 
scheduler S with capacity C. For any time interval [T,  t ] ,  let 
As(r, t )  denote the amount of traffic injected into the network 
during the time interval [T, t] that will traverse S (at perhaps 
some later time). Here we use A to emphasize that & ( T ,  t )  
is not the traffic traversing S during the time interval [T, t ] ,  
but injected into the network at the network edge during [T, t ] .  
Using the facts that AJ ( t ,  t + T )  5 ~3 + p’r for all flows, 
CJET pJ 5 aC and CJE7 nJ 5 PC, it is easy to show that 

We refer to this bound as the edge traflc provisioning con- 
dition for scheduler S .  As we will see later, the edge traffic 
provisioning condition is critical to our analysis of aggregate 
packet scheduling algorithms. 

Now consider a packet p (of any flow) that traverses a path 
with h 5 H* hops. For i = 1 , 2 , .  . . , h, denote the scheduler 
at the ith hop on the path of packet p as Si (see Figure 2) .  
Let U’ and fr represent, respectively, the time that packet p 
arrives at and departsfrom scheduler Si. For ease of expo- 
sition, throughout this paper we assume that the propagation 
delay. from one scheduler to another scheduler is zero. Hence 

Note that U: is the time packetp is released into the network 
(after going through the edge traffic conditioner), and f: is the 
time packet p leaves the network. Hence f: - U: is the cumu- 
lative delay that packet p experiences along its path, and is 
referred to as the edge-to-edge delay experienced by packet p .  
(Note that the delay experienced by a packet at the edge traffic 
conditioner is excluded from the edge-to-edge delay.) Define 
D’ to be the worst-case edge-to-edge delay experienced by 
any packet in the network, i.e., 

ay+l = e. 

(3) 
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Fig. 1. The network model. Fig. 2. Packet’s arrival time at and departure time Fig. 3. Time slots and packet time stamps. 
from each scheduler. 

where in the above definition h is the number of hops on the 
path of packet p .  

The key questions we will address in the remainder of the 
paper are: 1) given an aggregate scheduling algorithm, under 
what network utilization level a: does an upper bound on D’ 
exist? 2) how does this bound depend on the utilization level 
a: and network diameter H*? and 3) how these relationships 
are affected by the number of bits available for packet state 
encoding as well as the added “sophisticationkomplexity” in 
aggregate packet scheduling? 

111. NETWORK OF FIFO SCHEDULERS 

In this section we re-establish the result of Charny and Le 
Boudec [3] for a network of FIFO schedulers using a different 
approach. Unlike [ 3 ]  which uses an argument based on the 
worst-case per-hop delay analysis, in our approach we attempt 
to obtain a recursive relation for up’s (or equivalently, ff’s) 
for any packet p .  From this recursive relation we then derive 
an upper bound on the worst-case edge-to-edge delay D’. As 
we will see later, this argument is quite general and powerful, 
and forms the basis of all the analyses in this paper. 

A key step in our analysis is to obtain an upper bound on 
the amount of traffic that is serviced by a scheduler between 
the arrival and departure of any packet p at the scheduler. This 
bound will allow us  to establish a recursive relation between 
u:’~ and up. For this purpose, we introduce an important no- 
tation, r*, which is the maximum time it takes for  any packet 
to reach its last hop. Formally, 

r* = maF{uP, - a:}. 
all p s 

(4) 

Now consider a FIFO scheduler S of capacity C. Let U: 
denote the time a packet p arrives at S ,  and jz the time packet 
p departs from S .  Define Q(u%) to be the amount of traffic 
serviced by the scheduler S between [U:, fz]. Note that since 
S is a FIFO scheduler, Q(u:) is exactly the amount of traffic 
queued at S at the arrival time of packet p (with packet p itself 
included). We have the following bound on Q(u5):  

Lemma I :  For a FIFO scheduler S of capacity C, we have 

( 5 )  Q(uP,) 5 aCr’ + PC. 
ProoJ Let p’ be the last packet before packet p (it- 

self inclusive) that when packet p’ arrives at scheduler S any 
packet p‘ in the queue (including the one in service) satisfies 

the following condition: 

a? 2 a:*. (6) 
In other words, when packet p* arrives at scheduler S ,  it is the 
“oldest” packet in the queue: namely, all other packets cur- 
rently in the queue entered the network no early than packet 
p*. We note that such a packet always exists-if no other 
packets satisfy (6), the packet that starts the current busy pe- 
riod certainly does. Let a$ denote the time packet p’ ar- 
rived at scheduler S.  By the definition of p * ,  any packet 
that was either queued at scheduler S at time U$ or arrived 
at scheduler S between a$ and U: must have entered the 
network during the time interval [U: ,a:],. From ( 2 ) ,  the 
amount of traffic carried by these packets is bounded above 
by aC(a: - U:*) + PC. Furthermore, since scheduler S is 
always busy during rug, U:], we have 

