
Systematic Verification of Safety Properties of
Arbitrary Network Protocol Compositions Using CHAIN∗

Adam D. Bradley, Azer Bestavros, and Assaf J. Kfoury
Department of Computer Science, Boston University

artdodge,best,kfoury@cs.bu.edu

Abstract

Formal correctness of complex multi-party network proto-
cols can be difficult to verify. While models of specific
fixed compositions of agents can be checked against de-
sign constraints, protocols which lend themselves to arbi-
trarily many compositions of agents–such as the chaining of
proxies or the peering of routers–are more difficult to ver-
ify because they represent potentially infinite state spaces
and may exhibit emergent behaviors which may not ma-
terialize under particular fixed compositions. We address
this challenge by developing an algebraic approach that en-
ables us to reduce arbitrary compositions of network agents
into a behaviorally-equivalent (with respect to some correct-
ness property) compact, canonical representation, which is
amenable to mechanical verification. Our approach consists
of an algebra and a set of property-preserving rewrite rules
for the Canonical Homomorphic Abstraction of Infinite Net-
work protocol compositions (CHAIN). Using CHAIN, an
expression over our algebra (i.e., a set of configurations
of network protocol agents) can be reduced to another
behaviorally-equivalent expression (i.e., a smaller set of
configurations). Repeated applications of such rewrite rules
produces a canonical expression which can be checked me-
chanically. We demonstrate our approach by characteriz-
ing deadlock-prone configurations of HTTP agents, as well
as establishing useful properties of an overlay protocol for
scheduling MPEG frames, and of a protocol for Web intra-
cache consistency.

1. Introduction

Increasingly, the Internet is being used as a ubiquitous
infrastructure supporting a multitude of distributed applica-
tions and services. The introduction, deployment, and re-
vision of Internet services is laden with uncertainties that
arise from our inability to formally establish the safety of
such services–namely, that such services will not interfere
with existing services or with prior versions of the same ser-
vice. In light of the increasingly important role Internet-
based services play in today’s economy and society, it is

∗This research was supported in part by NSF (awards ANI-9986397,
ANI-0095988, CCR-9988529, ITR-0113193, ANI-020205294, and EIA-
0202067) and U.S. Department of Education (GAANN Fellowship)

incumbent upon the networking research community to de-
velop sound formalisms by which such properties can be
assessed, and to promote widespread use thereof. Indeed, in
a recent NSF PI meeting of over 250 network researchers,
improving the trustworthiness of Internet applications [25]
and the development of formalisms to scale our understand-
ing of networked systems [24] were deemed to be two of the
most pressing challenges facing the networking community
for the next few years.

Current efforts to assess the trustworthiness of the In-
ternet have focused on proving desirable properties of an
individual protocol or service agent, with very few efforts
focusing on properties that emerge from the composition
of such protocols and services (e.g., [12]). Properties that
emerge from the composition of similar yet distinct proto-
cols and agents are much harder to reason about–not to men-
tion check mechanically–due to the arbitrary nature of such
compositions.

An illustrative example can be found in the networking
community’s experience with specifying a revised HTTP
protocol standard, HTTP/1.1. While the original formula-
tions of the HTTP protocol were truly stateless and thus
deadlock-free, the addition of the 100 Continue mech-
anism to HTTP/1.1 [17] introduced multiple states to the
transaction model for clients, servers, and intermediaries;
unfortunately, an ambiguity was found in the specification
with respect to particular compositions of proxies of one
protocol version with clients and servers of another, such
that deadlocks could occur between “correct” implementa-
tions of HTTP/1.1 (RFC2068) and HTTP/1.0 [22].

Stateful multi-party protocols are notoriously difficult to
get right. For years, analogous problems have been com-
monplace in the design of lower-level distributed protocols;
mastering the nuances of handshaking, rendezvous, mutual
exclusion, leader election, and flow control so as to guar-
antee correct, deadlock-free, work-accomplishing behavior
requires very careful thought, and hardening the specifica-
tions and implementations of these protocols to deal with
misbehaving or potentially hostile peers remains a difficult
problem at all layers of the stack.

In this paper, we show how to use an algebraic approach
coupled with traditional correctness-checking mechanisms
like model checkers to systematically discover compositions
of networked agents which give rise to problematic behav-



iors. This approach generalizes to characterizing a wide ar-
ray of protocol correctness problems, including the HTTP
issue discussed above.

Paper Contributions and Overview This paper proposes
a systematic approach to the verification of safety prop-
erties in arbitrary compositions of network protocols us-
ing CHAIN–an algebra and associated rewrite rules for the
Canonical Homomorphic Abstraction of Infinite Network
protocol compositions. We instantiate our approach for
a number of network protocols, showing how it enables
us to identify safety violations of arbitrarily large com-
positions of these protocols mechanically, using readily-
available model checking technologies.

Within CHAIN, every type of agent within a composible
protocol system (e.g., “HTTP/1.0 server”, “MPEG router”,
etc.) is represented by a single symbol; compositions of
agents of these types are represented algebraically as strings
(“chains”) of those symbols. Protocols supporting arbitrar-
ily composible intermediaries (e.g., HTTP proxies) are de-
scribed by an infinite set of such chains. We then develop
a set of rewrite rules over this algebra which preserve the
property under consideration. By repeated application of
these rewrite rules to the set of all meaningful chains, we
reduce this set to a much smaller canonically representative
set of chains–an abstraction of the original set. This abstrac-
tion is a homomorphic image of the original set in the sense
that if a property holds for the abstraction, then it provably
holds for all of the possibly infinite compositions allowed by
the protocol. Where a homomorphic image of finite size is
derivable, the abstraction can then be exhaustively verified
mechanically using off-the-shelf tools or methods.

The remainder of this paper is organized as follows. As
a motivation for and a case study in the application of our
methodology, we begin in Section 2 by outlining the HTTP
request continuation mechanism, a feature of the HTTP/1.1
protocol, and its problems. We follow that in Section 3 with
a presentation of the underpinnings of our CHAIN algebra
and reductions. In Section 4 we bring the formalisms in
CHAIN to bear on three examples of protocol compositions.
First, we use it to characterize possible safety violations
(deadlock scenarios) of HTTP/1.1 protocol compositions;
we do so by translating previously established “equivalence”
relationships into algebraic rewrite rules, thus creating a fi-
nite homomorphic image of the infinite set of HTTP compo-
sitions, allowing us to exhaustively identify the infinite sets
of deadlock-prone and deadlock-safe compositions. Next,
we illustrate the application of CHAIN to an MPEG packet
routing protocol for overlay networks and a web intra-cache
consistency protocol We conclude the paper in Section 6
with a summary and a brief discussion of future directions
of this work.

