
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
On-Demand Loop-Free Routing With Link Vectors

Permalink
https://escholarship.org/uc/item/1pd8347b

Journal
IEEE Journal on Selected Areas in Communications, 23(3)

Author
Garcia-Luna-Aceves, J.J.

Publication Date
2005-03-01

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1pd8347b
https://escholarship.org
http://www.cdlib.org/

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 3, MARCH 2005 533

On-Demand Loop-Free Routing With Link Vectors
J. J. Garcia-Luna-Aceves, Senior Member, IEEE, and Soumya Roy

Abstract—We present the on-demand link vector (OLIVE)
protocol, a routing protocol for ad hoc networks based on link-
state information that is free of routing loops and supports
destination-based packet forwarding. Routers exchange routing
information reactively for each destination in the form of complete
paths, and each node creates a labeled source graph based on the
paths advertised by its neighbors. A node originates a broadcast
route request (RREQ) to obtain a route for a destination for
which a complete path does not exist in its source graph. When
the original path breaks, a node can select an alternative path
based on information reported by neighbors, and a node can
send a unicast RREQ to verify that the route is still active. A
node that cannot find any alternate path to a destination sends
route errors reliably to those neighbors that were using it as
next hop to the destination. Using simulation experiments in ns2,
OLIVE is shown to outperform dynamic source routing, ad hoc
on-demand distance vector, optimized link-state routing protocol,
and topology broadcast based on reverse-path forwarding, in
terms of control overhead, throughput, and average network
delay, while maintaining loop-free routing with no need for
source routes.

Index Terms—Ad hoc networks, on-demand, link-state routing,
loop-freedom.

I. INTRODUCTION

SEVERAL on-demand routing protocols have been pro-
posed to maintain routing tables efficiently in ad hoc

networks [1]–[4]. Two key features of on-demand routing
protocols are that routing information is maintained at a given
router for only those destinations to which data must be sent,
and the paths to such destinations need not be optimum. The
basic differences among on-demand routing protocols are
how they communicate routing information to obtain paths
to destinations, how they use and maintain this information
and the manner in which data packets are routed. Maintaining
loop-free routes at every instant becomes a necessity in ad
hoc networks with dynamic topologies, because routing loops
increase packet-delivery latencies and reduce the number of
packets delivered to the intended destinations. Current on-de-
mand routing protocols adopt different techniques to prevent
temporary loops.

The dynamic source routing (DSR) protocol [1], [5] is an ex-
ample of protocols that attain loop-free routing using source
routes. In DSR, a route request (RREQ) sent to find a given des-
tination records its traversed route, and a route reply (RREP)

Manuscript received October 15, 2003; revised December 3, 2004. This work
was supported in part by the U.S. Air Force Office of Scientific Research (OSR)
under Grant F49620-00-1-0330 and in part by the Baskin Chair of Computer
Engineering, University of California, Santa Cruz, CA.

The authors are with the Computer Engineering Department, University of
California, Santa Cruz, CA 95064 USA (e-mail: jj@soe.ucsc.edu; soumya@
soe.ucsc.edu).

Digital Object Identifier 10.1109/JSAC.2004.842564

sent by a node in response to the RREQ specifies the complete
route between the node and the destination. Routers store the
discovered routes in a route cache. The basic scheme in DSR is
for the header of every data packet to specify the source routes
to their intended destinations.

The ad hoc on-demand distance vector (AODV) protocol [2]
is an example that supports incremental packet forwarding and
maintains loop-free routing by using a sequence number for
each destination. When node needs to establish a route to a
destination , it broadcasts a RREQ to its neighbors. The RREQ
specifies a sequence number for the destination that increases
after losing its route to . A node receiving the RREQ can send
back a unicast RREP along its shortest path to node only if it
has a valid route to node and the sequence number stored for
node is no less than the sequence number in the RREQ. Oth-
erwise, the node receiving the RREQ must forward the RREQ.
Increasing the sequence number for a destination when routes
must be changed prevents several nodes with valid and shorter
paths to the destination from being used, and in many cases
makes the destination the only node that can answer the RREQs.

The temporally ordered routing algorithm (TORA) [3] uses a
link-reversal algorithm [6] to maintain loop-free multipaths that
are created by a query-reply process similar to that used in DSR
and AODV. The limitation with TORA and similar approaches
is that they require reliable exchanges among neighbors and co-
ordination among nodes over multiple hops, which incurs more
signaling overhead compared to AODV and DSR.

Several routing protocols have been proposed in which a
node receives partial or complete link-state information from
its neighbors, stores that information in a topology graph, and
computes a shortest-path routing tree from such a graph using a
shortest-path algorithm locally. The topology broadcast based
on reverse-path forwarding (TBRPF) [7] and the optimized
link-state routing protocol (OLSR) [8] disseminate complete
topology information to all routers, which in turn can compute
routes to each destination using a local shortest-path algorithm.
None of these protocols eliminates temporary routing loops.

The source tree on-demand adaptive routing (SOAR) protocol
[4] was the first to use link-state information on demand. Each
router provides its neighbors with a “source tree” consisting of
preferred paths to destinations for which the router has traffic.
However, SOAR requires data packets to carry the path tra-
versed by the packet in order to avoid routing loops, which in-
curs as much overhead as the basic source routing scheme of
DSR.

This paper presents the on-demand link vector (OLIVE) pro-
tocol, which is an on-demand routing protocol based on partial
link-state information that supports loop-free hop-by-hop (in-
cremental) routing. Section II provides a detailed description of
OLIVE and illustrates its operation. OLIVE does not need in-
ternodal synchronization spanning multiple hops, the use of any

0733-8716/$20.00 © 2005 IEEE

534 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 3, MARCH 2005

Fig. 1. Network topology known by node a.

packet-header information other than the destination for loop-
free packet forwarding, or the use of destination-based sequence
numbers. Like other on-demand routing protocols, RREQs and
RREPs in OLIVE are sent for initial path setup. Routers running
OLIVE exchange path information and the paths received at a
node from all its neighbors combine to give a partial network
topology. The paths advertised are used for active route setup,
while the network topology is used to compute plausible paths
that become useful when the original paths break.

Section III demonstrates that OLIVE is loop free at every in-
stant, and that it is safe and live, i.e., that routers find the paths
to destinations within a finite time if the network is not parti-
tioned. Loop-freedom is ensured by maintaining an up-to-date
list of predecessors at every node for each destination and by
informing the predecessors of the route failures reliably. Inter-
mediate nodes between the source and destination can locally
repair paths without informing the predecessors.

Section IV compares the performance of OLIVE with the per-
formance of DSR, AODV, TBRPF, and OLSR, which are the
four routing protocols for ad hoc networks being considered in
the IETF MANET working group. The experiments consider the
effect that traffic load and mobility have on the performance of
the protocols, and also the role that looping plays. The results of
our experiments show that OLIVE provides the most attractive
performance based on the metrics we analyze. Section V con-
cludes our paper.

II. OLIVE

A. Motivation

In proactive routing protocols based on link-state informa-
tion, it is straightforward to compute paths at a router by first
aggregating all link-state information received from its neigh-
bors, and then running a shortest-path algorithm locally (e.g.,
Dijkstra’s shortest-path first). The aggregation of those paths is
a tree, which is referred to as “source tree.” However, similar
steps cannot be taken in on-demand routing protocols based on
link-state information, because it is not true that every router
maintains paths to every destination. Fig. 1 shows the network
topology as known to node based on inputs from neighbors
and . Neighbor has advertised paths , while
node has advertised paths , and .
The links in each of those paths aggregate to form the topology
as given in Fig. 1. A node deletes information of a link if it is
of finite cost and all neighbors have removed it from their ad-
vertised paths. Links with infinite cost are never deleted to re-
duce communication overhead in on-demand routing. The label
set of each link in any node’s network topology indicates the
list of neighbors that have advertised that link to that node. For

example, the label set of link is , which implies that
neighbor has advertised link . Using Dijkstra’s SPF al-
gorithm, the shortest path for destination would be , i.e.,
node would pick node as the next hop to reach destination

. However, this leads to a routing error; upon receiving a data
packet destined to node , node would drop the data packet,
because node does not have a route to destination .