Q(u:) 5 ~:c(u:  - U ; * )  + p c  - (a: - a”,’~. (7) 

As U: - U: = U: - a: * + a$ - a:* and U:- - a:* 5 T*, 

There is an intuitive explanation of the result in Lemma 1. 
Note that a FIFO scheduler services packets in the order of 
their arrival times at the scheduler, regardless of when they 
are released into the network. In particular, packets entering 
the network later than packet p can potentially be serviced ear- 
lier than packet p .  Intuitively, packets that are queued at the 
time packet p arrives at scheduler S must have entered the 
network between [ u t  - T*, U:] and arrived at scheduler S be- 
fore packet p .  By the edge traffic provisioning condition (2), 
the amount of traffic carried by these packets is bounded by 
aCr* + PC. This intuitive argument is made rigorous in the 
proof of Lemma 1. 

We now use Lemma 1 to derive a recursive relation for af’s. 
Consider a packet p which traverses a path with h hops. The 
capacity of the ith scheduler on the path is denoted by Ci. 
Then by the definition of Q(u:), we have 

’ u:+~ = j: = U: + Q(a:)/Ci 5 U: + QT* + 0. 

from (7) we see that (5) follows easily. 

(8) 

we 

Lemma 2: Consider a packet p which traverses a path with 

Recursively applying (8) and using the relation j r  = 
have the following lemma. 

h hops. Then, for i  = 1 , 2 , .  . . , h, we have, 
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Using Lemma 2, we can establish the following main results 
for a network of FIFO schedulers’. 

Theorern3: Given a network of FIFO schedulers with a 
network diameter H’, if the network utilization level cy sat- 

thermore, the worst-case edge-to-edge delay D’ is bounded 
above by 

isfies the condition LY < A, then T* 5 l L ( H . - l l a .  H*-1)4 Fur- 

D’S ”’ (10) 1 - (H’ - 1)a’ 
Theorem 3 illustrates the provisioning power of a network 
of FIFO schedulers for support of guaranteed delay service: 
in order to provide a provable worst-case edge-to-edge delay 
bound, the maximum network utilization level must be lim- 
ited below l/(H* - 1). (We will refer to this bound as the 
maximum allowable network utilization bound.) For example, 
with N’ = 3 (a “small” network), the maximum network uti- 
lization must be kept below 50% of all link capacities; with 
H’ = 11 (a relatively ‘‘large’’ network), the maximum net- 
work utilization must be kept below 10% of all link capaci- 
ties. Furthermore, as the network utilization level gets closer 
to l /(H* - l ) ,  the worst-case edge-to-edge delay bound ap- 
proaches infinity. 

IV. NETWORK OF STATIC EARLIEST TIME FIRST 
SCHEDULERS 

In this section we will design and analyze a new class of 
aggregate packet scheduling algorithms-the class of static 
earliest time first (SETF) algorithms. Using this class of ag- 
gregate packet scheduling algorithms, we will demonstrate 
how by adding some “sophisticationkomplexity” in aggre- 
gate packet scheduling-in particular, by encoding additional 
control information in the packet header, we can improve the 
maximum allowable utilization bound, and reduce the prov- 
able worst-case edge-to-edge delay bound. Furthermore, we 
will discuss the perfonnance trade-offs of SETF packet algo- 
rithms when a limited number of bits is used for packet state 
encoding. 

The additional control information used by the class of 
SETF schedulers is a (static) time stamp carried in the packet 
header of a packet that records the time the packet is released 
into the network (after going through the edge traffic condi- 
tioner) at the network edge. Here we assume that all edge de- 
vices that time-stamp the packets use a global clock (in other 
words, the clocks at the edge devices are synchronized). We 
denote the time stamp of a packet p by W E .  An SETF sched- 
uler inside the network core schedules packets in the order of 
their time stamps, WO”. Note that in the case of SETF, the time 
stamp of a packet is never modified by any SETF scheduler; 
thus the term static. 