2. HTTP Request Continuation

In HTTP/1.0, all transactions had a very simple and state-
less communication model: (1) A client would send a whole

request, i.e., a request line, a set of headers, and an optional
request entity; (2) The server, after receiving the whole re-
quest, would respond with a complete request, i.e., a status
line, a set of headers, and an optional response entity.

One of the desired features for HTTP/1.1 was the ability
for clients to avoid transmitting very large entities with their
requests when the transactions would fail independent of the
content of the document (e.g., an authentication failure or
transient server problem) [17]. The original HTTP/1.1
specification (RFC2068) supports this capability by allow-
ing clients to pause part-way through sending a request; the
server may send an error code immediately, informing the
client that the request has already failed and the remain-
der of the request should not be sent, or may send a 100
Continue response, which tells the client to send the re-
mainder of the request.

While the original specification of this mechanism was
clearly sound with respect to simple client-server cases,
it was ambiguous as to the correct behavior of proxies;
compelling arguments were made that the RFC’s language
suggested both hop-by-hop and end-to-end interpretations
of the feature. It was realized that, under at least one
of these interpretations, certain combinations of correctly
implemented components in the client-proxy-server chain
were prone to deadlock [22]; an attempt at addressing this
problem was made in the next public revision (RFC2616)
with the introduction of the Expect mechanism and the
clarification of the semantics of 100 Continue with re-
spect to proxies. Given that many existing implementa-
tions conformed to the various interpretations of RFC2068,
it was decided that RFC2616 should also include a number
of heuristics to facilitate graceful interoperation with those
implementations. The resulting quagmire of special-case in-
teroperability rules and the set of possible combinations of
revisions in the various roles makes it difficult to say any-
thing with certainty about the correctness and full interoper-
ability of the specification; while it seemed reasonably (and
even empirically) to be correct, it was not provably so.

In previous work [5], we presented a set of models for
HTTP clients, proxies, and servers. Any single combination
of a client, some proxies, and a server (hereafter an arrange-
ment) can be examined using a finite-state modeling tool like
SPIN [14] which instantiates the models and joins them with
message channels to determine whether any possible exe-
cution of that arrangement can lead to an undesirable state
(e.g., deadlock or livelock); by strategically selecting a set
of interesting arrangements, we were able to elaborate upon
the community’s understanding of the problem.

Brute-force assessment the interoperability of the mod-
eled agents in all possible client-proxy-server arrangements,
however, would have required us to verify |C| × |S| ×
(
∑∞

i=0 |P|i
)

arrangements, where C is the set of client mod-
els, P is the set of proxy models, and S is the set of server
models, in order to examine all possible interactions be-
tween client, proxy, and server behaviors. Using this brute-
force approach, not only would a “complete” proof require



verifying an infinite number of arrangements, but even a
“partial” proof (all cases up to N instead of ∞ proxies) re-
quires verifying a number of arrangements exponential in
N .

We previously established that particular arrangements
are provably equivalent to others in terms of their externally-
observable behaviors [5]. With a sufficient set of such rela-
tionships, one could potentially reduce an arbitrarily large
set of arrangements to a much smaller (preferably finite) set
of behaviorally representative arrangements, which could
then plausibly be verified individually. To be useful, the
discovery and application of such reductions must follow
a systematic approach. Much work has already been done
in several communities on discovery of such equivalence re-
lationships (e.g., [8, 2, 20]); in the remainder of this paper,
we presume such results and develop the systematic strategy
for model space reduction which they enable.

It is also important to note that a number of techniques
already exist for checking models with infinite state spaces
(e.g., [15, 10, 19, 9, 18]). These techniques tend (in their
current state) to be fairly opaque in the sense that they often
cannot connect their internal representations of the infinite
state space with intuitively useful descriptions of behaviors
of particular protocol agents. For those designing and de-
veloping distributed protocols, we believe that the ability to
do so is crucially important to facilitate debugging of flawed
protocols.

3. The CHAIN Approach

In this section we present the details of our algebraic ap-
proach, CHAIN (a system for the Canonical Homomorphic
Abstraction of Infinite Network protocol compositions). In-
tuitively, CHAIN represents protocol compositions using
strings (chains); the infinite set of such chains is reduced
to a representative finite set via reduction relations (rewrite
rules) which preserve some correctness property. This sec-
tion discusses the formal structure and properties of these
components which give rise to the desirable properties of
a CHAIN system (correct abstraction, sufficient expressive
power, homomorphism, termination, canonicity of result).

3.1. Arrangements in CHAIN

Let G = (N , E) be a graph where the members of N
denote the types of agents which will make up our models
and E are directed edges which indicate valid sequences of
those types of agents (that is, if there is an edge from node n1

to n2, then n2 may immediately follow n1 in a composition).
The set of chains in G is then simply the set of finite paths
in G, which we denote paths(G).

Notice that our definition of chains includes sequences
which will make up “partial” network setups, e.g., client
connected with a series of proxies (but no server), or even an
empty sequence. For this reason, we also define the set of ar-
rangements as A ⊆ paths(G) such that A are the maximal-

C0

C1

C2
P2

P1

P0
S0

S1

S2

Figure 1. G for HTTP arrangements (A)

Table 1. HTTP agent models
Standard Client Proxy Server

RFC1945 (HTTP/1.0) C0 P0 S0
RFC2068 (obsolete HTTP/1.1) C1 P1 S1
RFC2616 (HTTP/1.1) C2 P2 S2

length members of paths(G); for example, all members of
A for the HTTP application are chains beginning with a
client followed by a chain of zero or more proxies and ter-
minating with a server.

As an example, for the HTTP protocol, G would be Fig-
ure 1, where models of clients are represented as Cn (n iden-
tifies the protocol revision per Table 1); similarly, proxies
are represented by Pn, servers by Sn.

3.2. Arrangement Properties

We are interested in identifying the members of A which
satisfy (or fail to satisfy) desirable properties, e.g., those that
are deadlock-free. Let π denote such a property, which can
be viewed as a boolean function π : A → {true, false}.

The primary methodological goal of CHAIN is to obtain
a “friendly” specification of the two sets:

Atrue = {a ∈ A |π(a) = true} and

Afalse = {a ∈ A |π(a) = false} .

By “friendly” we mean, at a minimum, there is a feasible
computation to determine whether a ∈ Atrue or a ∈ Afalse

for any arrangement (no matter how long) in A; ideally, this
should take the form of descriptions of the sets Atrue and
Afalse which can be used to quickly (in polynomial time or
better) test whether a ∈ Atrue or a ∈ Afalse.

3.3. CHAIN Reductions

Consider a graph G as described above and a property π
on the set A of arrangements in G. We denote the powerset
of a set S by 2S . We extend π : A → {true, false} to
a function π : 2A → {true, false} by defining for every
A ∈ 2A:

π(A) =

{

true if π(a) = true for every a ∈ A,

false if π(a) = false for some a ∈ A.