Intuitively, the best node can do to compute a “source
tree” subject to the on-demand constraint is trying to obtain
a source tree that renders the minimum number of routing
errors. However, as shown in the Appendix, this results in an
NP-complete problem and cannot be implemented efficiently.
The design of OLIVE is motivated by the need for an approach to
attain loop-free routing using link-state information on-demand
without computing source trees, allowing local route repairs,
and requiring no source routes or flow identifiers in the headers
of data packets.

B. Principles of Operation

In OLIVE, the source of a data packet that has no route for
the destination broadcasts a RREQ to its neighbors. The desti-
nation or nodes having active routes to the destination respond
with route replies (RREPs). RREPs contain paths for destina-
tions and are sent back toward the originator of the RREQ, very
much as in DSR. The aggregate of path information obtained
in RREPs constitutes a node’s labeled network topology. Each
path stored in the topology is considered to be active for a fi-
nite lifetime, which is renewed when the path is used to forward
data. Link-based sequence numbers are used to select the most
recent information in case of conflicts of link-state information.

If a router needs to change its current route for a destina-
tion after an input event, it first tries to select the shortest path
among those complete paths for the destination advertised by
its neighbors that are still active. Let be the path for desti-
nation advertised to node by neighbor be the
cost of that path, and be the set of neighbors of node . The
path-selection algorithm is very simple: Path is chosen if

.
Fig. 2 illustrates the way in which the path selection algo-

rithm operates. Fig. 2(a) shows the network topology formed
by combining paths advertised by neighbors , and . Node

has active flows with nodes , and and, therefore, needs
to set up routes for them. For destination , the advertised paths
are and , of which the path is chosen because it has
a smaller cost. Similarly, among the paths advertised for desti-
nation , namely, and , path is chosen. For
destination , the only path available is . Note, is also
a plausible path to reach node . However, in OLIVE routes
for a destination are installed using paths explicitly advertised
by neighbors and plausible paths are used if there is no such
explicit path and the plausible path have been verified to be
valid. Using only complete paths reported by neighbors avoids
packet forwarding to nodes with no paths to destinations, the
problem discussed in the previous section in relation to on-de-
mand link-state routing. As shown in Fig. 2(b), the aggregate of
the selected paths form the labeled source graph at node .

To reduce the overhead incurred with RREQs, a node makes
use of plausible paths. A plausible path through a neighbor is

GARCIA-LUNA-ACEVES AND ROY: ON-DEMAND LOOP-FREE ROUTING WITH LINK VECTORS 535

Fig. 2. Showing how path selections are done in OLIVE.

either: 1) a nonactive path advertised by the neighbor or 2) a path
that has not been advertised by the neighbor but that can be com-
puted from the topology using a local path-selection algorithm.
For example in Fig. 2, no path has been advertised for nonactive
destination at node . However, the plausible path can
be computed using Dijkstra’s SPF algorithm, which comprises
links that belong to paths advertised for other destinations and

. The plausible paths are always validated using control mes-
sages before the actual data packet forwarding. When a node
needs to change or create a route for a destination for which
there is no active path in the labeled source graph, the node looks
for plausible paths to the destination. Before a node installs in
its routing table a route corresponding to a plausible path, it uni-
casts a forced route request (FRREQ) to the next hop of the path
to verify that the path exists. FRREQs are forwarded by nodes in
the plausible path till it reaches a node which has an active path
for the destination or is the destination itself. This node sends
the forced route reply (FRREP) and FRREPs containing the cur-
rent information about the route traverse the reverse path to the
source of FRREQs. When the originator of a FRREQ receives a
reply, an alternate path to a destination is selected only if it has
the same or lower cost than the path that the node announced to
its predecessors. Every node maintains a list of predecessors for
each active destination and if the node has no predecessors for
a destination, it can pick an alternate path of any length. In case
no alternate path is possible, the predecessors are informed of
route failures through router error (RERR) packets sent reliably.
Because each node either informs all its predecessors that it has
lost its path to a destination through reliable RERRs, or picks al-
ternate routes that are shorter than or equal to the route that it ad-
vertised to its predecessors, instantaneous loop-freedom can be
maintained when every node knows the predecessors for active
destinations. The elaborate proof has been given in Section III.

C. Detailed Description

The operation of OLIVE can be classified into three phases:
1) route discovery for setting up new paths; 2) local route repair
for finding alternate paths when the original breaks; and 3) route
failure notification for updating neighbors of route failures.

1) Route Discovery: Route requests (RREQs) are used to re-
quest for routes for unknown destinations. The route discovery
process is always initiated by the source of data packets when
it does not have active or plausible routes for a destination for
which it has an active flow. RREQs by the source are either lim-
ited to neighbors or sent throughout the network with some lim-
ited scope. When a node receives a RREQ, it forward it only
if: 1) it has no valid route for the destination; 2) no RREQ
initiated by the same source has been forwarded recently; and
3) the RREQ has not traversed beyond the zone within which
the route search has to be limited.

Route replies (RREP) are sent in response to RREQs and
carry path information for a destination. To reduce duplicate
RREPs, a RREP sent in response to a RREQ is broadcast to
all neighbors. A node waits for a backoff time proportional to
the node’s distance from the target before sending a broadcast
RREP, and deletes its scheduled RREP if it receives a broad-
cast RREP from another node in response to the same RREQ.
RREPs are forwarded using unicast packets. Before a node for-
ward a RREP to a neighbor, it ensures that the neighbor is part
of the predecessor list for the destination of the original RREQ.
Maintaining the correct up-to-date list of predecessors is the key
to maintaining loop-freedom. Also, on receiving a RREP, a route
is only installed for the destination of the original RREQs. The
subsets of the paths advertised in RREPs are considered as plau-
sible routes but not as valid routes for intermediate nodes.

An acknowledgment to RREP (RREPACK) signifies that the
neighbor has selected the route through this node for data for-
warding. Hence, if no RREPACK is received from a neighbor
within a specified time period, it is removed from the prede-
cessor list.

The lifetime for a route is active route timeout, while the life-
time of a predecessor entry is and the
entries get refreshed during data packet forwarding.

2) Local Route Repair: A route fails when a node detects
a local link-failure or receives information from its successor
about the failure of a downstream link. In such scenarios, the
communication overhead can be reduced drastically by local-
izing the impact of route failures because if link failures are al-
ways advertised to predecessors, then the sources of the active
flows have to reinitiate network-wide route discovery leading
to high communication overhead. In OLIVE, local route re-
pair is done using the plausible paths computed with the local
link-state information. When the original path to a destination
breaks, plausible paths of equal or lower cost than the cost of
the original path are computed using the information in the net-
work topology available locally. However, before data packets
are sent over such paths, FRREQ are sent along those plausible
paths to check their viability.

