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Abstract The importance of P2P searches has motivated several
proposals for performing these operations efficiently. Mec
For a peer-to-peer (P2P) system holding massive amowitisms such as Gnutella and Random Walk [10] either flood

of data, efficiensemantic based searfdr resources (such asthe network or search through a single path in the network
data or services) is a key determinant to its scalabilityisThrandomly. While their search costs may not be low in terms
paper presents the design of an Ove”ay network’ nam'y of the total number of mgssages and/or the number of h.OpS
mantic small world (SSW), that facilitates efficient semantictraversed per search, their advantages are in the low mainte
based search in P2P systems. SSW is based on three innB@4ce cost, making it relatively easy to handle membership
tive ideas: 1) small world network; 2) semantic clusterigy: and data content changes. Improvements to better direlet suc

dimension reduction. Peers in SSW are clustered according{aq('lssages by indexing around neighborhoods (of an overlay
the semantics of their local data and self-organized as dlsm etwork), such as Local Index [16] and Neighborhood Signa-

world overlay network. To address the maintenance issuet%ﬁ‘e [7], can enhance the performance Qf Searc_h_es. However,
high dimensional overlay networks, a dynamic dimension rm_embershlp/c_ontent changes can require additional costs t
' Update such indexes. Further improvements to search ef-

duction method, called adaptive space linearization, BdJSﬁCienCy have led to constructing overlay networks (e.g..

to construct a one-dimensional SSW that supports 0pegay [13], CHORD [14]) that use hashed keys to direct the
tions in the high dimensional semantic space. SSW achieveg arches to the specific node(s) holding the requestedigiata o
very competitive trade-off between the search latenc&#86t jocts. This comes at a higher maintenance cost for updating
and maintenance overheads. Through extensive simulatiGg relevant information on membership/content changes.
we show that SSW is much more scalable to very large netyyhile all these techniques address the scalability issue
work sizes and very large numbers of data objects compayedicularly of searches) with respect to the number ofsod

to pSearch, the state-of-the-art semantic-based seatth teiy the P2P system, it is equally important to address the-volu
nique for P2P systems. In addition, SSW is adaptive to diimous information content of such systems. The vast repos-
tribution of data and locality of interest; is very resilieto jtories of information (just as in the Internet today) anesi

failures; and has good load balancing property. ply not favorable to key-based (or keys hashed from names)
searches, mandating the employmentcohtent/semantic-
1. Introduction based searchésThat is why search engines are popular for

The advent of applications such as Napster and Gnuté] vigating the Internet today. The primary goal of this gtud

has made peer-to-peer (P2P) systems popular for the Wikge0 qlesign a P2P overlay network that supports efficient se-
spread exchange of resources and voluminous informat[gﬁnt"; bz?tlged search. ic based h d . b
between thousands of users. In contrast to traditionattelie, 1° facilitate semantic based search, data (or service) ob-
server computing models, a node in P2P systems can adegts usually are represented by a collection of attribae v
both a server as well as a client. Despite avoiding cenealiZ/€S which can be derived from the content or metadata of the
server bottlenecks and single point of failure, these dealen OPJECtS. These attributes, in various formats and pre-elfin
ized systems present fundamental challenges when segrcfifjnains, logically represent the semantics of the data ob-
for resources (e.g., data and services) available at onerar n€¢tS- Thus, each data object can be seen as a point in a multi-

of these numerous host nodes. Meanwhile, such decentra@yensmnahemantlc spaceAs a result, queries on data ob-

tion mandates that these systems dynamically adapt to clsgts in this semantic space can be specified in terms of these

tinuous node membership and content changes without incijiioutes. There are several challenges faced by thet égfor
fing high maintenance overheads achieve our design goal. First of all, based on accumulated

1 In this paper, peer join, peer leave and peer failure ateatdlely re- 2 We do not exploit the differences between semantic and sbhtesed
ferred to as membership changes. searches. These two terms are used interchangeably in tae pap



knowledge ofclustered indexem research community, it is 2. Preliminaries

safe to assume that clustering data objects with similar se-, ihis section, we provide background on seman-
mantics close to each other and indexing them in certain ﬁ‘f:'space/vector and small world network, and review some
tribute order can facilitate efficient search of these d&ta q;;,gies related to our work.