Let A′ be some subset, not necessarily proper, of the set
A of arrangements in G. Because A is a subset of paths(G),
so is A′ a subset of paths(G). A reduction function on A′ is
a function f : paths(G) → 2paths(G) satisfying two condi-
tions:

Invariance on A′: For every a ∈ A′, it is the case that
π(f(a)) is defined and π(f(a)) = π(a).

Progress on A′:
(
⋃

a∈A′ f(a)
)

( A′.

We can extend f : paths(G) → 2paths(G) to a function
f : 2paths(G) → 2paths(G) by setting f(A) =

⋃

a∈A f(a) for
every A ∈ 2paths(G). Thus, the progress condition above can
be expressed more succinctly as f(A′) ( A′.

Informally, the invariance condition says that π is an in-
variant of the transformation from a ∈ A′ to f(a) ⊂ A′. In
practice, this means that, in order to test whether a ∈ A′ sat-
isfies property π, it suffices to test whether every b ∈ f(a)
satisfies π; as a rule, a desirable reduction is one in which
the aggregate of the latter tests is “easier” computationally
than the former test.

The progress condition is assurance that we gain some-
thing by carrying out the transformation from a ∈ A′ to
f(a) ⊂ A′, i.e., the set f(A′) is a non-empty proper subset
of A′. In practice, should A′ be an infinite set we will also
want A′ − f(A′) to be an infinite set, i.e., infinitely many
arrangements are excluded from the search space A′ by the
reduction.

The key insight behind a reduction is that it establishes
behavioral equivalence with respect to π within some set
of chains; a reduction is a statement that “the behaviors of
members of set A′ are fully represented by the behaviors of
members of its subset f(A′)”. The means by which this be-
havioral equivalence is established may be any mechanism
appropriate to the given π (e.g., logical proofs, type systems
[8], process algebra [2], theory of I/O automata [20], I/O
equivalence, etc.).

3.4. Reduction Strategy

Intuitively, our strategy is to identify a set of reductions
(i.e., congruence relations over A which preserve behavioral
equivalence) by which we can establish a finite-sized homo-
morphic image of A (that is, a finite-sized An ⊂ A such
that the behaviors of every member of A correpond with be-
haviors of corresponding members of An).

Starting from A0 = A, our proposed strategy is to define
a nested sequence of strictly decreasing subspaces:

A0 ⊃ A1 ⊃ · · · ⊃ An

induced by a sequence of appropriately defined functions
g1, g2, . . . , gn where gi : paths(G) → 2paths(G) is derived
from a reduction function on Ai−1 and Ai = gi(Ai−1) for
every 1 6 i 6 n. With a sufficient set of reductions, this

strategy produces a finite search space An such that

An = gn(· · · (g2(g1(A))) · · · )

which implies that for every a ∈ A

An ⊇ gn(· · · (g2(g1(a))) · · · ) and

π(a) = π(gn(· · · (g2(g1(a))) · · · )) .

3.5. Practical Specification of Reductions

We introduce a particular notion of rewrite rules. Each
such rewrite rule R will be specified by an expression of the
form

R : X � {Y1, . . . , Yn}

where X, Y1, . . . , Yn are each strings of agent names and
variable names. Let a, b1, . . . , bn ∈ paths(G). We say a

rewrites to the set {b1, . . . , bn}, using rule R in one step,
which we express as:

a �R {b1, . . . , bn}.

A rewrite rule R as described above induces a func-
tion fR : paths(G) → 2paths(G) as follows. For every
a ∈ paths(G), we define:

fR(a) =

{

{a} if a 6�RB for all finite B ⊂ paths(G),
⋃

{B ⊂ paths(G) | a �R B } otherwise.

Following standard notation, we write f
(0)
R (a) = {a} and

f
(k+1)
R (a) = fR(f

(k)
R (a)) for all k > 0. We also define the

function f
(∗)
R : paths(G) → 2paths(G) as follows. For every

a ∈ paths(G):

f
(∗)
R (a) =



















f
(k)
R (a) if there exists k > 0 such that

f
(k+1)
R (a) = f

(k)
R (a),

where k is the least such,

undefined if no such k > 0 exists.

Informally, f (∗)
R (a) returns a fix-point of fR obtained by re-

peated application of fR to a, if such a fix-point exists.
Now, consider the set A of arrangements in G, a prop-

erty π on A, and some subset A′ ⊆ A. We say that the
rewrite rule R is a reduction onA′ provided that the function
f

(∗)
R : paths(G) → 2paths(G) induced by R is a reduction on
A′ satisfying the two conditions defined in Section 3.3: in-
variance on A′ and progress on A′.

Our rewrite rules will satisfy a pleasant condition guar-
anteeing that f

(∗)
R (a) is always defined. Let us say that the

rule R is bounded-monotonic in M iff for some metric M

with a minimum value and for all a, b1, . . . , bn ∈ paths(G)



such that a�R{b1, . . . , bn},

M(a) > M(b1) , . . . , M(a) > M(bn).

Lemma 3.1. If the rewrite rule R is bounded-monotonic
then, for every a ∈ paths(G), it holds that f

(∗)
R (a) is de-

fined, and is a non-empty finite subset of paths(G).
The simplest choice for such a metric is string length

(which has a minimum value of zero); where a rule is
not length-decreasing, it must be shown to be bounded-
monotonic in some other metric to ensure f

(∗)
R is defined.

3.6. Confluence of CHAIN Reductions

As with any term re-writing system, at least two prop-
erties are important to establish: termination (i.e., every ar-
rangement can be rewritten only finitely many times) and
confluence (i.e., if a can be rewritten to b1 and b2, then fur-
ther rewriting of both of those can produce a single string c).
Termination ensures that the system draws some conclusion,
while confluence demonstrates the system’s internal consis-
tency; the combination of these two properties implies that
the final result of the rewriting process is canonical, and that
the rewriting process encodes an equivalence class for each
possible result. Establishing confluence also helps to mini-
mize the size of the result set.

A set of rewrite rules terminate if the effects of all rules
are bounded-monotonic with respect to a single metric; for
example, if all rules are length-decreasing then a system of
such rules must terminate. By Newman’s Lemma [1], we
know that a rewrite system which terminates is confluent iff
it is locally confluent (i.e., given arrangement a which can
be rewritten in one step to B1 or to B2, both B1 and B2 can
be rewritten in zero or more steps to some B3). We there-
fore need only determine local confluence between pairs of
rewrite rules in order to establish confluence.