Fig. 4 describes how FRREQs are handled by nodes. Each
FRREQ carries information about the plausible path to the des-
tination, such that each node on the path having an active route

536 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 3, MARCH 2005

can compare that path with its current route for the destination.
A node responds with a forced route reply (FRREP), under two
conditions: 1) when it contains a valid route for the destina-
tion (steps 9 and 13) and 2) contains no route (step 18) and the
path specified in the FRREQ is not correct. If a FRREP car-
ries no path information, it specifies the first link in the plau-
sible path of the FRREQ that has infinite cost such that the orig-
inal sender can update its topology. A node forward the FRREQ
along the path specified in the control packet, if: 1) it has no
valid route for the destination, and the next hop in the adver-
tised path of FRREQ is still reachable (step 16) or 2) the valid
route is longer than the path advertised in the FRREQ, and the
next hop matches the successor as specified in the tail of the
path of FRREQ (step 11). The second condition is an optimiza-
tion which ensures that FRREQs are sent nearer to the desti-
nation and most up-to-date path information is sent back to the
original sender of FRREQ. When the originator of a FRREQ re-
ceives a reply, an alternate path to a destination is selected only
if it has the same or lower cost than the path that the node an-
nounced to its predecessors. When FRREQs do not yield any
response within a certain time interval, the alternate paths are
assumed to be nonexistent and route errors (RERRs) are sent to
predecessors.

3) Route Failure Notification: Route errors (RERR) and
RERR acknowledgments (RERRACK) are used for reliable
transfer of route failure information and updating predecessor
lists. When a node detects a failure of an active path (either
directly by detecting a broken link or indirectly by receiving an
RERR from a downstream node), the node generates a RERR
only if it does not have any alternate path to the destination of
equal or lower cost.

A node sends a RERRACK in response to a RERR to notify
the sender of the RERR that it has stopped using the node as a
successor to a given destination. The sender of a RERRACK is
no longer considered a predecessor to the destination indicated
in the RERR. This route failure notification mechanism ensures
that either the actual path used for data forwarding is not longer
than the path known to a node or the node has the most up-to-
date view of the path.

There is also a special case, where if the received RREP spec-
ifies a path with outdated links, RERR is sent to the sender of
RREP.

D. Neighbor Relationship

A node considers the link to a neighbor to be up when any
one of the following conditions happens: 1) The node receives a
control packet from the neighbor for the first time; 2) it receives
the first network-layer hello message from the neighbor; or 3) a
neighbor protocol at the link layer advertises the presence of a
new neighbor.

A node decides that its link with a neighbor is down when any
of the following conditions is true: 1) the router receives link-
layer notification caused by the failure to deliver data packets
across the link; 2) network-level hello messages are missed sev-
eral consecutive times; 3) the link layer declares the link to be
down either through the action of a neighbor protocol, or after
several retransmissions; 4) acknowledgments for data packets
are not received after repeated network-level retransmissions;

and 5) no data or control packet has been received for a certain
time interval.

If no network-layer hello mechanism is available for neighbor
discovery, and a neighbor is silent for a certain time (i.e., the
router has not received any data packet or control packet from
it for that period of time), in OLIVE a neighbor is assumed to
be down and all link entries advertised by it are declared to be
invalid.

E. Handling Link Sequence Numbers

Each link has a sequence number which is used to resolve
conflicts in case of conflicting link-state information. Only the
head node of a link can assign or change the sequence number
of the link and reports of links with higher sequence numbers
are trusted over reports of the same links with lower sequence
numbers. If there is no entry for a link, then the router trusts the
first link-state entry that it receives. Link sequence numbers can
be avoided by having nodes trust the link-state value reported
by the neighbor with the shortest path to the head of the link.

F. Example of OLIVE Operation

Fig. 3(a) shows an ad hoc network of seven nodes. Let us
assume that node has data packets for node and has to set up
a route for it, and only nodes and have valid routes for node
. Therefore, when node sends a single-hop RREQ for to its

neighbors, it receives no RREP. Then, it sends a network-wide
RREQ, as shown in Fig. 3(a). Fig. 3(b) shows how the RREPs
and the RREPACKs are exchanged between routers for the path
setup from node to node . When nodes and receive a
RREQ, they responds with a RREP containing a path for node
. Node receives node ’s RREP, while node receives node
’s RREP. When node sends its RREP in response to node ’s

RREQ, reporting its active route for node , it includes node
in its predecessor list for destination , such that node can be
notified when the route for node changes. When node selects
its route for node through node , it sends a RREPACK to node

. Similar messages are also exchanged between nodes and .
At node , RREPs with paths to node are received from nodes

and . Both paths are of equal cost; therefore, node accepts
the route it first receives.

Let us assume that node hears the RREP from node first.
Then, node sends a RREPACK to node only and not to node

. When node does not receive any RREPACK from node
within a certain time interval, it removes node from its list
of predecessors. An entry for the advertised route of neighbor
will be maintained at node and this information will be helpful
to set up plausible paths when the original route breaks. Node
sends a RREP to node , which sends a RREPACK back to node

after it selects the final path .
Fig. 3(c) and (d) illustrates how alternate paths are created

when original paths break. Assume that link fails. Because
node ’s successor for destination (i.e., node) is not reach-
able, node removes the route for node from its routing table.
It then attempts a local route repair based on its link-state infor-
mation. Node computes the plausible path for destina-
tion using Dijkstra’s SPF algorithm. However, node is not
the current predecessor of node for destination . Therefore, it
might not receive updates regarding destination from node .

GARCIA-LUNA-ACEVES AND ROY: ON-DEMAND LOOP-FREE ROUTING WITH LINK VECTORS 537

Fig. 3. Showing the route discovery and route repair methods in OLIVE.

Fig. 4. Procedure: Processing of FRREQ.

Hence, to verify the plausible path node sends a FRREQ,
which is forwarded along the path , and node , which has
an active route to (assuming the active route at node has
timed out), replies with a FRREP, which traces back from to

, and then to node , setting up the new route . If the route
set up at node would have not timed out, node would have

also responded with a FRREP, containing the required active
route.

G. Critique of OLIVE With Respect to Other Routing Protocols

Several major features of OLIVE address many important
shortcomings of the on-demand routing protocols (DSR [1],
AODV [2]) and proactive routing protocols (TBRPF [7], OLSR
[8]) that have been proposed for standardization in the IETF
working group on mobile ad hoc networks (MANET). Here, we
describe some of those features and try to explain whether we
can achieve those with the existing routing protocols.

• OLIVE ensures instantaneous loop-freedom when nodes
maintain consistent neighbor relationship information
by keeping an up-to-date predecessor list and checking
the validity of any path before using it. OLIVE sup-
ports hop-by-hop data packet forwarding. DSR ensures
loop-freedom by adding extra overhead in data packets
in the form of source routes or flow identifiers. AODV
like OLIVE supports hop-by-hop packet forwarding.
However, its use of destination-based sequence numbers
for preventing loops leads to frequent route discovery
and high control overhead. TBRPF and OLSR support
hop-by-hop packet forwarding. However, they can both
suffer from permanent and transient loops when control
packets get lost, and all the necessary nodes do not have
a consistent view of the network. Loops can be averted
by checking the paths before usage, as done in OLIVE,
but that would become expensive for TBRPF and OLSR,
in which paths need to be maintained for all destinations
all the time.

• When an active path breaks in OLIVE, any intermediate
node can select an alternate path without informing the
predecessors. That would make the number of RERRs de-
pend on the number of active destinations only and not
both on number of active destinations and sources of ac-
tive flows as happens in DSR and AODV. The number
of control packets in TBRPF and OLSR due to network
changes is only dependent on the number of nodes in net-
work and does not depend on the number of active flows.

• Selection of old defunct paths are always averted in
OLIVE by ensuring the viability of any path before using
it for data packet forwarding. This would reduce the
wasteful usage of bandwidth when the data packets are
routed along wrong paths before being finally discarded.
DSR, OLSR, and TBRPF do not have any mechanism to
ensure the viability of alternate paths and, hence, suffer
from usage of invalid paths. Use of timers per link or per
path can only improve the situation though in a nonadap-
tive and nonscalable manner. In AODV, due to automatic
increment of destination sequence number after route
failures and rediscovery of new routes, correct paths are
mostly chosen. However, as we also see in Section IV,
this process consumes high bandwidth because often
valid paths with lower cost are not considered in path
computation.