Depending on the time granularity used to represent the 
packet time stamps, we can design a class of SETF sched- 
ulers with different perfomancekomplexity trade-offs. We 
use SETF(r) to denote the SETF packet scheduling algorithm 
where packet time stamps are represented with time granu- 

’The proof of this theorem and the proofs of other results in the remainder 
of this paper can be found in [ I  11. 

larity r. In particular, SETF(0) denotes the SETF schedul- 
ing algorithm where packet time stamps are represented with 
the finest time granularity, namely, packets are time-stamped 
with the precise time they are released into the network. For- 
mally, for any packet p ,  we have WO” = ay. For a more gen- 
eral SETF(r)  scheduling algorithm where l- > 0, we divide 
the time into slots of r time units each (see Figure 3): t ,  = 
[(n-l)r, nr), n = 1 , 2 ,  . . .. Packets released into the network 
are time-stamped with the corresponding time slot numbcr n. 
Therefore, packets that are released into the network within 
the same time slot (say, the time slot t ,  = [ (n  - l)J?,nr)) 
carry the same time stamp value, i.e., WO” = n. Therefore, 
packets released into the network during the same time slot at 
the network edge are indistinguishable by an SETF(T) sched- 
uler inside the network core, and are serviced by the scheduler 
in a FIFO manner. In the following we will analyze SETF(0) 
first, since its analysis is easier to present and follow. The 
general SETF(P) will be studied afterwards in Section IV-B. 

A. SETF with Finest Time Granulariv: SETF(0) 

SETF(0) and then discuss the packet state encoding issue. 

A. 1 Network Utilization Level and Edge-to-Edge Delay 

We follow the same approach to establish performance 
bounds for a network of SETF(0) schedulers, as is employed 
for a network of FIFO schedulers in Section 111. 

Consider an arbitrary SETF(0) scheduler S of capacity C. 
As in Section 111, let U ;  and j g  denote, respectively, the time 
packet p arrives at and departs from S ,  and Q ( a 5 )  denote 
the amount of traffic serviced by the scheduler S between 
[U”, f;]. Note that unlike a FIFO scheduler, Q(aC) may not 
be equal to the amount of traffic queued at S at the arrival time 
of packet p .  This is because a packet p’ in the queue of sched- 
uler S at the time of packet p arrival may have a time stamp 
WO” > U:. In addition, a packet p’ arriving at S later than 
packet p (but before f:) may have a time stamp wf < W E ,  
thus beginning service before packet p .  Nonetheless, we can 
apply a similar argument as used in Lemma 1 to establish the 
following bound on Q(uC). 

Lemma 4: For an SETF(0) scheduler S of capacity C ,  we 
have 

In this section we first establish performance bounds for 

Bounds 

Q ( u ~ )  5 cyC{r* - (U: - ay)} + /3C + Lma5. ( I  1) 
Comparing Lemma 4 with Lemma I ,  we see that the up- 
per bound on Q(aC) for an SETF(0) scheduler is reduced by 
cuC(a~ - ay)  amount from that for an FIFO scheduler. This 
is not surprising, since any packet that is released into the net- 
work after U: = WO” will not take any service away from packet 
p at an SETF(0) scheduler (see Figure 4). 

Lemma 5: Consider a packet p which traverses a path with 
h hops. Then for i  = 1 , 2 , .  . . , h, we have, 

j,’-uy 5 7’ { 1 - (1 -ay}  + c y - l  @+A){ 1 - (1 -cy)‘}). (12) 
Using Lemma 5 ,  we can establish the following main results 

for a network of SETF(0) schedulers. 
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Theorem 6: Consider a network of SETF(0) schedulers 
with a network diameter H*.  For 0 < a < 1, we have 

. Moreover, the worst-case 
edge-to-edge delay D" is bounded above by, 

,-* a-'(ptA){l-(~-a)"-'Z 
(1 - a ) H "  -1 

(13) 
a-l(P+ A){l-  (1 - a ) H * }  

(1 - crl"-' D* 5 
Comparing with a network of FIFO schedulers, we see that in 
a network of SETF(0) schedulers, the network utilization level 
can be kept as high (i.e., as close to 1) as desired: unlike FIFO, 
there is no limit on the maximum allowable network utiliza- 
tion level. However, since the worst-case edge-to-edge delay 
bound is inversely proportional to (1 - it increases 
exponentially as a + 1. The worst-case edge-to-edge bounds 
for a FIFO network and an SETF(0) network (with H* = 8) 
are shown (among other bounds) in Figure 5 as a function of 
the network utilization level a. In this example we assume 
that the capacity of all links is 10 Gb/s,  and all packets have 
the same size L = 1000 bytes. We set the network burstiness 
factor /3 in a similar manner as in [3]: we assume that the to- 
ken bucket size of each flow is bounded in such a way that 
C T ~  5 P o p ' ,  where 00 (measured in units of time) is a constant 
for all flows. For a given network utilization level a,  we then 
set ,B = aP0. In all the numerical studies presented in this pa- 
per, we choose ,& = 25 ms.  From Figure 5, it is clear that for 
a given network utilization level, the worst-case edge-to-edge 
delay bound for an SETF(0) network is much better than that 
for a FIFO network. 