In the simplest cases, a pair of rewrite rules Ri and
Rj are locally confluent if they are commutative, i.e., if

f
(∗)
i (f

(∗)
j (a)) ≡ f

(∗)
j (f

(∗)
i (a)) for all a ∈ A. As much

as possible, we use this property in our confluence proofs.1

It should be noted that a non-confluent set of rewrite rules
is not a failure of our methodology. In systems like ours
where rewrite rules represent equivalence, that equivalence
is transitive (regardless of the directionality of the rewrite); it
follows that any such divergence identifies additional equiv-
alence relationships which themselves embody additional
valid rewrite rules. As such, any arrangement a ∈ A for
which two rewrite rules Ri and Rj provide diverging evalu-
ation paths actually becomes an instance of a proper behav-
ioral equivalence relation; fi(a) and fj(a) are behaviorally

1This is a special case of the general definition of local confluence:
A pair is locally confluent if there exist compositions (call them F 1 and
F2) of fis drawn from the full set of valid rewrite rules (R) such that

F1(f
(∗)
i (a)) ≡ F2(f

(∗)
j (a)) for all a ∈ A. Intuitively, this means that

systems of rules are confluent when a divergence in rewriting strategies can
be reconciled by some sequences of additional rewrites.

equivalent sets (because of the Invariance property), and
as such if either set has only one member, the pair can be
directly transformed into a previously unknown reduction.
Such additional relations resolve the failures of local con-
fluence, but must then be tested for interference with each
other and the original rule set. The whole process can be
mechanized with the Knuth-Bendix procedure [16].

3.7. Homomorphic Images

If f
(∗)
R is always defined, then the application of f

(∗)
R to

all members of a set A will yield some subset of A such that,
for every a ∈ A, the value of π(a) can be easily determined

from π(f
(∗)
R (a)). Thus, f (∗)

R (A) is a homomorphic image of
A.

In the rest of the paper, when there is no ambiguity, no-
tions that have been defined for a rewrite rule R are extended
to the function f

(∗)
R in the obvious way; for example, we say

“f (∗)
R is length-decreasing” if R is length-decreasing.
It is also convenient to introduce the notion of the support

of the function f
(∗)
R , or of its associated rewrite rule R:

support(f
(∗)
R ) = support(R) = {a ∈ A | f

(∗)
R (a) 6= {a}},

i.e., support(f
(∗)
R ) is the portion of A on which f

(∗)
R acts

non-trivially; so,

f
(∗)
R (A) = (A− support(f

(∗)
R )) ∪ f

(∗)
R (support(f

(∗)
R ))

Recall our stated strategy from Section 3.4: to define a
nested sequence of strictly decreasing subspaces A = A0 ⊃
A1 ⊃ · · · ⊃ An induced by a sequence of reduction func-
tions f1, . . . , fn. In what follows, for every 1 6 i 6 n, we
use fi to denote the f

(∗)
Ri

induced by the bounded-monotonic
rewrite rule Ri.

A trivial approach to this goal is to find
fn(· · · (f2(f1(A))) · · · ). However, such a formulation
fails to properly account for convolutions of rewrite rules.
For example, consider a system in which R1 reduces all
sequences of “a”s to a single “a” and R2 removes any “b”
appearing immediately between two “a”s; for the string
aba, clearly f

(∗)
2 (f

(∗)
1 (aba)) 6= f

(∗)
1 (f

(∗)
2 (f

(∗)
1 (aba)));

the convolution of f1 and f2 has a greater effect than their
sequential application.

Rather than composing the functions as such, we indi-
vidually consider the effect of each rule upon A as a whole,
and then take the intersection of the resulting homomorphic
images. The intersection operator allows our examination
of each fi to wholly exclude from future consideration all
arrangements “reduced away” by each fi.

Lemma 3.2. Consider a set of reductions R =

{R1, . . . , Rn} inducing functions F = {f
(∗)
R1

, . . . , f
(∗)
Rn

}
which are all monotonic with respect to some metric. The



homomorphic image An can then be defined as:

An =

n
⋂

i=1

(

f
(∗)
Ri

(A)
)

which can be equivalently stated as:

An =

n
⋂

i=1

(

A− support(f
(∗)
Ri

)
)

∪ f
(∗)
Ri

(support(f
(∗)
Ri

)) .

Where the set of reductions is clear from context and
where An (the smallest homomorphic image supported by
the given reductions) is of finite ordinality, we call it A>.

It follows then that π(A) = π(A>), i.e., if some property
(e.g., freedom from deadlocks) is provable for all members
of the minimal homomorphic image ({π(a) = true | a ∈
A>}), then it must also hold for all members of the (infinite)
set A. More generally, {a ∈ A> |π(a) = true} is the
homomorphic image of Atrue, and {a ∈ A> |π(a) = false}
is the homomorphic image of Afalse; therefore, finding A>

essentially achieves the core methodological goal of CHAIN

as stated in Section 3.2.

4. Example Applications of CHAIN

In this section, we exemplify the application of the
CHAIN approach to a series of interesting network proto-
col correctness problems. We begin with a detailed comple-
tion of our example of HTTP request continuation deadlock-
safety in order to clearly illustrate the workings of CHAIN.
We then proceed to a more abbreviated discussion of its ap-
plication to the analysis of an applet for selective dropping
of MPEG frames in an overlay network. Finally, we sketch
its application to a web intra-cache consistency algorithm.

4.1. HTTP Deadlock-Safety

Through careful study of our models of HTTP protocol
agents, we have derived and proven a set of rewrite rules
which preserve the behavior of chains with respect to HTTP
request continuation. If an arrangement is deadlock-prone,
then any arrangement which can be rewritten to that one
will also be deadlock-prone; likewise, any arrangement to
which it can be rewritten will also be deadlock-prone. The
same holds for arrangements which are deadlock-free. The
derivation of these and other rules is discussed in greater
depth in [6]. Eight of the rules derived there pertaining to
our current goal are presented in Table 2, along with two
more rules (R9 and R10), the derivation of which will be
discussed below.

In this paper, we refer to particular models using the
letter-number pairs presented in Table 1; these represent the
favored models for each revision/role.

All of the listed rules are proper rewrite rules as defined
in Section 3.5. Notice that these rules are also all length-
decreasing, which implies (by Lemma 3.1) that f

(∗)
Ri

is al-

Table 2. Rewrite rules R1, . . . , R10 and resulting
homomorphic images f1(A), . . . , f10(A)

Rewrite Rule Ai, i.e., fi(A)

R1 x P0 y �R1
{ x S0, C0 y } A − CP∗ P0 P∗S

R2 x P0 P0 y �R2
{ x P0 y, C0 S0 } A − CP∗ P0 P0 P∗S

R3 C2 P2 x �R3
{ C2 x } A − C2 P2 P∗S

R4 x P2 S2�R4
{ x S2 } A − CP∗ P2 S2

R5 x P2 P2 y �R5
{ x P2 y } A − CP∗ P2 P2 P∗S

R6 x P1 P1 P1 y �R6
{ x P1 P1 y } A − CP∗ P1 P1 P1 P∗S

R7 C0 P1 x �R7
{ C1 x } A − C0 P1 P∗S

R8 x P1 P2 P1 y �R8
{ x P1 P1 y } A − CP∗ P1 P2 P1 P∗S

R9 C1 P1 P1 x �R9
{ C1 P1 x } A − C1 P1 P1 P∗ S

R10 C1 P2 P1 x �R10
{ C1 P1 x } A − C1 P2 P1 P∗ S

ways defined for all of them. Therefore, each of the preced-
ing rewrite rules Ri gives rise to a function f

(∗)
Ri

, henceforth
denoted by fi.