SOAR [4] shares the same philosophy as OLIVE and uses
on-demand link-state information to create routing tables.

538 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 3, MARCH 2005

However, in terms of operation they differ considerably.
OLIVE exchanges path information and uses the links in the
path to create the partial network topology. On the contrary,
SOAR uses source trees as the basis of routing information
exchange, and uses the path traversed information in the data
packets to prevent permanent loops. However, SOAR cannot
avert transient loops. Since our main aim is to come up with
a routing solution that ensures instantaneous loop freedom,
supports hop-by-hop packet forwarding and does not incur
control overhead in data packets, we have not included SOAR
in our subsequent analysis. In our performance analysis, we
have considered DSR, AODV, TBRPF, or OLSR to compare
against OLIVE to investigate the suitability of OLIVE as an
alternate routing approach to the established routing protocols.

III. OLIVE CORRECTNESS

The following two conditions have to be satisfied for OLIVE
to be correct.

Safety Property: Given a network , and a des-
tination , the successor graph for destination

, where and is the successor for
node at node , is a directed acyclic graph at every instant.

Liveness Property: Within a finite time following an arbi-
trary number of changes in network conditions and flows, all
nodes in the network have correct paths for each reachable des-
tination, to which they have active flows.

The above conditions leave open the possibility of nodes
trying to find persistently paths to destinations belonging to the
partitioned network. In practice, the routing protocol can infer
that a destination appears to be unreachable after a few failed
attempts, and it is up to the higher level protocol or application
to determine whether or not to continue looking for paths to
unreachable destinations.

To show that OLIVE is correct, we assume that all informa-
tion is stored correctly and routers operate according to the spec-
ifications of OLIVE. Also, changes in status of adjacent links are
notified within a finite time and the links are bidirectional. Fur-
thermore, Theorem 1 assumes that, after an arbitrary sequence
of link cost changes, topology changes, and traffic flow changes,
there is a sufficiently long time for OLIVE to stop computing
routes to active destinations.

The instantaneous loop freedom in OLIVE can be proved
based on its two important properties. First, when a node needs
to adopt a new route of higher cost than its previous route, the
node reports an infinite distance to its predecessors and adopts
its new route only after its predecessors have removed it as their
successor. Second, a node sets up a route for a destination only
if the selection of the new route results from a path specified in
a FRREP or RREP.

The above means that, at any instant of time if
is the set of predecessors for destination as known to node
and is the set of nodes at time who have selected
node as successor to reach node according to an omniscient
observer, then .

We can show by contradiction that loops can never form in
OLIVE if the above two conditions are always satisfied.

Let be the nodes that form a loop for destination
. Let the next hop for node be node , the next hop for node
be node , and so on. Let be the path at node for

destination at time . Let us assume that node is the node
in the loop whose length of the path for node is maximum at
time . Therefore, . Assume that
the last change in successor occurred at time , when node

chooses node as the next hop. Therefore,
, where is the

cost of the path advertised by in its RREP or FRREP at time
. This implies that

, which means that node
has obtained a new path to node in the interval and the
cost of the new path is greater than the cost of the previous
path. According to the specifications of OLIVE, a node sends
a RERR, when its current path breaks and there is no alternate
path of equal or lower cost. In that case, node must send a
RERR to node advertising an infinite cost, and node must,
therefore, release node as its next hop at time . Hence,
a loop cannot form, which contradicts our assumption that there
is a loop at time .

Loop freedom in OLIVE relies on the reliable exchange of
RERRs between a node and its predecessor for a destination.
However, when the link between a node and its predecessor
for a given destination fails due to mobility or other effects, node

must avoid accepting a new route to the destination before
node has stopped using as a successor. To be safe, node
must apply a hold-down time after detecting a broken link to
node , such that no packets to the destination for which is a
predecessor are forwarded until the hold-down time expires. The
length of the hold-down time that node must apply depends
on how quickly nodes can detect link changes. If a neighbor
protocol exists at the link layer, predecessor and successor can
detect the broken link very quickly. However, detecting a broken
link based on acknowledgments to data packets at the network
layer can take much longer due to queuing delays.

Theorem 1: Within a finite time after the last change in net-
work conditions and traffic flows, all nodes which are sources
of data packets have correct paths to the destinations.

Summary of Proof: As described above, OLIVE ensures
that the successor graph as visible to an omniscient observer

does not contain any transient loop. Let be the
set of sources that have active flows for destination , and

be the set of nodes acting as relays. Let be a time when
is correct and loop-free, and assume an arbitrary but finite

sequence of link-state and traffic-flow changes. Let be the
time when the last link or traffic-flow change occurs. The proof
needs to show that the routing tables for destination at every
node converge to correct values within a finite time after . In
this context, the active graph is formed by the links
for each or , where is the successor for node

at node . Because is guaranteed to be a
DAG.

Assume that the theorem is not true, then must be a
forest, because OLIVE is loop free. We need to consider two
cases: a source node located in the same connected component
as , and a node with no physical path to node . We note that
link sequence numbers cannot change after time .

GARCIA-LUNA-ACEVES AND ROY: ON-DEMAND LOOP-FREE ROUTING WITH LINK VECTORS 539

Consider first the case of a source node in the same connected
component as . A source node with an active flow
for in a connected component containing node must either:
1) have a path that reaches ; 2) have a path that ends in a node
with no path for ; or 3) not have a path for .

By induction on the number of hops away from the head of
any given link, all the links in a path to reported in a RREP sent
within a finite time after time are assigned their last sequence
number, given that OLIVE requires a node to correct a neighbor
advertising an older link sequence number. Given that RREQ’s,
RREP’s, FRREQ’s, and FRREP’s traverse loop-free paths, it
follows that a source node with a path to must have a correct
path after some finite time .

Consider a node that has no path to at time . If node
uses node as successor to reach , it implies that node has

reported a path of finite distance for node to node and has
node as a predecessor for the route to node . Hence, node
must have had an active path to node and it must have reported
the loss of its path to node through reliable RERRs a finite time
after , and node must receive such RERRs, because no more
link changes can happen after time . Accordingly, node must
stop using node as its next hop within a finite time after . By
induction on the number of hops away from any node without
a path to , it is easy to show that any source node can
have no path to destination that ends at a node without a valid
path to .

A source node that never attains a valid path to after time
must generate RREQs an infinite number of times. However,

the connected component where and are located is finite
and RREQ’s and RREP’s traverse loop-free paths only, because
they specify the paths they traverse. Furthermore, as pointed
out before, a finite time after any link communicated in a
RREP must have its final sequence number (and correct state).
Hence, because no link changes can occur after time , source

must receive some of the RREPs being generated and they
must contain correct paths. Therefore, node cannot generate
an infinite number of RREQs after time .

A similar approach can be used to show that, within a finite
time after time , no source node in a different component than
node ’s component can have an active path to .

IV. PERFORMANCE COMPARISON

We have compared the performance of OLIVE with the
on-demand routing protocols (DSR [1], AODV [2]) and proac-
tive routing protocols (TBRPF [7], OLSR [8]) that have been
proposed for standardization in the IETF working group on
mobile ad hoc networks (MANET). The performance evalu-
ation has been done in the ns2 simulation platform [9], using
the code of DSR, AODV, and TBRPF provided with the sim-
ulator. The TBRPF code conforms to version 4 of IETF draft
of TBRPF. For OLSR, we have used the code available from
INRIA [10] and have added the code for handling link-layer
notifications of adjacent link failures. The specifications of the
OLSR code match those in version 3 of OLSR IETF draft. The
constants used for DSR, AODV, and TBRPF are the same as
in the original code, while the constants given in Table I have

TABLE I
CONSTANTS OF OLIVE

been used for OLIVE. The AODV and DSR codes conform to
their latest implementations available in ns2 [9].