A.2 Time Stamp Encoding and Performance Trade-offs 

In this section we discuss the implication of the worst-case 
edge-to-edge delay bound on the number of bits needed to en- 
code the time stamp information. Suppose that C* is the max- 
imum link capacity of the network. Then it is sufficient to have 
a time granularity of L = 1/C* to mark the precise time each 
bit of data enters the network2. We now investigate the prob- 
lem of how many bits are needed to encode the packet time 
stamps. 

Suppose that rn bits are sufficient to encode the packet time 
stamps precisely. Then the time-stamp bit string wraps around 
every 2 m ~  units of time. Given that the worst-case edge-to- 
edge delay of a packet in the network is bounded above by D', 
we must have 2 0 *  5 2 " ~  so as to enable any SETF(0) sched- 
uler to correctly distinguish and compare the time stamps of 
two different packets (see [ 111 for more discussions on this). 
From Theorem 6, we have 

From (14), we see that to achieve a meaningful network uti- 
lization level, an SETF(0) network requires a large number of 
bits for packet time stamp encoding, thus incurring significant 
control overhead. 

2Although theoretically speaking the finest time granularity r = 0,  it is 
obvious that in practice L = 1/C' is sufficient, as no two bits can arrive at 
any link within L units of time, 

B. SETF with Coarser Time Granularity: SETF(r)  

In this section we analyze the SETF(r) packet scheduling 
algorithm with coarser time granularity, i.e., r > 0, and illus- 
trate how the time granularity affects the performance trade- 
offs of an SETF network. In particular, we demonstrate that 
using a coarser time granularity can potentially reduce the 
number of bits needed to encode the packet time stamps, albeit 
at the expenses of sacrificing the maximum allowable network 
utilization. 

Consider a network of SETF(r) schedulers. Recall that un- 
der SETF(T), the time is divided into time slots and packets 
released into the network during the same time slot canry the 
same time stamp value (i.e., the time slot number). Clearly 
the coarser the time granularity r is, the more packets will be 
time-stamped with the same time slot number. In particular, if 
r is larger than the worst-case edge-to-edge delay of the net- 
work, then a network of SETF(r) schedulers degenerates to a 
network of FIFO schedulers. In the following we will employ 
the same approach as before to derive performance bounds for 
a network of SETF(r) schedulers. 

We first introduce a new notation h': for a given I?, define 
h* + 1 to be the minimum number of hops that any packet 
can reach within !? units of time after it is released into the 
network. Mathematically, h* is the smallest h such that the 
following relation holds for all packets: 

m i n { u ~ , + ,  - a:} 2 r 
all p s 

Note that if h* = 0, we must have r = 0. This gives us 
SETF(0). On the other hand, if r is large enough such that 
h' = H' - 1, SETF(r) becomes FIFO. Hence, without loss of 
generality, in the rest of this section we assume that 1 5 h' < 
H* - 1. Given this definition of h*, we have the following 
bound on Q(u;),  where the notations used in the lemma are 
defined as before: 

Lemma 7: Consider an SETF(r) scheduler S with capacity 
C. Suppose S is the ith hop on the path of a packet p .  Then 

Q(uZ) 5 aCr* + PC, if 1 5 i 5 h', (16) 

a n d i f h * < i < h  

&(a;) 5 ~ C { T *  - (a; - U",+,)} + Pc + L""", (17) 

where 
its path. 

h hops. Then f o r i  = 1 , 2 , .  . . , h*, 

is the time packet p reaches its (h* + 1)th hop on 

Lemma 8: Consider a packet p which traverses a path with 

f: - U: 5 i(CYT* + @); (18) 

and f o r i  = h* + 1,. . . , h,  

ff - U: 5 h*(aT* + p) + ~ * { l  - (1 - ~ y ) z - ~ ' }  

+a-'(/? + A){l - (1 - a)Zvh*}. (19) 
Applying Lemma 8, we obtain the following performance 
bounds for a network of SETF(r) schedulers. 
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Theorem 9: Consider a network of SETF(r) schedulers 
with a network diameter H'.  If the network utilization level cr 
satisfies the following condition, 

(1 - 4H'--h'-1 > ah', (20) 

then 

? (21) Tf ~ Dh' +  CY-'(^ + A){I - (I - a)"--h'-l 

(1 - cr)H*--h'-l - ah' 

Furthermore, the worst-case edge-to-edge delay is bounded 
above by, 

Note first that in Theorem 9, setting h* = 0 yields the re- 
sults for a network of SETF(0) schedulers, whereas setting 
h' = H' - 1 yields the results for a network of FIFO sched- 
ulers (with a difference of l-(H?-l)a caused by the extra care 
taken by the analysis of an SETF network to accout for the 
non-preemptive property of an SETF scheduler). Hence The- 
orem 6 and Theorem 3 can be considered as two special cases 
of Theorem 9. In general, Theorem 9 states that with a coarser 
time granularity I' > 0 (which determines h'), we can no 
longer set the network utilization level at any arbitrary level, 
as in the case of SETF(O), while still having aJinite worst-case 
edge-to-edge delay bound. 