Notice also that each fi (i.e., each f
(∗)
Ri

) is a valid re-
duction function, in that it satisfies the invariance and the
progress properties. Invariance was previously established;
progress holds because for every fi it is true that fi(A) ( A.

4.1.1 Confluence

We next ask whether this set of reductions is confluent, i.e.,
whether every arrangement a ∈ A will be terminally rewrit-
ten to a single result set independent of the reduction strat-
egy. Because our set of rewrite rules will terminate (because
they are all length-decreasing), this is equivalent to asking if
the set of reductions is locally confluent.

The local confluence of most pairs of reductions is
straightforward to see, because the rules are independent
(i.e., non-interfering) and therefore commutative. Clearly
R1 and R2 operate upon chains which no other reductions
operate upon; the cluster of R3, R4, and R5 likewise are
clearly independent in their effects of the predicate chains
of R1, R2, R6, R7, and R8, and similarly the cluster of R6,
R7, and R8 are independent of the first five rules. So our
only concern is local confluence within these three clusters.

R1 and R2: Since R2 is an instantiation of R1, these two
clearly do not lead to contradictory rewrite strategies.

R3, R4 and R5: All three of these rules remove P2 from
chains. Consider the one case where both R3 and R4 af-
fect removal of the same P2, namely, a = C2 P2 S2.
f3 and f4 remain commutative, because f

(0)
R3

(f
(1)
R4

(a)) =

f
(0)
R4

(f
(1)
R3

(a)). Similarly, consider the set of chains over
which R3 and R5 conflict, namely, a = C2 P2 P2 x

for any x; f3 and f5 are clearly commutative because
f

(0)
R3

(f
(1)
R5

(a)) = f
(0)
R5

(f
(1)
R3

(a)) when f5 affects the speci-
fied subchain of a. The same proof holds for the pairing of
R4 and R5. Since all three pairings of these three rewrites
commute, the set is locally confluent.



R6, R7 and R8: While rules R6 and R8 are clearly in-
dependent in their effects, the other two pairs within this
cluster are not commutative.
• R6 and R7: These rewrite rules diverge on chains of

the form C0 P1 P1 P1 x. R7 rewrites this expression to
C1 P1 P1 x, and R6 rewrites it to C0 P1 P1 x; while the
latter can then be rewritten using R7 to C1 P1 x, they
still identify different sets, and there exists no rewrite
strategy which will (for all values of x) rewrite both of
these to a common expression.

• R7 and R8: These rewrite rules diverge on chains of
the form C0 P1 P2 P1 x. R7 rewrites this expression to
C1 P2 P1 x, while R8 rewrites it to C0 P1 P1 x. Much
as above, the second expression can again be re-written
to C1 P1 x, but from there no rewrite strategy exists to
rewrite these to a common expression.

Applying the procedure discussed in Section 3.6, each
of these conflicts is transformed into a new valid rewrite
rule in a straightforward way so as to preserve the length-
decreasing property; the results are rules R9 and R10, which
succeed in rendering the system confluent, so further itera-
tion of the procedure is not necessary.
Theorem 4.1. The set of rewrite rules R = {R1, . . . , R10}
is confluent.
Proof. The local confluence of most rule pairs is already
discussed above. Both of the failures of local confluence
among {R1, . . . , R8} are addressed by application of the
two new rewrite rules, R9 and R10. The two new rules are
independent of each other and independent of the original
eight rules, with the exception that R9 and R6 have identical
effect upon expressions C1 P1 P1 P1 x and are thus com-
mutative, and that R10 and R6 have identical effect upon
expressions C1 P2 P1 P1 P1 x and are thus commutative.
Therefore, R is locally confluent.

Because the rules are all length-decreasing (and therefore
bounded-monotonic), the system terminates; by Newman’s
Lemma, it is therefore confluent.

4.1.2 Reducing the Model Space

Recall Lemma 3.2, which is the “glue” of our strategy. For
each fi we find fi(A), i.e.:

(A− support(fi)) ∪ fi(support(fi))

We denote such a set induced by any fi as Ai. Using the
above-described supports and the sets they are mapped to,
Table 2 presents these in simplified regular expression form
for each of f1 through f10. For brevity, C = (C0 | C1 | C2),
P = (P0 | P1 | P2), and S = (S0 | S1 | S2).

Taking the intersection of these homomorphic images
gives us the finite minimal homomorphic image supported
by the given reduction functions. We will use both regu-
lar expressions and finite state automata (in the style of the
graph G described earlier) to describe such sets of strings
for the remainder of this paper.

C1

C2

C0

P1

P2

S0

S1

S2

P2

P1

Figure 2. Automaton A10 − CS

The intersection of the ten sets A1 . . . A10 is presented in
Figure 2 as an automaton. (For visual clarity, the CS edges
have been omitted; each C node also has an edge to each
S node.) This represents the minimal homomorphic image
of A under the ten reductions R1 . . . R10. As such, we have
satisfied the goal of our strategy by identifying a finite An =
A1∩· · ·∩A10 which is a homomorphic image of A. This set
A10 has 29 member strings; thus, it is sufficient to compute
π(a) for only these 29 members of A in order to acquire a
trivial procedure for the determination of π(a) for any a ∈
A. We have thus proven the following theorem:

Theorem 4.2. Let A be the infinite space of all arrange-
ments of HTTP agents as defined in Figure 1, and let R be
the set of rewrite rules presented in Table 2. We can con-
struct a finite subset A> of A, consisting of 29 member ar-
rangements, which satisfies the following condition: By the
application of R, every a ∈ A can be rewritten to a subset
B of A> such that a satisfies π if and only if every b ∈ B

satisfies π.

Proof. Follows directly from Lemma 3.2 and the above
analysis.

Theorem 4.3. All a ∈ A such that π(a) = false will match
one of the regular expressions:

((C P∗ P1) | C1) (P1 | P2+) (S0 | P0 P∗ S)

((C P∗ P1) | C1 | C2) (P1 | P2)∗ P1 (S0 | P0 P∗ S)

Proof. Among a ∈ A10, all a such that π(a) = false (that
is, all a ∈ Afalse) match at least one of the stated patterns,
and no a such that π(a) = true (i.e., no a ∈ Atrue) matches
either.