jects based on indexed attributes. Thus, a P2P overlay net-

work designed for efficient semantic based search shouldhe, Background

constructed in a way such that the peer hosts and data
jects are organized (i.e., clustered and indexed) in aecmel

with the semantic space that they are located in. Secorlly,

many real life applications, the number of attributes used ; ; o
; : ; ; : o eatures of such data object can be identified liyedement
identify data objects and to precisely specify queries éstpr vector, namelySemantic Vector (S\(9r calledfeature vector

large. Thus, a well designed P2P overlay network needs. 1q; . X
be able to facilitate efficient navigation and search High inliterature). Each element in the vector represents acpart

dimensional spaceithout incurring high maintenance over—UIar feature or attribute associated with the data objegt,(e
or for an image, concept or key word for a text document)

: |
head. Finally, the P2P overlay network of our goal mandat(é(l%[h weight representing the importance of this feature ele

all the good properties of a robust network such as scala ment in representing the semantics of the data object. The SV

ity, load balance, and tolerance to peer failures. ) . . :
This paper presents the design of a P2P overlay netwocr)f(a data object can be mapped to a point irdimensional

called Semantic Small World (SSWiyhich overcomes the seémantic space. Euclidean distance is used to represent the

above challenges to facilitate semantic-based séaifdis semantic closeness between two SVs in this paper.

overlay network, during peer joins and leaves, dynamicag:rt‘gjrliz\évgréd s::;voék'astrrpﬂmobrém:é\gﬁs r?ggebseir?rlﬁg
clusters peers with semantically similar data closer tdea A 9e p g

other and maps these clusters in a high-dimensional sem %t_vvork and:luster coefficientiefined as the probability that

tic space into a one-dimensiorsahall world networkhat has tvx(/)orkn_es 'gsgbgr% (geasrr;oeijlle aorﬁ dn'ef}lghhbaosrssrt::;ﬁnaseé\:gséA ant?]t-
an attractive trade-off between search path length andtmair?’v ﬂ: lie ! similar to the ;vvera 'e' ath lenath invran gotr?ne
nance costs. Further, SSW dynamically updates the overla 9 e gep g

take advantage of query locality and data distribution abar thc;rtkjf) rgrr:g()ler:wr?]eet(\:/!/l:)srtkir nggfe'zrgn(':s" rencl:fuhmg(r)??]ftr\]/vtgﬁ(s
teristics, unlike what has been proposed in the literatoti u )- P

now. Through extensive simulations, we demonstrate the th small world characteristics show that searches can be

periority of SSW over pSearch, the state-of-the-art seimant® iciently conducted when the network exhibits the follow-
based search technique built on CAN in P2P systems [15]|ng properties: 1) each node in the network knows its local
heighbors, calleghort range contact®) each node knows a

The primary contributions of this work are three-fold: 12mal| number of randomly chosen distant nodes, cadiad

We show a way to build a small world overlay network for sex ge contactswith probability proportional to}z whered is

mantic based P2P search, which is scalable to large network P
sizes and large numbers of data objects, while nimble enoﬁgﬁ distance [5, 6]. A search can be performed{iog”N)

to adapt to dynamic membership and content changes witfPS on such networks, wheis the number of'node's ina
low maintenance overheads; 2) We show a dimension red]§2V0'K [6]. The constant number of contacts (implying low
tion technique (callechdaptive space linearizatiofASL)) maintenance co;t) and S”.’a” average path length serve as the
for constructing a one-dimensional SSW (cal®@8W-1Dto motivation for trying to build a small world overlay network
address the challenges raised by high dimensionality of Z0ur approach.
mantic space; 3) We adopt an effective clust_erlng stra}te?_)%_ Related Work
that places peer nodes based on the semantics of their data ) . ) ]
and adapts to dynamic locality of queries and user interests Here we review some semantic clustering techniques and
As a result, SSW exhibits distinguished strength in resiiée focus on more details of pSearch and its dimension reduction
to failures and balancing the load fairly across the netwoiﬁchnlqyerollmg [ndex _ _ o
even when there are hot spots. Semantic Clustering. The idea of clustering nodes with sim-
The rest of this paper is structured as follows. BackgrouHa@r documents together has appeared in [1, 4, 11, 12]. Pro-
and related work are provided in Section 2. In Section B9sals in [1] and [11] rely on a centralized server or super-
the concept of SSW and technical challenges are presenR&€rs to cluster documents and nodes. Preliminary work
Semantic-based P2P search operation is detailed in Sectibi?] Proposes to cluster nodes with similar interest to-
4. The simulation setup and results for performance eval@®ther, without discussing how to define the interest simila
tion are presented in Section 5 and Section 6, respectivély.amongst peers and how to form clusters. [12] relies on