B. 1 Time Stamp Encoding and Performance Trade-offs 

In this section we show that using coarser time granularity 
can potentially reduce the number of bits needed for packet 
time stamp encoding. We also illustrate through numerical 
examples how time granularity affects the performance trade- 
offs of SETF(I') networks. 

We first consider the problem of packet time stamp encod- 
ing. Using the same argument as in Section IV-A.2, for a given 
time granularity r and network utilization level a,  the number 
of bits m needed for packet time stamp encoding must satisfy 
the following condition: 

1) + 1. 
Dh*   CY-^(/^ + A){l - (1 - 

((1 - ~)H*--h*- l  - m 2 log,{ 

(23) 

and maximum allowable network utilization. 

From Theorem 9, (23) and the definition of h* (15), it is not 
too hard to see that given a network with diameter H', we can 
essentially divide the time granularity I? into H' granularity 
levels: each granularity level corresponds to one value of h' = 
0,1, . . . , H' - 1. The finest granularity level corresponds to 
h' = 0, and the coarsest granularity level to h' = H' - 1. For 
this reason, in the following numerical studies, we will use h' 
to indicate the time granularity used in an SETF(r) network. 
In all these studies, except for the network diameter H' all 
other system parameters (link capacity, packet size, ,f3) are the 
same as specified in Section IV-A. 1. 

Figure 5 shows the effect of time granularity on the worst- 
case edge-to-edge delay bound for an SETF(r) network with 
H' = 8. For comparison, we also include the results for the 
corresponding FIFO network. From the figure it is clear that 
coarser time granularity (i.e., larger h') yields poorer worst- 
case edge-to-edge delay bound. As the time granularity gets 
coarser (i.e., h' increases), the worst-case edge-to-edge delay 
bound quickly approaches to that of the FIFO network. 

Next, we demonstrate how the number of bits available for 
packet time stamp encoding affects the maximum allowable 
network utilization so as to support a given target worst-case 
edge-to-edge delay bound for SETF networks. The results 
are shown in Figure 6, where networks with a combination 
of the network diameters H' = 8 and H' = 12 and delay 
bounds D" = 100 m s  and D* = 500 ms are used. As we can 
see from the figure that for a given number of bits for packet 
time stamp encoding, as the network diameter increases, the 
maximum allowable network utilization decreases. Note also 
that when the number of bits for packet time stamp encod- 
ing is small (e.g., less than 15 for a network with parameters 
H' = 8 and D' = 100ms), the packet time stamp does no 
enhance the performance of a SETF(r, h') network, and the 
SETF(I', h') network behaves essentially as a FIFO network 
with a maximum network utilization level around 0.1 1. Be- 
yond this threshold, as the number of bits used increases, the 
maximum allowable network utilization also increases. How- 
ever, as the figure shows, further increasing the number of bits 
beyond a certain value (e.g., 26 for a network with parameters 
H" = 8 and D' = 100 m s )  for encoding will not improve the 
maximum allowable network utilization. 

134 



v. NETWORK OF DYNAMIC EARLIEST TIME FIRST 
SCHEDULERS 

So far we have seen that by including additional con- 
trol information in the packet header and adding sophisti- 
cationkomplexity at network schedulers, the class of SETF 
packet scheduling algorithms improve upon the maximum al- 
lowable network utilization and worst-case edge-to-edge de- 
lay bounds of the simple FIFO packet scheduling algorithm. 
This performance improvement comes essentially from the 
ability of an SETF scheduler to limit the effect of ‘hewer” 
packets on “older” packets. However, the provisioning power 
of SETF packet scheduling algorithms is still rather limited 
as shown earlier. In this section we devise another class of 
aggregate packet scheduling algorithms-the class of DETF 
algorithms-which, with further “sophistication/complexity” 
added at the schedulers, achieve far superior performance. 

In the general definition of a DETF packet scheduling algo- 
rithm, we use two parameters: the time granularity r and the 
(packet) time stamp increment hop count h*. Note that unlike 
SETF where h’ is determined by I?, here h* is independent of 
I?. Hence we denote a DETF scheduler by DETF(r,  h*). In 
the following, we will present the definition of DETF(0, h’) 
first, i.e., DETF with the finest time granularity. The general 
definition of DETF(r,  h*) will be given afterwards. 