As we have shown, all members of A which are
deadlock-prone are reducible to members of A10 which are
deadlock-prone, and similarly, all members of A which are
deadlock-safe are reducible to members of A10 which are
deadlock-safe.

As such, the correctness of this theorem rests upon three
properties: (1) for any member a ∈ A10, π(a) = false iff a

is in the union of these patterns (that is, the patterns correctly
identify Afalse ∩A10); (2) any member of the union of these
two patterns is reducible to a member of Afalse ∩ A10; (3)
no arrangement a ∈ A which does not match either of these



patterns can be reduced to one which does.2 Item-by-item
proofs of these properties can be found in the Appendices
of [7].

4.2. An MPEG Overlay Routing Protocol

While model checking is often applied in post mortem
fashion to assess bugs and problems in existing protocols
and software, this need not be the case. This section presents
an application of CHAIN approaching the problem from a
design perspective rather than a retroactive analysis perspec-
tive.

Many algorithms proposed for overlay networks are, by
their nature, designed to be deployed into a network in
which they will interact with other applications, as well as
conventional routers and hosts (i.e., we expect that they will
be composed with other processes, perhaps both controlled
and emergent). Thus it seems reasonable to believe that such
applications are good candidates for analysis using CHAIN.

Consider the method for handling MPEG flows pro-
posed in [13], which drops MPEG frames based upon its
own drop history and the dependency and priority relation-
ships between the three classes of MPEG frames (I, P, and
B frames).3 These relationships suggest simple packet-
dropping rules: (1) If at all possible, dropping I frames
should be avoided; (2) once a B frame has been dropped,
all successor B frames until the next P frame are useless and
should be dropped; and similarly (3) once a P frame has
been dropped, all successor packets can be safely dropped
until the next I frame. The applet presented in [13] imple-
ments a simple version of this algorithm requiring constant
time and storage.

Unfortunately, the router4 so described must itself receive
all of the packets constituting an MPEG stream in order
to behave correctly. This is an unreasonably optimistic as-
sumption [23]; it is not hard to devise pathological reorder-
ings among sequential pairs of packets which can cause the
applet to wrongly treat large numbers of frames as “worth-
less” (and therefore discardable), and if certain packets are
dropped before reaching such a router, it can erroneously
forward large numbers of worthless packets.

We can easily cast either or both of these concerns
(packet ordering and drop-tolerance) in CHAIN. There is
nothing intrinsic to a network which drops or reorders pack-
ets that prevents it from being represented as an agent in the

2The second and third properties taken together represent the closure of
the set described by these expressions under all reductions in R.

3MPEG streams are structured as follows: each I frame signifies the
beginning of a new group of pictures (GOP). Within a GOP, each P frame
can only be decoded if the initial I frame and all previous P frames have
been received. Similarly, a B frame can only be decoded if the previous P
frame could be decoded and if all B frames between that P frame and itself
have been received.

4We henceforth use “router” to mean a node in an (overlay) network
that handles the forwarding of the packet to one (or more) other nodes in
the network.

same sense in which the MPEG router is an agent. There-
fore, it makes sense for us to ask within our framework
whether the composition of a packet-reordering network
with such a router would cause it to behave erroneously (that
is, to drop packets which could still be valuable to an end-
host)? Does the direct composition of two such routers in-
duce packet drops that a single such router would not? What
about composing two such routers using a packet-reordering
network, or composing two network-router pairs? What
about compositions with other kinds of routers which per-
form random drops, or which may do retransmissions on
their own (e.g., a wireless base station)? All of these ques-
tions can be framed in terms of a binary correctness property
π which determines whether packets could be erroneously
dropped by any particular composition of those components.

4.2.1 Representing and Reducing the Network

Some reductions naturally arise as properties of the basic
existing network infrastructure; For example:

R1 : x reord reord y � {x reord y}

R2 : x drop drop y � {x drop y}

R3 : x reord drop y � {x drop reord y}

Notice that the third rule forces a particular ordering upon
adjoining reord and drop nodes; in so doing, these three
rules together form a compound rule which says that any
chain consisting only of both drop and record can be rep-
resented with a single canonical chain, “drop reord”. Ex-
cluding the inverse rule to R3 (which would of itself be an
equally correct rule) prevents the introduction of a cyclic
rewrite strategy which would keep the system from termi-
nating (i.e., it preserves monotonicity).

We also note that the mrouter node will always be per-
mitted to drop packets because of internal congestion; thus,
another rule will always be applicable:

R4 : x mrouter drop y � {x mrouter y}

Ultimately, we would like to be able to say something
about the mrouter in any network arrangement. Assuming
that all the relevant characteristics of intervening networks
can be represented using models of record and drop, we can
then define A as SP∗ mrouter C, where S = {server}, P =
{mrouter, reord, drop}, and C = {client}. This definition
handles two simplifications of the problem space for us up
front: it excludes all arrangements which do not include at
least one mrouter (i.e., all arrangements in which we are not
interested) and it removes all reord or drop which do not
precede an mrouter (because they have no bearing upon the
correctness of an mrouter). Given the already-stated four
reductions, we can derive A4 (pictured in Figure 3) using
the corresponding f1, . . . , f4. A4 clearly still represents an
infinite set of arrangements, so our methodology will require
additional reductions in order to produce useful results.



server

client

reord
drop

mrouter

Figure 3. A4 for basic MPEG-routing network

server

client

drop
reord

mrouter mrouter

Figure 4. Acyclic automaton of A6 for an ideal
MPEG router

Reducibility as Specification: Rather than thinking in
terms of the reductions which a particular fully-specified
application induces, one may prefer to state a design goal
for an application in terms of a set of reductions which that
application must satisfy. For example, we could state as a
design property that a sequence of identical agents will be
behaviorally equivalent to a single such agent; any protocol
or implementation which disagrees with this property will
fail to meet the design constraints.

We can then state, as an engineering goal, that mrouter
should provably satisfy a set of reductions which yield a fi-
nite An. The choice of proof method is not particularly im-
portant; whichever is best suited to the design and develop-
ment environment can equally well be used. The following
reductions would be sufficient, and make for an illustrative
example of target reductions which could be set as correct-
ness criteria for some mrouter formulation:

R5 : x mrouter mrouter y � {x mrouter y}

R6 : x reord mrouter reord mrouter y �

{x drop reord mrouter y}

If all six reductions are valid, then A6 has six members;
thus, by testing only those six, we establish the behavior of
mrouter in all possible network configurations. A6 is ex-
pressed by the automaton in Figure 4.

4.2.2 Confluence

Proof that this system of rewrite rules is confluent (and
therefore gives rise to a canonical form) is straightforward.