The link-layer implements the IEEE 802.11 distributed
coordination function (DCF) for wireless local area networks
(LANs). The broadcast packets are sent unreliably and are
prone to collisions. The physical layer approximates a 2-Mb/s
DSSS radio interface The radio range is 250 m and for all the
simulations the run length is 600 s.

TBRPF, DSR, AODV, OLSR, and OLIVE use link-layer in-
dications about the failure of links when data packets cannot be
delivered along a particular link. Except for the notification of
the link-layer about links going down, none of the protocols has
any other interaction with the lower layer. In particular, promis-
cuous listening was disabled for both DSR and OLIVE. ARP
has also been disabled and, for the sake of simplicity, the IP ad-
dresses of the nodes are used as the MAC addresses.

For our simulations, we have 50 nodes moving over a rectan-
gular area of 1500 m 300 m. The movement of the nodes in
the simulation is according to the random waypoint model [11].
Values of pause time used are 0, 15, 30, 60, 120, and 300 s.

Each flow is a peer-to-peer constant bit-rate (CBR) flow and
the data packet size is kept constant at 512 bytes. Each flow
continues for 200 s and after the termination of the flow, within
1 s, the source randomly chooses another destination and starts
another flow, which again lasts for 200 s.

The following six metrics are used to compare the perfor-
mance of the routing protocols.

• Packet delivery ratio: The ratio between the number of
packets sent out by the sender application and the number
of packets correctly received by the target destinations.

• Control packet overhead: The total number of control
packets sent out during the simulation. Each broadcast
packet is counted as a single packet.

• Control byte overhead: The total number of control bytes
used in the control packets.

• Total number of MAC packets: The total number of packets
sent at the link-layer for exchange of routing information.
They include RTS, CTS, the control packets and the ACKs.

• Optimality of paths: Ratio of the actual number of hops to
the optimal number of hops possible based on the given
topology.

• Average end-to-end delay: The end-to-end delay measures
the delay a packet suffers after leaving the sender and then
arriving at the receiver application. This includes delays due
to route discovery, queueing at Internet protocol (IP) and
medium access control (MAC) layers, and propagation in the
channel.

540 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 3, MARCH 2005

Fig. 5. Performance in a 50-node network with 0 s pause time and 20 sources with varying packet load. (a) Control packets. (b) Control bytes. (c) MAC layer
control packets. (d) Throughput. (e) End-to-end delay. (f) Optimality of paths.

A. Effect of Traffic Load

Fig. 5 shows the results of each protocol under varying packet
loads when the number of sources is 20 and nodes are constantly
moving.

The control overhead of OLIVE remains unchanged with the
increase of load. DSR, TBRPF, and OLSR exhibit similar be-
havior. However, AODVs control overhead increases with load.
Even when nodes are physically close, links are assumed to
fail when data packets cannot be delivered along those links.
Such perceived link failures affect AODV drastically, because it
generates network-wide RREQs with increased sequence num-
bers that in many cases have to be resolved by the destinations.
The number of MAC-level control packets increases slightly for
DSR throughout all scenarios, while for OLIVE it increases
only when the network load is maximum (41 kb/s/source or
10 packets/s/source). This is because of the increased number of
broadcast RTSs, for which there is no collision avoidance mech-
anism. Hello packets form the major percentage of packets for
TBRPF or OLSR, and their control overheads remain constant.

In terms of application-oriented metrics, like throughput or
network delay [Fig. 5(d) and (e)], the performance of OLIVE
is the best and is almost unaffected by network load. On the
other hand, the performance of DSR and AODV degrade
significantly. This can be attributed to the opportunistic use of
plausible paths in OLIVE. In TBRPF, DSR, or OLSR, when
original paths break, packets are rescheduled along alternate
paths, without ascertaining their feasibility. This leads to higher
waiting times in queues and more congestion. In contrast,

OLIVE uses FRREQs and FRREPs when active routes are
broken to test the viability of alternate paths, and data packets
are forwarded only if new paths are usable.

OLIVE has a high range of delay values, like DSR, TBRPF,
OLSR, or AODV, which implies that data packets in OLIVE
also have long waiting times at the link-layer interface. How-
ever, its 95 percentile delay value is far lower than that of DSR,
OLSR, AODV, or TBRPF, which shows that it has better average
delay performance. Network topology information in OLIVE
also helps in finding shorter paths [Fig. 5(f)].

For TBRPF, data packets are always rescheduled along al-
ternate routes, when the original paths break. Therefore, they
get circulated throughout the network and there is considerable
packet loss due to looping and TTL time-out. In TBRPF, all
the control packets are broadcast. Therefore, for sending any
TBRPF control packet, no extra MAC layer handshake is nec-
essary. However, because the broadcast TBRPF packets can lead
to collisions, its performance degrades significantly with load.
the same is the case for OLSR, whose proactive mechanism of
route maintenance is almost similar to that of TBRPF. This is
also true for AODV, where broadcast RREQs constitute the ma-
jority of its signaling.

B. Effect of Mobility

Figs. 6 and 7 show the performance of the protocols under
varying mobility of network nodes for a 50-node network with
10 sources and 20 sources, respectively, with each source gen-
erating packets at the rate of 4 packets/s.

GARCIA-LUNA-ACEVES AND ROY: ON-DEMAND LOOP-FREE ROUTING WITH LINK VECTORS 541

Fig. 6. Performance in a 50-node network with load of 4 packets/s/source and ten sources under varying mobility. (a) Control packets. (b) Control bytes. (c) MAC
layer control packets. (d) Throughput. (e) End-to-end delay. (f) Optimality of paths.

Control overhead in OLIVE, DSR, and AODV decreases with
lesser node mobility. Higher mobility implies higher rate of
route failure leading to higher control overhead. For TBRPF and
OLSR, the control overhead remains almost unchanged with
mobility, because they rely on periodic hello packets sent inde-
pendently of the reliability of links. For 10 and 20 sources, the
control overhead of OLIVE in terms of both bytes and packets
is less than DSR, AODV, TBRPF, or OLSR.

Again, because the majority of control packets in AODV is
broadcast RREQs that do not use ready-to-send/clear-to-send
(RTS/CTS) handshakes, the difference between AODV and
OLIVE in terms of MAC-layer control packets [Figs. 6(c) and
7(c)] is not as significant as the difference in the number of
network-level control packets.

In general, when the number of sources is ten, the on-demand
routing protocols use fewer network-layer control packets com-
pared with proactive routing protocols, while for the high mo-
bility scenarios with higher number of sources proactive routing
protocols start performing better. In all scenarios, OLIVE has
less control overhead than DSR or AODV.

The number of data packets delivered is similar in OLIVE,
TBRPF, and AODV [Figs. 6(d) and 7(d)]. DSR suffers a higher
loss of data packets in all scenarios, because of the use of stale
routing information in the RREPs. OLSR suffers considerable
loss of data packets due to routing loops and TTL timeouts.

In terms of path optimality [Figs. 6(f) and 7(f)], OLIVE is
best among all the on-demand routing protocols. In all our ex-
periments, we have found that the paths in DSR tend to be longer
than the paths in AODV, contrary to the results in [11] and [12].

The reason is likely to be the absence of promiscuous listening
in DSR.

In terms of delay [Figs. 6(e) and 7(e)], OLIVE performs better
or equal to the other protocols. Queueing at the link layer is the
main cause for the delay experienced by data packets in each of
the routing protocols.