As in the case of SETF(O), the time stamp of a packet in  
a network of DETF(0, h”) schedulers is represented precisely. 
In particular, it is initialized at the network edge with the time 
the packet is released into the network. Unlike SETF(O), how- 
ever, the time stamp of the packet will be updated every h” 
hops (see Figure 7). Formally, suppose packet p traverses a 
path of h hops. Let U: denote the time stamp of packet p as 
it is released into the network, i.e., w: = ay. Let K = 
For k = 1 , 2 ,  . . . , K - 1, the time stamp of packet p is updated 
after it has traversed the kh*th hop on its path (or as it enters 
the ( k h * +  1)th hop on its path). Let wg denote the packet time 
stamp of packet p after its kth update. The packet time stamp 
w i  is updated using the following update rule: 

w: := U:-, + d’, k = 1,. . . , K - 1, (24) 

where the parameter d’ > 0 is referred as the (packet) time 
stamp increment. We impose the following condition on d‘ 
that relates the packet time stamp W E  to the actual time packet 
p departs the kh’th hop: fork  = 1 , .  . . , K - 1, 

f,”,+ 5 U ; ,  and fi 5 W E  :=  WE-^ + d * .  (25 )  

This condition on d’ is referred to as the reality check condi- 
tion. Intuitively, we can think of the path of packet p being 
partitioned into K segments of h” hops each (except for the 
last segment, which may be shorter than h’ hops). The reality 
check condition (25 )  ensures that the packet time stamp car- 
ried by packet p after it has traversed k segments is not smaller 
that the actual time it takes to traverse those segments. In the 
next section we will see that the reality check condition (25 )  
and the packet time stamp update rule (24) are essential in  
establishing the performance bounds for a network of DETF 
sc hedulers. 

We now present the definition for the general DETF(r,  h’) 
packet scheduling algorithm with a (coarser) time granular- 
ity r > 0. As in the case of SETF(r),  in a network of 
DETF(r,  h*) schedulers, the time is divided into time slots 
of r units: [(n - l)I’,nI’), n = 1 , 2 , .  . ., and all packet 
time stamps are represented using the time slots. In partic- 
ular, if packet p is released into the network in the time slot 
[(n - l)r, nr), then WO” = nr. We also require that the packet 
time stamp increment d* be a multiple of r. Hence the packet 
time stamp is always a multiple of r. In practice, we can 
encode W E  as the corresponding time slot number (as in the 
case of SETF(r)). 

A.  Performance Bounds for a Network of DETF Schedulers 

In this section we establish performance bounds for a 
network of DETF schedulers. Consider a network of 
DETF(r,  h’) schedulers, where r 2 0 and 1 5 h* 5 H* .  We 
first establish an important lemma which bounds the amount 
of traffic carried by packets at a DETF(r,  h’) scheduler whose 
time stamp values fall within a given time interval. Consider 
a DETF(r,  h’) scheduler S .  Given a time interval [T,  t ] ,  let 
M be the set of packets that traverse S at some time whose 
time stamp values fall within [T,  t ] .  Namely, p E M if and 
only if for some IC = 1 , 2 , .  . . , K , ,  S is on the kth segment of 
packet p’s path, and r 5 wEp1 5 t.  For any p E M ,  we say 
that packet p virtually arrives at S during [T,  t ] .  Let & ( T ,  t )  
denote the total amount of traffic virtually arriving at S dur- 
ing [T, t ] ,  i.e., total amount of traffic carried by packets in M .  
Then we have the following bound on &(T,  t ) .  

Lemma IO: Consider an arbitrary scheduler S with capac- 
ity C in a network of DETF(r,  h*) schedulers. For any time 
interval [T,  t ] .  let A(T,  t )  be defined as above. Then 

A(T, t )  5 pc + a q t  - + r). (26 )  
Note that if r = 0, the bound on A(T, t )  is exactly the same 
as the edge traffic provisioning condition (2) .  Intuitively, (26 )  
means that using the (dynamic) packet time stamp with the 
finest time granularity, the amount of traffic virtually arriving 
at S during [T, t] is bounded in a manner as if the traffic were 
re-shaped at S using (2 ) .  In the general case where a coarser 
time granularity r > 0 is used, an extra CrCr amount of traffic 
may (virtually) arrive at S ,  as opposed to ( 2 )  at the network 
edge. 

From Lemma 10, we can derive a recursive relation for wg’s 
using a similar argument as used before. Based on this re- 
cursive relation, we can establish performance bounds for a 
network of DETF(r,  h’) schedulers. The general results are 
somewhat “messy” to state. For brevity, in the following we 
present results for two special but representative cases-a net- 
work of DETF(0,l) schedulers and a network of DETF(r,  1). 
For the networks of DETF(r,  h*), r > 0, h’ > 1, see [ll].  