Theorem 4.4. The set of rewrite rules R = {R1, . . . , R6}
is confluent.
Proof. We begin by proving termination. All rules but R3

are length-decreasing (and therefore monotonic, so their
corresponding f (∗)’s are defined); R3 does not increase

length and is clearly itself monotonic because it always
moves drop nodes to the left and reord nodes to the right; the
rules are clearly monotonic with respect to a composition of
these two metrics (length as the major and drop/reord order-
ing as the minor component), thus R terminates. We can
therefore establish its confluence using Newman’s Lemma
by demonstrating local confluence.

All pairings among R1, R2, R4, R5, and R6 are clearly
commutative over any chains in which their effects overlap.
R3 is similarly commutative with R4, R5, and R6. This
leaves only the pairings of R3 with R1 and R2.

Consider the chain reord reord drop. By R1 it is rewritten
to reord drop; by R3 it is rewritten to reord drop reord. No-
tice that these are indeed confluent: the former can then be
rewritten by R3 to drop reord and the later can be rewritten
by R3 (again) to drop reord reord, which can be rewritten by
R1 to drop reord. A similar case arises when R3 is paired
with R2. Therefore, the lack of commutativity within these
pairs is resolved by the existence of a succeeding rewrite
strategy which brings their results into agreement.

Since R is both locally confluent and terminating, it is
therefore confluent.

It is easy to devise variations upon this R which express
the same properties of the problem space but are difficult to
make confluent; e.g., an additional rule (based upon the ra-
tionale of R4) which removes a drop preceding an mrouter
is non-commutative with R3, and converting this conflict
into an additional rewrite rule does not result in confluence;
many iterations of the Knuth-Bendix procedure are required
to resolve this divergence. As another example, if R3 is re-
placed with its inverse, a similar conflict arises between it
and R6, and the simplest apparent solution (resolved by in-
cluding both R3 and its inverse) does not work because the
pair would support a non-terminating rewrite strategy.

4.2.3 Algorithms Resilient to Network Anomalies

With the constraints of R5 and R6 in mind, we have devised
two variants of the algorithm in [13], one resilient to lost
packets, the other resilient to reordered packets (with short
reorder spans). Both require an additional packet header
to make explicit the relationships among particular packet
numbers; the drop-resilient algorithm is still constant time,
and the reordering-resilient algorithm requires space and
time linear with the degree of resilience (maximum span)
desired. The algorithms themselves, along with sketched
proofs of their agreement with R5 and R6, are omitted for
want of space, and can be found in [7].

4.3. Web Intra-Cache Consistency

There is nothing in the CHAIN methodology which is
intrinsically linked with finite-state model checking; any
methodology which can give rise to proofs and which allows
for the discovery of reduction/equivalence relations among
sets of configurations can just as well act as the basis for



((S (proxy-scrubber | proxy-plain)∗) |

(server-btc P∗

clean cache-btc (proxy-plain | proxy-scrubber)∗) |

(server-btc P∗

clean cache-btcpush P∗) ) client

Where Pclean = {proxy-plain, cache-plain, cache-btc, cache-btcpush}

Figure 5. Consistent Cache Arrangements for
Theorem 4.5

defining our property of interest π and the set of reduction
rules R. As an example, in this section we show the appli-
cation of this methodology to the characterization of a web
cache system which employs the Basis Token Consistency
protocol [4], a protocol whose correctness follows directly
from the definition of vector clocks [11, 21] (its underlying
conceptual mechanism).

For BTC, the interesting π is whether the client at the
end of some arrangement a ∈ A = SP∗C will be guar-
anteed to see a consistent sequence of responses, i.e., one
which is temporally non-decreasing (but not necessarily re-
cent). If π(a) = true, then arrangement a will always cause
the client’s view of the server to be consistent (temporally
non-decreasing); π(a) = false indicates that arrangement a

can provide a client with an inconsistent response. Basis To-
ken Consistency (BTC) guarantees such consistency for any
supporting cache downstream of a supporting server, regard-
less of the presence of intermediary inconsistent caches (so
long as intermediary proxies do not repress response headers
which they do not understand). This fundamental property
of BTC gives rise directly to a rewrite rule which preserves
π: any number of proxies which do not “scrub” headers (i.e.,
proxies which do not flagrantly violate the HTTP specifica-
tion) between a BTC server and a BTC downstream agent
(client or cache) will not affect π and can therefore be rewrit-
ten out of the set of characteristic arrangements.

A simplified model of the web for BTC’s purposes uses
the following agents:

S ={server-btc, server-plain},

P ={proxy-scrubber, proxy-plain, cache-plain,

cache-btc, cache-btcpush},

C ={client}.

where cache-btcpush uses the end-to-end strong consistency
extension [3]. The inclusion of C is pure sugar; the inter-
esting property as far as π is concerned is the state of the
furthest downstream cache, i.e., the caching agent appearing
closest to the end of the arrangement. Other types of agents
besides the ones described can be modeled as particular se-
quences of these basic elements.

The definitions of standard proxying and proxy-caching
in light of BTC’s notion of consistency give rise to some ba-
sic reductions, such as the insertion of proxy-plain (cache-
less proxy) agents having no effect, or indifference to the
ordering of proxy-scrubber and cache-plain agents. These
are reflected as reductions R1 through R6 in an Appendix

of [7]5.. The definition and the correctness of BTC itself
gives rise directly to 14 additional reductions, R7 through
R20 also found in [7].

These twenty rules, through the application of the CHAIN

methodology, identify a homomorphic image A20 contain-
ing four member arrangements, described by the expression:

A> = (server-plain|server-btc) cache-plain≤1 client

where the two arrangements without a cache-plain are
consistency-safe and the two containing a cache-plain are
consistency-unsafe.

Confluence These twenty rules are not confluent be-
cause some members of Afalse can be rewritten to both
of the false members of A20. Atrue has a simi-
lar problem. The system can easily be made con-
fluent, however, by adding a set of finalizing rewrites
which collapse the two “true” members of A20 into one
(server-btc client � server-plain client) and likewise for
the two “false” members (server-btc cache-plain client �

server-plain cache-plain client). The new system of twenty-
two rewrite rules is confluent and produces an A> with only
two member arrangements; since π is a binary property, this
implies that result of the rewriting process itself maps triv-
ially to the value of π(a) for any a ∈ A.

Intuitively, we know that a caching system will provide
the client with a consistent view under any of three circum-
stances: (1) there are no caches between the server (whether
plain or BTC) and the client; (2) the server supports BTC,
the last cache before the client is reached is a BTC cache,
and there are no scrubbers between the BTC server and that
final cache; (3) the server supports BTC, the system includes
a btcpush cache, and there are no scrubbers between the
server and a btcpush cache.

Theorem 4.5. All caching arrangements which provide a
client with a consistent view of server state (that is, all mem-
bers of Atrue) will match the pattern stated in Figure 5.
Proof. Similar to Theorem 4.3. A “safety pattern” is simply
the compliment of a “failure pattern”, so its validity is estab-
lished by the same properties: first, whether it correctly par-
titions A>; second, whether it defines a set which is closed
under all reductions (that is, reductions preserve both mem-
bership and non-membership).