Finally, we conclude this paper and outline directions for f Periodic message exchanges amongst peers to keep track of
ture research in Section 7. other peers with similar documents, which incurs very high

— . . . message overhead. All these techniques rely on a basic as-
3 Apreliminary study of Semantic Small World is reported in [9]. sumption that data objects ina peer are highly homogeneous.

ggrhantic Space and Vector. Various digital objects, such as
({Jocuments, multimedia, and genomic data can be represented
nd stored as data objects in P2P systems. The semantics or




On the other hand, while taking advantage of homogeneityNMoreover, to enhance the robustness of SSW, instead of as-
data sets, SSW is suitable for both heterogeneous and hosigring each individual peer node to a separate semantic sub
geneous data sets. space, several peer nodes are actually formed samaan-
pSearch and Rolling Index. pSearch [15] applies a dimen-ic clusterto share the responsibility of managing a seman-
sion reduction technique, calledlling index on top of CAN tic subspace. These semantic clusters are self-orgamied i

to realize a semantic-based search engine. Rolling index masmall world network.

titions the lower (but more important) dimensions iptsub- Corresponding to &-dimensional semantic spaceka
vectors (where each subvector consistsnofdimensions, dimensional SSW can be formed as follows. Each node in
m = 2.3-In(N) andN is the total number of nodes selectethis k-dimensional SSW maintainsshort range contacts and

to participate in the search engine) and maps the partial kg range contacts, whese= 2k. The short range contacts
mantic space corresponding to each subvector into the ke selected to ensure that a search message issued from any
space of CAN. To process a semantic based searsbpa- node can reach any other cluster in SSW. Ferddmensional

rate searches are performed on the CAN key space. The nsashantic space, the short range contacts of a peeriachn
similar data object(s) in the result of thgssearches are re-be intuitively set to nodes in the neighboring clusters next
turned as the answer. Rolling index can be applied on top®fin both directions of thé dimensions. The readers should
other overlay networks, such as CHORD, or small world netete that it is possible to use ansmaller thark as long
work (as we demonstrate later). Although simple, rolling irass > 2 and the short range contacts can provide certain
dex incurs high index publishing overheads and search cq&iscoded) ordering information to guide the navigation be-
since each index publishing/search involyexperations with tween any two clusters (as we will show later in our dimen-
one corresponding to each subvector. In contrast, the dimsion reduction technique). On the other hand, the long range
sion reduction technique we propose, ASL, is incorporatedntacts aim at providing short cuts to reach other clusters
in the ground-up construction of SSW. It requires only a siquickly. Via short range and long range contacts, navigatio
gle operation for index publishing and search. In additioim the network can be guided greedily by comparing coordi-
ASL considers all semantic information of a search, insteadtes of the destination and subspaces of the traversed.node
of only m dimensions as in rolling index, thereby no heuris
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tics are required to direct the search (which are required by, ) D R 5 @y
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31 OVerV|aN G H I K o data falling into Peer 1's subspacg1,0)
@ peer (1,0 = data falling outside Peer 1's subspace
Overlay networks, the souls of P2P systems, are used to (a) Overlay structure (b) Foreign indexes

connect peer hosts into cyber communities. To facilitate ef
ficient information search and sharing, the overlay network
of P2P systems also serve as (distributed) indexes. Sinae da _. )
objects captured by-dimensional SVs can be seen as points Fi9ure 1 shows an example of SSW+ 2). As shown in

in a k-dimensional semantic space, an idea for constructititf: figure, the search space is partitioned into 11 clusters a

a P2P overlay network is to organize the peer nodes and qaRETi€S Of peer joins and leaves. Figure 1(a) shows the over-
objects in accordance with the semantic space. Thus, in ad@y Structure. Peer 1 in cluster E maintains short range con-
tion to navigation and search, a peer node in the overlay ni@cts {0 neighboring peer clusters A, B and G and a long range
work is responsible for management of data objects (andf@ntact to a distant peer cluster C. The contacts of othespee
the location information of data objects stored at otherpee &€ N0t shown here for clarity of presentation. Figure 1¢b) i
referred agoreign indexegcorresponding to aemantic sub- lustrates the concept of foreign indexes. The dark circtes d