C. Bandwidth Lost to Routing Loops

We quantify the amount of bandwidth wasted in each routing
protocol due to packets going in loops or staying in the network
for a considerable time. The experiment is done for low to heavy
load scenarios when the number of sources is 20.

Fig. 8 shows the number of packets that have been either sent
along a loop, or dropped due to time-to-live (TTL) timeouts or
loop detection. Loops can be detected in two ways in any routing
protocol in which no traversed path information is present in the
packet headers: 1) the source finds that the data packet has come
back to it and 2) a forwarding node detects that it is passing the
packet to a node that has actually forwarded the data packet.

In our experiments, packet traces are used to detect the
number of packets that have gone in loops. From Fig. 8, we see
that bandwidth is wasted in TBRPF and OLSR due to looping
and the effect becomes more pronounced at heavier loads. This
is because neither OLSR nor TBRPF ensures instantaneous
loop freedom, and exchange unreliable control packets that
renders longer convergence times. These two routing protocols
have very few packets dropped due to nonavailability of routes,
which implies that the topology information always helps data
packets to be rescheduled along alternate paths. However, in

542 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 3, MARCH 2005

Fig. 7. Performance in a 50-node network with load of 4 packets/s/source and 20 sources under varying mobility. (a) Control packets. (b) Control bytes. (c) MAC
layer control packets. (d) Throughput. (e) End-to-end delay. (f) Optimality of paths.

heavy-load scenarios, when the links fail frequently due to
congestion, alternate paths are not always the correct choices.

The control packet exchanges in OLIVE and AODV ensure
instantaneous loop freedom. In DSR, the source routes carry in-
formation about the path traversed and the path to be traversed;
therefore, loops can be easily detected. Under high load, some
data packets go into loops in DSR when data packets are sal-
vaged at intermediate nodes. When an intermediate node in DSR
finds that the next link in the source route is no longer available,
it salvages the data packets by rerouting the packet using its own
cached routing information. Because path traversal information
is not checked for rerouting, loops can form.

Though AODV and OLIVE maintain instantaneous loop
freedom of routing tables in the simulations we ran, looping of
packets can still occur during the transient states of the routing
tables due to inconsistent views of neighboring links. However,
this effect is not persistent, and is unavoidable in order to
deliver packets to their destinations.

V. CONCLUSION

We have presented the on-demand link-vector (OLIVE)
protocol, which is the first protocol to ensure loop-freedom at
every instant using link-state information on demand, while
allowing destination-based hop-by-hop routing instead of
requiring source-routed data packets.

We have shown that selecting paths on-demand cannot be ap-
proached based on the “source trees” used in proactive routing

protocols. Therefore, routers in OLIVE exchange path informa-
tion and these paths combine to give a partial network topology.
A path selection algorithm is then run to compute paths to desti-
nations and these paths aggregate to form source graphs. Source
graphs are reported incrementally in the form of separate paths.

OLIVE has been shown to be loop-free at every instant and
to find correct paths to destinations in finite time. Loop-freedom
is attained in OLIVE by ensuring that a node always knows its
predecessors for an active destination, and by allowing localized
route repairs using alternate paths whose length is not longer
than the paths announced to its predecessors for the destination.
To ensure that routes are correctly installed corresponding to
alternate paths derived from old information, a node unicasts
RREQs along the alternate paths, so that validity can be verified
by a RREP.

Our simulation results show that OLIVE performs much
better than the routing protocols being discussed for standard-
ization in the IETF MANET working group, in terms of control
overhead, throughput, and delay.

APPENDIX

BUILDING A SHORTEST-PATH SOURCE TREE WITH ON-DEMAND

ROUTING CONSTRAINT IS AN NP-COMPLETE PROBLEM

Building routes to destinations using a link-state routing pro-
tocol entails computing a source tree at a given node based
on the topology information known to it. The topology con-
sists of the node’s adjacent links and the links advertised to
it by its neighbors. Assuming that the identity of a neighbor

GARCIA-LUNA-ACEVES AND ROY: ON-DEMAND LOOP-FREE ROUTING WITH LINK VECTORS 543

Fig. 8. Loops for a 50-node network with 20 sources under four different load conditions. (a) Rate = 4 packets/s. (b) Rate = 6 packets/s. (c) Rate = 8 packets/s.
(d) Rate = 10 packets/s.

is a boolean variable (termed as label), a link in any node’s
topology graph will have a label set, which consists of labels
corresponding to the neighbors which have advertised that link
to that node. A label within a link’s label set will be assigned
the value “one,” if the final path to any destination contains that
link and passes through the neighbor which corresponds to that
label. Therefore, for a link , if the label set, is
at any random node, the Boolean value assignment would be

, if the link is included in the final
path to any destination through the neighbor which corresponds
to label . Labels and correspond to other neighbors and
no path through these neighbors includes link . If the link is in
paths through multiple neighbors, then multiple labels in a label
set would be assigned the value “one” and if the link is excluded
from all paths, then the label set will have no label assigned the
value “one.”

Based on the previous Boolean assignment strategy, the
problem of computing a source tree with on-demand routing
constraint (termed as the OPT-TREE problem) can be defined
as the following.

Question: What is the maximum-vertex source tree that can
be formed at node , such that the edges on the path from node

to any node in that source tree will have the same label set
to one?

This constraint on the label assignment on any path ensures
that all links in the path through a neighbor have been advertised
by the neighbor only and, hence, there would be no scope of
wrong packet forwarding.

As the next step toward solving the OPT-TREE problem, we
reframe the optimality problem of OPT-TREE as a decision
problem (termed as -TREE problem): Is there a source tree
having vertices and rooted at source , such that edges on
the path from node to any vertex will have the same label
set to one? By varying the value of from one to and ap-
plying the solution of the -TREE decision problem, we have
the solution for the optimality problem. We will show that the

-TREE problem is an NP-complete problem and, therefore, the
OPT-TREE problem is also an NP complete problem. As the
first step to prove that the -TREE problem is NP-complete, we
first define the SPAN-TREE problem.

544 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 3, MARCH 2005

Instance: Graph, , a given node , which can be
termed as the source, a collection of labels C, and the set of
labels, corresponding to each edge .

Question: Can we construct a tree rooted at node containing
nodes, such that the edges on the path from node to any

node have the same label set to one?
We first show that . Let the source tree

formed be . We first verify , and then we
verify that in the spanning tree formed, all the edges in the path
from the source to any node will have the same label and this
can done in time.

The next step is to prove that SPAN-TREE is NP-hard. For
that purpose, the well-known 3-SAT problem [13], [14] has been
reduced to SPAN-TREE problem. In the well-known 3-SAT
problem, the question is to find whether a logical formula in
the 3-CNF form is satisfiable or not.1 An example of a 3-SAT
problem is how to assign values to the literals, , and
such that the logical formula

is satisfiable, i.e., has an output equal to
one.

The reduction algorithm consists of three steps. For our pur-
pose, we will show how the satisfiability of the above logical
formula can be reduced to SPAN-TREE problem. The first step
is to convert the logical formula

to the following form:

, where is a dummy literal which
always assumes the boolean value zero.

The modified formula is essentially the same as the original
formula because the first three clauses are always equal to one,
irrespective of the values set for , and . This step of
reduction is a trivial one, because it extends a logical formula
by adding a clause corresponding to each literal , where
each clause is and is the set of all literals. The
first step of the reduction can be done in time, where
is the cardinality of the set C.

The modified logical formula is next represented in the form
of a source graph. First, we create a node that represents the
root or the source and subsequently a new node is created for
representing each of the clauses in the modified logical formula.
For each such node, there are three incident edges and each edge
has a label corresponding to each literal in that clause.