These properties are proven in an Appendix of [7].

5. Conclusion

In this paper we have presented CHAIN, an algebraic ap-
proach that enables the reduction of arbitrary arrangements
of network protocol agents to a canonical, behaviorally-
equivalent (with respect to some correctness property) rep-
resentation, which is amenable to mechanical verification.
Our methodology relies upon the discovery of a sufficient

5The reductions are excluded from this paper in the interest of brevity.



set of reduction/rewrite relationships, which establish homo-
morphism between subsets of the set of arrangements. We
have applied our approach to the verification of safety prop-
erties of three examples: The HTTP request continuation
protocol, an MPEG packet forwarding protocol for overlay
networks, and the BTC web intra-cache consistency proto-
col.

Broader Vision and Research Agenda To a great ex-
tent, the programming of distributed applications over the
Internet suffers from the same lack of organizing princi-
ples as did programming of stand-alone computers some
thirty years ago. Primeval programming languages were
expressive but unwieldy; software engineering technology
improved not only through better understanding of useful
abstractions, but also by automating the process of verifi-
cation of safety properties both at compile time (e.g., type
checking) and run time (e.g., memory bound checks). We
believe that the same kinds of improvements can find their
way into the programming of distributed Internet services.
CHAIN is an instance of our broader goal of applying more
rigorous disciplines to the specification and creation of net-
worked protocols, programs, and services. The development
of CHAIN is an important milestone for iBench, our on-
going initiative seeking to provide a sound framework for
integrating a wide range of proof and verification strate-
gies with the principles of design, development, compila-
tion and execution of disciplined and safe programmable
systems. The iBench Initiative’s web pages can be found
at http://www.cs.bu.edu/groups/ibench/.

References

[1] F. Baader and T. Nipkow. Term Rewriting and All That.
Cambridge University Press, 1998.

[2] J. Baeten and W. Weijland. Process Algebra. Cambridge
University Press, 1990.

[3] A. D. Bradley and A. Bestavros. Basis token consistency:
Extending and evaluating a novel web consistency algo-
rithm. In Workshop on Caching, Coherence, and Consistency
(WC3), New York, June 2002. IEEE.

[4] A. D. Bradley and A. Bestavros. Basis token consistency:
Supporting strong web cache consistency. In Global Internet
Worshop, Taipei, Nov. 2002. IEEE.

[5] A. D. Bradley, A. Bestavros, and A. J. Kfoury. Safe compo-
sition of web communication protocols for extensible edge
services. In Workshop on Web Caching and Content Deliv-
ery (WCW), Boulder, CO, Aug. 2002.

[6] A. D. Bradley, A. Bestavros, and A. J. Kfoury. Safe composi-
tion of web communication protocols for extensible edge ser-
vices. Technical Report BUCS-TR-2002-017, Boston Uni-
versity Computer Science, 2002.

[7] A. D. Bradley, A. Bestavros, and A. J. Kfoury. Systematic
verification of safety properties of arbitrary network protocol
compositions using CHAIN. Technical Report BUCS-TR-
2003-012, Boston University Computer Science, 2003.

[8] S. Chaki, S. K. Rajamani, and J. Rehof. Types as models:
Model checking message-passing programs. In POPL 2002,
Portland, OR, Jan. 2002.

[9] M. Chechik, B. Devereux, and A. Gurfinkel. Model-
checking infinite state-space systems with fine-grained ab-
stractions using SPIN. In 8th SPIN Workshop, Toronto, 2001.

[10] J. Dingel and T. Filkorn. Model checking for infinite state
systems using data abstraction, assumption-commitment
style reasoning and theorem proving. In P. Wolper, editor,
Proceedings of the 7th International Conference on Com-
puter Aided Verification, volume 939, pages 54–69, Liege,
Belgium, 1995. Springer Verlag.

[11] C. Fidge. Logical time in distributed computing systems.
Computer, 24(8):28–33, Aug. 1991.

[12] T. G. Griffin and G. Wilfong. On the correctness of IBGP
configuration. In ACM SIGCOMM, Pittsburgh, PA, Aug.
2002. ACM.

[13] D. He, G. Muller, and J. L. Lawall. Distributing MPEG
movies over the internet using programmable networks. In
International Conference on Distributed Computing Systems
(ICDCS), July 2002.

[14] G. J. Holzmann. Designing bug-free protocols with SPIN.
Computer Communications Journal, pages 97–105, Mar.
1997.

[15] D. Jackson. Abstract model checking of infinite specifica-
tions. In Proceedings of Formal Methods Europe, Barcelona,
Oct. 1994.

[16] D. E. Knuth and P. Bendix. Simple word problems in univer-
sal algebra. Computational Problems in Abstract Algebra,
pages 263–297, 1970.

[17] B. Krishnamurthy, J. C. Mogul, and D. M. Kristol. Key dif-
ferences between HTTP/1.0 and HTTP/1.1. In Proceedings
of the WWW-8 Conference, Toronto, May 1999.

[18] A. Kučera and P. Jančar. Equivalence-checking with infinite-
state systems: Techniques and results. In Proceedings of
29th Seminar on Current Trends in Theory and Practice of
Informatics (SOFSEM 2002), pages 41–73. Springer-Verlag,
2002.

[19] M. Leuschel and T. Massart. Infinite state model check-
ing by abstract interpretation and program specialisation. In
A. Bossi, editor, Logic-Based Program Synthesis and Trans-
formation (LOPSTR’99), LNCS 1817, pages 63–82, Venice,
Italy, 2000.

[20] N. Lynch and F. Vaandrager. Forward and backward simula-
tions – part I: Untimed systems. Information and Computa-
tion, 121(2):214–233, Sept. 1995.

[21] F. Mattern. Virtual time and global states of distributed sys-
tems. In Proc. Parallel and Distributed Algorithms Conf.,
pages 215–226, 1988.

[22] J. Mogul. Is 100-Continue hop-by-hop?, July 7, 1997.
HTTP-WG Mailing List Archive, http://www-old.ics.uci.edu
/pub/ietf/http/hypermail/1997q3/.

[23] V. Paxson. End-to-end internet packet dynamics. IEEE/ACM
Transactions on Networking, 7(3):277–292, 1999.

[24] S. Shenker. Where’s the science? Keynote Address pre-
sented at the NSF ANIR Principle Investigators Meeting, Re-
ston, VA, Jan. 2003.

[25] J. Touch, D. Wagner, and J. Walrand. Panel recommenda-
tions on ”Network Trustworthiness”. Presented at the NSF
ANIR Principle Investigator Meeting, Reston, VA, Jan. 2003.