Con- 
sider a network of DETF(0,l) schedulers3 with a network di- 

3Note that a DETF(0.I) scheduler is a special case of the Virtual- 
Time Earliest-Deadline-First (VT-EDF) packet scheduling algorithm pro- 
posed in [IO] under the virruul rime reference sysrem framework, where the 
delay parameter for all flows is set to d’ . In general, regarding the per-hop 

Theorem II (A Network of DETF(O,l) Schedulers) 
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ameter H' .  Let d' = ,Ll + A, then the reality condition (25) 
holds. Furthermore, for any 0 < a < 1, the worst-case 
edge-to-edge delay D' is bounded above by D' 5 H*d* = 

Theorem 12 ( A  Network of DETF(T, 1) Schedulers) Con- 
sider a network of DETF(r,  1) schedulers with a network di- 
ameter H ' ,  where > 0. Let d' = [(ar + p + A)/l?]r, 
then the reality condition (25 )  holds. Furthermore, for any 
0 < a < 1, the worst-case edge-to-edge delay D' is bounded 
above by D' 5 H'd' + I'. 

From Theorem 11 and Theorem 12, we see that with h' = 
1, the worst-case edge-to-edge delay bound is linear in the net- 
work diameter H " .  Furthermore, with the finest time granular- 
ity, the worst-case edge-to-edge delay bound is independent of 
the network urilization level a.  This is because the per-hop de- 
lay is bounded by d' = ,O + 4. With a coarser time granularity 
r > 0,per-hopdelayis boundedbyd' = [(Q:r+p+A)/I'lr, 
where the network utilization level determines the "additional 
delay" (ar)  that a packet may experience at each hop. 

B. Packer Stare Encoding 

First consider a network of DETF(0,I) schedulers with a 
network diameter H ' .  As in the case of SETF(O), we use L 

to denote the finest time granularity necessary to represent the 
packet time stamps, i.e., L = 1/C*, where C' is the maximum 
link capacity of the network. From Theorem 11, we see that 
the number of bits m that is needed to encode the (dynamic) 
packet time stamps precisely must satisfy the following con- 
dition: 

H * ( P  + A). 

2m-1 L 2 H * ( P + A ) ,  or 
m 1 log, H' + log.[(P + A ) / L ]  + 1. 

Now consider a network of DETF(r,  1) with a coarser time 
granularity I' > 0. From Theorem 12, for a given network uti- 
lization level a,  we see that the number of bits m that is needed 
to encode the (dynamic) packet time stamps must satisfy the 
following condition: 

2m-1 r 2 
scheduling behavior, DEW is close to a special case of WED+ by Cmz [ 5 ] .  
However, SCED+ only considers discrete time and does not study the effect 
of number of bits available for packet state encoding on the performance of a 
network. 

DETF(r, 2) networks (H' = 8). works (H' = 8). 

Hence for a given network utilization level a, coarser time 
granularity (i.e., larger r) in general leads to fewer bits needed 
to encode the dynamic packet time stamps. However, due to 
the ceiling operation in (27), at least log,{H' + 1) + 1 bits are 
needed. This effectively places a bound on the range of time 
granularities that should be used, i.e., r E [0, (,Ll+A)/(l-a)]. 
Any coarser time granularity r > (0 + A ) / ( l  - a )  will not 
reduce the minimum number of bits, log, { H' + 1) + 1, needed 
for packet time stamp encoding. 

C. Performance Trade-offs and Provisioning Power of Aggre- 

In this section we use numerical examples to demonstrate 
the performance trade-offs in the design of DETF networks. 
By comparing the performance of FIFO, SETF and D E W  net- 
works, we also illustrate the provisioning power of the aggre- 
gate scheduling algorithms in support of guaranteed delay ser- 
vice. Lastly, we briefly touch on the issue of complexitykost 
in implementing the aggregate scheduling algorithms. The 
network setting for all the studies is the same as before. The 
network diameter H' and the network utilization level Q: will 
be varied in different studies. 

In the first set of numerical examples, we illustrate the rela- 
tionship between the network utilization level a and the worst- 
case edge-to-edge delay bound for networks employing vari- 
ous aggregate packet scheduling algorithms. The results are 
shown in Figure 8, where H' = 8 is used for all the networks. 
For the SETF(r) network, we choose r = 2A = 0 . 8 p  (i.e., 
h* = 2). For the DETF(r, 1) network, we set r = 5ms.  
From' the figure we see that the DETF(0,I) network has the 
best worst-case edge-to-edge delay bound. Despite a relatively 
coarser time granularity, the delay bound for the DETF(r,  1) 
network is fairly close to that of the DETF(0,l) network. In 
addition, when the network utilization level is larger than 0.2, 
the DETF(r,  1) network also has a better delay bound than 
the rest of the networks. The delay bound of the DETF(r,  2) 
network is worse than that of the SETF(0) network (with the 
finest time granularity), but is considerably better than those 
of the SETF(r) and FIFO networks. From this example, we 
see that the DETF networks in general have far better delay 
performance than those of SETF and FIFO networks. 