space Foreign indexes, similar to the leaf node pointers 6‘fk)1te the "semantlcl positions of %ee(rjs in tg_e semantlcc:égpgce.
typical tree-based index structures, provide locatioarima- | N Small rectangles represent the data objects store@m Pe

tion regarding to where data objects are physically stored- Most of them (the white rectangles) are located in the sub-
space of Peer 1, but some of them (the dark rectangles) are

o o mapped to other subspaces. Thus, location information of
4 Due to the potential high cost of redistributing a large nandj data ob- those data objects are stored as foreign indexes in peers of
jects within the overlay network, we choose to have a newhgeid peer
to publish the location information of its locally stored dathjects to th0S€ subspaces.
the other peer nodes managing the subspaces correspondiemém-  There are several critical issues that need to be addressed
tics of those data objects. in the design of SSW: 1) peer placement - where in the se-

Figure 1. An illustrative example for SSW.




mantic space should a peer node be located and what is th@fe&semantic subspaces adapts to the density of peers and data
sponsibility of a peer node? 2) cluster formation - what & ttobjects in the semantic space.
strategy for forming clusters? 3) space partition - how te pa Qur space partition strategy is aiming at load balancing
tition a semantic subspace to two clusters of peer nodes{#Bsed on data distribution within a space rather than the co
dimension reduction - how to handle the maintenance isstted area of a space). To proceed, two peers in the cluster tha
of the overlay network if the dimensionality of correspondare semantically farthermost from each other are selested a
ing semantic space is too high? The first three issues listhg seeds for the two sub-clusters. Then, peers in the clus-
above are closely related to the problemsemantic clus- ter are alternatively assigned to the two sub-clustersthaise
tering, while the last one obviously is related to the prolthe shortest distance to the seeds. Finally, the clusteespa
lem of high dimensionalityIn Section 3.2, we will discuss partitioned at the middle point of the dimension that has the
our strategies for performing semantic clustering while imargest span between the centroids of the semantic labels of
troducing the tasks of constructingfadimensional SSW. the two sub-clusters (low order dimensions are used to break
In Section 3.3, we will describe how we linearize the ties). This is similar to how R-tree nodes are split [3]. Bhse
dimensional SSW into a one-dimensional SSW in supporte this strategy, we obtain two subspaces that have reiative
k-dimensional semantic space. equal load (in terms of the number of foreign indexes) even
32 Construction of Semantic Small World though the _physical size of the two subspaces may not be
equal. Existing overlay networks, such as CAN and CHORD,
We now discuss how to construct a small world netwolimply partition a space into two equal sized subspaces with
depicted above. This involves three major tasks: 1) obtait considering the load distribution in the two subspaces.
ing asemantic labethat positions a peer node in the semaryyer|ay network construction. To construct the overlay,
tic space; 2) forming peer clusters in the semantic spaceedkn peer node maintains a set of short range contacts point-
constructing an overlay network across the logical pe&s-Cliyng 1o a peer in the neighboring peer clusters and a certain
ters to form a semantic small world network. number of long range contacts. The long range contacts are
Semantic labelling. This task is executed before or when gptained by randomly choosing a point in the semantic search
peer node joins the network. We assume that each node §bsce hased on a distributiof, wherel: is the dimensional-
tains the SVs of its local data objects by local computatiogy of the semantic spacd,is the semantic distance, adtis
Then, a peer node clusters its local data objectsdata clus-  o"normalization constant that brings the total probabiitg.
tersconsisting of data objects with similar semantics [17]. Apese extra long range contacts reduce the network diameter
peer chooses theentroid of its largest data clustes its se- g ransform the network into a small world with polyloga-
mantic label (also calledjain poin{) to decide which seman- i mic search cost [8]. In addition, there are no rigid sbe
tic subspace (and which cluster) the peer is to be placed,jfhich specific distant clusters should be pointed to by long

While we assume a single join point here, multiple join point§istance contacts. This flexibility of long range contatese
can be used if the peer node has sufficient resources.  tjon makes SSW adapt to locality of interest easily.
Using centroid of the largest data cluster in a peer node to

decide the peer’s position in the semantic space has sevgrgl
positive effects. For example, if a node has relatively homo ™
geneous data set (which is likely to be the case in real life), An intuitive way to support P2P applications that have
the semantic subspace where a peer resides in is also witereplex data objects with-dimensional SVs is to construct
most of its data objects fall into, thereby reducing the ¢osta k-dimensional SSW by simply assigning short range con-
publish foreign indexes. Moreover, the queries issued by ttacts in all dimensions of the corresponding semantic space
peers in the nearby subspace usually exhibit similar lpgaliHowever, for a semantic space with high dimensionality.(e.g
i.e., a peer is likely to query for data objects with similar s the dimensionality of semantic vector used in document re-
mantic meaning as its own data objects. Our constructionttieval is around 50-300 [2]), this approach makes mainte-
SSW exploits these characteristics naturally and stillkwornance costly and non-trivial due to the decentralized and
better than other state-of-the-art P2P search techniyges dighly dynamic nature of P2P systems.