The graph is created stepwise by starting from the first clause
and moving toward the right of the logical formula and repre-
senting each clause by a node. For each literal , the last node

which has been created with an edge having a label in-
cident on it, is remembered. If a new node is created for
a new clause, one of whose literals is again , an edge from

to the new node is added and is assigned the label .
Also, becomes . This process makes the distance of
node from node always greater than the distance to node

from node if the path is traced from node to node
along the edges with label .

Using the above algorithm, the graph shown in Fig. 9 has been
created corresponding to the modified logical formula. Initially,

1A Boolean formula is in 3-CNF (conjunctive normal form) if is expressed as
an AND of clauses, each of which is the OR of three distinct literals)

Fig. 9. Representation of the logical formula (x _:x _ y)^ (x _:x _

y)^ (x _:x _y)^ (x _x _x)^ (:x _:x _x)^ (x _:x _x)
in the form of a directed graph during second step for the reduction of 3-SAT
problem to a SPAN-TREE problem.

is for any literal. Nodes , and are joined to the
source by edges and they correspond to the new clauses that
were added to the original logical formula. Node is created
for the fourth clause of the modified formula with three incident
edges having labels , and , respectively, and these three
edges, respectively, connect with and . Then, node
is created, joins node by an edge with label since was
the last node that has been created with an incident edge having
a label . Similarly, all the other edges and nodes are created. If
there are multiple edges connecting the same two nodes, they are
merged into one edge and the new edge will have the combined
label set. This representation can be done in polynomial time by
constructing nodes and edges, where is the
number of literals and is the number of clauses in the original
3-CNF formula.

The next step of the reduction algorithm is to replace each
node (except those nodes directly connected to the source) in
the above graph by three nodes each with three incident edges,
each edge having a different set of labels. This step is shown
in Fig. 10, where a node with three incident edges with labels

, and is replaced by three nodes with the labels of the
incident edges on each of the three nodes being, respectively,

, and . This
reduction is similar to the reduction algorithm used for the re-
duction of the 3-SAT problem to the 1in3-SAT problem [15].2

The edges between nodes are made using the same logic as
used for drawing edges between nodes in Fig. 9. In Fig. 11, we
show the final representation of the graph. Note that the node

is replaced by three nodes with modified inci-
dent edges and the labels of the three edges incident on the three
nodes are, respectively, ,
and .

The next step is to show that there exists a solution to the
3-SAT problem if and only if there is a solution to SPAN-TREE,
i.e., if and only if there exists a spanning tree in which all the
edges in the path from the source to any node will have the
same label. First, we show that if there exists a solution for
3-SAT there will also be a solution in SPAN-TREE. The steps
of the proofs, presented here have been motivated by the proofs

2In 1in3-SAT, the problem is to find whether a logical formula in the 3-CNF
form is satisfiable or not if exactly one literal in a clause can be set to one.

GARCIA-LUNA-ACEVES AND ROY: ON-DEMAND LOOP-FREE ROUTING WITH LINK VECTORS 545

Fig. 10. Final step in the representation of 3–CNF formula in the form of
a graph, where each node of the graph of Fig. 9 is replaced by three nodes
(associated with each edge, its label set has been shown).

Fig. 11. Final representation of the 3-CNF logical formula after all three steps
of reduction.

given in [15]. If the 3-SAT problem has a solution, then the
logical formula is satisfiable and each clause should be equal
to one and at least one literal of each clause must be equal to
one. As described earlier a node that represents a clause

is replaced by three nodes with the labels of the in-
cident edges on each of the three nodes being, respectively,

and . We
now show that, depending on the values of , and for
the clause , we can have different Boolean as-
signments for labels , and , based on which if there ex-
ists a solution for the 3-SAT problem, we can have a solution for
SPAN-TREE problem. Let us assume that in the clause

. In that case, following assignment for the labels
, and leads to a solution for the SPAN-TREE problem:

. Using such an assignment,
the nodes representing clauses , and

will have exactly one edge incident on each of them
with each edge having one label set to one. Therefore, given that

, by using appropriate values for , and , if there
exists a solution for 3-SAT, every node in the final graph has ex-
actly one incident edge whose exactly one label has been set to
one, which implies that all nodes in the final graph will form a
spanning tree. Given that, there is exactly one incident edge on
a vertex with exactly one label set to one, there can be no cycle,
because in that case for at least one node (excluding the source

which has no incident edge), among all labels for all its inci-
dent edges there have to be at least two labels which are set to
one, which cannot be true. Moreover, a forest cannot be formed
because apart from the source node , each node represents a
clause of a satisfiable logical formula and, therefore, each node
must have exactly one incident edge with exactly one label set
to one.

Let us assume that . In that case, there are three pos-
sibilities for the values assigned to and and they are:
1) and ; 2) and ; and 3)
and .

To get a spanning-tree solution:

• Condition 1) leads to .
• Condition 2) leads to .
• Condition 3) leads to .

The case of (and) is not possible because at
least one literal in each clause has to be equal to one.

The next step is to show that, if there exists a solution for the
SPAN-TREE problem, there exists also a solution for the 3-SAT
problem. The proof is by contradiction. Let us assume that,
although there exists a solution to the SPAN-TREE problem,
there exists no solution for the 3-SAT problem. For such case,

each is equal to zero for at least one clause,
. Then, . Also, or (but

not both and). However, if either one of these two literals,
or is equal to one, then the condition that in the spanning

tree there is only one incident edge with exactly one label set
to one is no more satisfied. For the first node [that represents

] or the third node [that represents],
we will get two incident edges that will have labels set to one,
which is a contradiction to the original assumption that a span-
ning tree has been formed in which case each node can have
exactly one label set to one among all labels for all of its inci-
dent edges. Therefore, the 3-SAT problem has a solution.

We have, thus, shown that the SPAN-TREE problem is
NP-hard and that - , which implies that
SPAN-TREE is an NP-complete problem.

Now, the next step is to show whether the -TREE problem
is an NP complete problem. This can be a proof by restriction
[14]. The SPAN-TREE problem is a restricted case of -TREE
problem, where the value of is .

Therefore, the OPT-TREE problem, i.e., the problem of
finding the source tree with the optimal number of nodes with
on-demand routing constraints is an NP-complete problem,
because the decision problem to which the optimality problem
has been reframed is an NP-complete problem.

REFERENCES

[1] D. B. Johnson and D. A. Maltz, “Dynamic source routing in ad hoc
wireless networks,” in Mobile Computing, T. Imielinski and H Korth,
Eds. Norwell, MA: Kluwer, 1996, vol. 353.

[2] C. E. Perkins, E. M. Royer, and S. R. Das. (2003, Feb.) Ad hoc
on-demand distance vector (AODV) routing. Internet Draft, Mo-
bile Ad Hoc Networking Working Group. [Online]. Available:
http://www.potaroo.net/ietf/ids/draft-ietf-manet-aodv-13.txt

[3] V. D. Park and M. S. Corson, “A highly adaptive distributed routing
algorithm for mobile wireless networks,” in Proc. IEEE Conf. Comput.
Commun. (INFOCOM), Kobe, Hyogo, Japan, Apr. 7–12, 1997, pp.
1405–1413.

546 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 3, MARCH 2005

[4] S. Roy and J. J. G. L. Aceves, “Using minimal source trees for on-de-
mand routing in ad hoc networks,” in Proc. IEEE Conf. Comput.
Commun. (INFOCOM), Anchorage, AK, Apr. 22–26, 2001, pp.
1172–1181.

[5] Y. Hu and D. Johnson, “Caching strategies in on-demand routing
protocols for wireless ad hoc networks,” in Proc. ACM Int. Conf.
Mobile Comput. Netw. (MobiCom), Boston, MA, Aug. 6–11, 2000,
pp. 231–242.