gate Packet Scheduling 
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In the next set of numerical examples, we compare the pro- 
visioning power of the various aggregate packet scheduling 
algorithms. In particular, we consider the following provision- 
ing problem: given a network employing a certain aggregate 
packet scheduling algorithm, what is the maximum allowable 
network utilization level we can attain in order to meet a tur- 
get worst-case edge-to-edge delay bound? In this study, we 
allow networks employing different aggregate packet schedul- 
ing algorithms to use different number bits for packet state 
encoding. More specifically, the FIFO network needs no addi- 
tional bits. The SETF(r) network (where r is chosen such that 
h* = 1) uses 20 additional bits for time stamp encoding. The 
number of additional bits used by the DETF(I?, 2) network is 5. 
For the DETF(r,  1) networks, we consider two cases: one uses 
6 additional bits, while the other uses 7 bits. All the networks 
used in these studies have the same diameter H* = 8. Figure 9 
shows the maximum allowable network utilization level as a 
function of the target worst-case edge-to-edge delay bound for 
the various networks. The results clearly demonstrate the per- 
formance advantage of the DETF networks. In particular, with 
a few number of bits needed for packet state encoding, the 
DETF(r ,  1) networks can attain much higher network utiliza- 
tion level, while supporting the same worst-case edge-to-edge 
delay bound. 

In the last set of numerical examples, we focus on the 
DETF(l?, 1) networks only. In this study, we investigate the 
design and performance trade-offs in employing DETF(r, 1) 
networks to support guaranteed delay service. In Figure I O  we 
show, for a network of diameter H* = 8, how the number of 
bits available for packet state encoding affects the maximum 
network utilization level so as to support a given target worst- 
case edge-to-edge delay bound. From these results we see 
that with relatively a few number of bits, a DETF network can 
achieve fairly decent or good network utilization while meet- 
ing the target worst-case edge-to-edge delay bound. In par- 
ticular, with the target worst-case edge-to-edge delay bounds 
200 ms and 500 ms, we can achieve more than 50% (and up 
to 100%) network utilization level using only 6 to 7 additional 
bits. 

We conclude this section by briefly touching on the is- 
sue of costfcomplexity in implementing the aggregate packet 
scheduling algorithms. Besides the fact that additional bits are 
needed for packet state encoding, both the SETF and DETF 
packet scheduling algorithms require comparing packet time 
stamps and sorting packets accordingly. With the finest time 
granularity, this sorting operation can be expensive. How- 
ever, with only a few bits used for packet time stamp en- 
coding, sorting can be avoided by implementing a “calen- 
dar queue” (or rotating priority queue [8]) with a number of 
FIFO queues. This particularly favors the DETF(r,  1) packet 
scheduling algorithms, since the number of bits needed for 
time stamp encoding can be kept small. However, compared to 
SEW, DETF(r,  1) packet scheduling algorithms require up- 
dating packet time stamps at every router, and thus d* must be 
configured at each router. Lastly, in terms of finding additional 
bits for packet state encoding, we can re-use certain bits in the 
IP header [9 ] .  This is the case in our prototype implementa- 

tion using the IP-IP tunneling technique, where we re-use the 
IP identification field (16 bits) in the encapsulating IP header 
to encode the packet time stamp. 

VI.  CONCLUSIONS 
In this paper we investigated the fundamental trade-offs in 

aggregate packet scheduling for support of (worst-case) guar- 
anteed delay service. Based on a novel analytic approach 
that focuses on network-wide performance issues, we stud- 
ied the relationships between the worst-case edge-to-edge de- 
lay, the maximum allowable network utilization level and 
the “sophistication/complexity” of aggregate packet schedul- 
ing employed by a network. We designed two new classes 
of aggregate packet scheduling algorithms-the static earli- 
est time first (SETF) and dynamic earliest time first (DETF) 
algorithms-both of which employ additional timing informa- 
tion carried in the packet header for packet scheduling, but dif- 
fer in. their manipulation of the packet time stamps. Using the 
SETF and DETF as well as the simple FIFO packet schedul- 
ing algorithms, we demonstrated that with additional control 
information carried in the packet header and added “sophisti- 
catiodcomplexity” at network schedulers, both the maximum 
allowable network utilization level and the worst-case edge- 
to-edge delay bound can be significantly improved. We fur- 
ther investigated the impact of the number of bits available for 
packet state encoding on the performance trade-offs as well as 
the provisioning power of these aggregate packet scheduling 
algorithms. 
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