[6] E. Gafni and D. Bertsekas, “Distributed algorithms for generating loop-
free routes in networks with frequently changing topology,” IEEE Trans.
Commun., vol. 29, no. 1, pp. 11–15, 1981.

[7] R. G. Ogier, F. L. Templin, B. Bellur, and M. G. Lewis. (2003, Apr.)
Topology broadcast based on reverse-path forwarding (TBRPF). In-
ternet Draft. [Online]. Available: http://www.potaroo.net/ietf/ids/draft-
ietf-manet-tbrpf-08.txt

[8] P. Jacquet et al.. (2003, Apr.) Optimized link state routing protocol
[Online]. Available: http://hipercom.inria.fr/olsr/draft-ietf-manet-olsr-
09.txt

[9] The Network Simulator-ns-2, http://www.isi.edu/nsnam/ns/. ns-2.1b8.
[10] T. Clausen. (2000, Oct.) OLSR ns2 simulation code. INRIA. [Online].

Available: http://hipercom.inria.fr/olsr/
[11] J. Broch et al., “A performance comparison of multi-hop wireless ad hoc

network routing protocols,” in Proc. ACM Int. Conf. Mobile Comput.
Netw. (MobiCom), Dallas, TX, Oct. 25–30, 1998, pp. 85–97.

[12] P. Johansson et al., “Scenario based performance analysis of routing
protocols for mobile ad hoc networks,” in Proc. ACM Int. Conf. Mo-
bile Comput. Netw. (MobiCom), Seattle, WA, Aug. 15–20, 1999, pp.
195–206.

[13] T. H. Cormen, C. H. Leiserson, and R. L. Rivest, Introduction to Algo-
rithms. Englewood Cliffs, NJ: Prentice-Hall, 1999.

[14] M. Garey and D. Johnson, Computers and Intractability. A Guide to the
Theory of NP-Completeness. San Francisco, CA: Freeman, 1979.

[15] Z. Zhan. (2000) One in three SAT (1in3SAT) problem. [Online]. Avail-
able: www.eecs.wsu.edu/cs516/notes34.ps

J. J. Garcia-Luna-Aceves (S’75–M’77–SM’02)
received the B.S. degree in electrical engineering
from the Universidad Iberoamericana, Mexico City,
Mexico, in 1977, and the M.S. and Ph.D. degrees in
electrical engineering from the University of Hawaii,
Honolulu, in 1980 and 1983, respectively.

He is a Professor of Computer Engineering at the
University of California, Santa Cruz (UCSC). He di-
rects the Computer Communication Research Group
(CCRG), which is part of the Information Technolo-
gies Institute of the Baskin School of Engineering,

UCSC. He has been a Visiting Professor at Sun Laboratories and a Consultant
on protocol design for Nokia. Prior to joining UCSC in 1993, he was a Center
Director at SRI International (SRI), Menlo Park, CA. He has published a book
and more than 225 refereed papers.

Dr. Garcia-Luna-Aceves received the SRI International Exceptional-
Achievement Award in 1985 and 1989. He has been Program Co-Chair of
ACM MobiHoc 2002 and ACM Mobicom 2000; Chair of the ACM SIG
Multimedia; General Chair of ACM Multimedia’93 and ACM SIGCOMM’88;
and Program Chair of the IEEE MULTIMEDIA’92, ACM SIGCOMM’87,
and ACM SIGCOMM’86. He has served in the IEEE Internet Technology
Award Committee, the IEEE Richard W. Hamming Medal Committee, and the
National Research Council Panel on Digitization and Communications Science
of the Army Research Laboratory Technical Assessment Board. He has been
on the Editorial Boards of the IEEE/ACM TRANSACTIONS ON NETWORKING,
the Multimedia Systems Journal, and the Journal of High-Speed Networks.

Soumya Roy received the B.Tech. degree in elec-
tronics and electrical communication engineering
from the Indian Institute of Technology, Kharagpur,
in 1998, and the M.S. and Ph.D. degrees in computer
engineering from the University of California, Santa
Cruz, in 2000 and 2003, respectively, where his Ph.D.
dissertation under Prof. J. J. Garcia-Luna-Aceves
was on “on-demand link-state routing in ad hoc
networks.”

Presently, he is associated with Ipsum Networks,
Philadelphia, PA. His research interests are in

routing, overlay networks, network measurements and algorithms.

	toc
	On-Demand Loop-Free Routing With Link Vectors
	J. J. Garcia-Luna-Aceves, Senior Member, IEEE, and Soumya Roy
	I. I NTRODUCTION

	Fig.€1. Network topology known by node a .
	II. O LIVE
	A. Motivation
	B. Principles of Operation

	Fig.€2. Showing how path selections are done in OLIVE.
	C. Detailed Description
	1) Route Discovery: Route requests (RREQs) are used to request f
	2) Local Route Repair: A route fails when a node detects a local
	3) Route Failure Notification: Route errors (RERR) and RERR ackn

	D. Neighbor Relationship
	E. Handling Link Sequence Numbers
	F. Example of OLIVE Operation

	Fig.€3. Showing the route discovery and route repair methods in
	Fig.€4. Procedure: Processing of FRREQ.
	G. Critique of OLIVE With Respect to Other Routing Protocols
	III. O LIVE C ORRECTNESS
	Safety Property: Given a network $G = (V, E)$, and a destination
	Liveness Property: Within a finite time following an arbitrary n
	Theorem 1: Within a finite time after the last change in network
	Summary of Proof: As described above, OLIVE ensures that the suc

	IV. P ERFORMANCE C OMPARISON

	TABLE I C ONSTANTS OF OLIVE
	Fig.€5. Performance in a 50-node network with 0 s pause time and
	A. Effect of Traffic Load
	B. Effect of Mobility

	Fig.€6. Performance in a 50-node network with load of 4 packets/
	C. Bandwidth Lost to Routing Loops

	Fig.€7. Performance in a 50-node network with load of 4 packets/
	V. C ONCLUSION
	B UILDING A S HORTEST -P ATH S OURCE T REE W ITH O N -D EMAND R

	Fig.€8. Loops for a 50-node network with 20 sources under four d
	Fig.€9. Representation of the logical formula $(x_1 \vee \neg x_
	Fig.€10. Final step in the representation of 3 CNF formula in th
	Fig.€11. Final representation of the 3-CNF logical formula after
	D. B. Johnson and D. A. Maltz, Dynamic source routing in ad hoc
	C. E. Perkins, E. M. Royer, and S. R. Das . (2003, Feb.) Ad hoc
	V. D. Park and M. S. Corson, A highly adaptive distributed routi
	S. Roy and J. J. G. L. Aceves, Using minimal source trees for on
	Y. Hu and D. Johnson, Caching strategies in on-demand routing pr
	E. Gafni and D. Bertsekas, Distributed algorithms for generating
	R. G. Ogier, F. L. Templin, B. Bellur, and M. G. Lewis . (2003,
	P. Jacquet et al. . (2003, Apr.) Optimized link state routing pr

	The Network Simulator-ns-2, http://www.isi.edu/nsnam/ns/ . ns-2.
	T. Clausen . (2000, Oct.) OLSR ns2 simulation code . INRIA. [Onl
	J. Broch et al., A performance comparison of multi-hop wireless
	P. Johansson et al., Scenario based performance analysis of rout
	T. H. Cormen, C. H. Leiserson, and R. L. Rivest, Introduction to
	M. Garey and D. Johnson, Computers and Intractability. A Guide t
	Z. Zhan . (2000) One in three SAT (1in3SAT) problem . [Online] .