without these localities (demonstrated later in the paper) A common strategy to address the issue of high dimen-
Cluster formation. In SSW, we use a preset maximum clussionality is to perform dimension reduction. One approach,
ter size)M to decide cluster boundary. When a new peer nolased on the idea of rolling index, is to partition the seman-
joins the network, it navigates to and joins a cluster whidft vector of a data object inta disjoint subvectors where
accommodates its semantic label (i.e., join point). The pemach subvector consists gfelements. Then each subvector
nodes within a cluster know each other (directly or indiggct is published to a-dimensional SSW. Therefore, thesub-

by keeping track of a pre-determined number (calbed- vectors of a data object are mappedrtdifferent places in
degreewhere out-degreg M) of peers within the cluster. If this y-dimensional SSW. To process a query, the query vector
the cluster size exceedd, the cluster will be split into two is similarly partitioned inta: subvectors. The query is routed
based on our space partition strategy (to be discussed né&xt} subspaces covering each of thaseubvectors and the

in order to maintain good clustering effect. As such, the sidata objects matching the query are returned as results. Al-

Dimension Reduction



though simple, this approach incurs high foreign index pulseke more splits. The cluster merging process can be done

lishing overheads and search costs. reversely, so we do not go into details.
In contrast to rolling index which reduces the dimension- T 1)

ality of semantic vectors, our approach is to reduce the di-  [sowy pouo] a0 | Hauy

mensionality of the overlay network. We observed that while p= p=:3

a high dimensional overlay network is search efficient (due pzd) Pt pl=4

to the large number of possible routes among peer nodes), pe: : p=2\ | e

the maintenance complexity and overhead of such a network 4m$$ \

is also overwhelming. Thus, we construct an overlay net- i [p=2 p=3

work of low dimensionality to support the connectivity of | -3 o)

peer nodes and the function of semantic based search. This

idea is realized bydaptive space linearizatiofASL), that e

linearizes the clusters in high dimensional space into a one (a) ClusteriD (b) SSW-1D

dimensional SSW (termed as S_SW-lD) during the process Figure 2. An illustrative example of SSW-1D.
of cluster split in SSW construction. ASL preserves the se-
mantic proximity among clusters as much as possible. NoteFigure 2(a) shows a snapshot of the system where the
that ASL serves similar goals as the well known space fillinghole semantic space is partitioned into 11 clusters with th
curves such as Hilbert curve, Z-curve, etc. However, thegi@ster IDs indicated in the figure. We illustrate the prades
existing space filling curves can only be employed to map2-dimensional space where the vertical lines represent th
a regularly coordinated high-dimensional space to a Io¥irst dimension and the horizontal lines represent the scon
dimensional space. In our case, the high-dimensional semgiension. We assume that the name space is 4-bit long. In
tic space is adaptively (irregularly) partitioned accagio this example, the semantic space is first partitioned albeg t
data density. Therefore, these space filling curves caneoirtical line denoted by "p = 1”. At this point, peers at th le
employed naturally to reduce dimension of SSW. side and right side of this line obtain ID "0000” and "1000",

SSW-1D is constructed as a double linked list consistifigspectively. Then the left side is partitioned along the-ho
of semantic clusters connected via two short range contagggital line as indicated by "p = 2”. At this point, peers at the
of each peer node. In addition to this linear network strigctuower left side and top left side obtain ID "0000” and "0100”,
that provides basic connectivity, long range contactsideov respectively. The solid line shows the order of the assigned
short cuts to other clusters which facilitate efficient shar cluster IDs, while the dashed line (naturally created since
While the original semantic space has been partitioned a8W-1D is a double linked list) indicates that a search can
then linearized, the clusters in SSW-1D are still correspore performed bi-directionally. Figure 2(b) illustratesV8S
ing to their original semantic subspace of high dimensioD built upon the naming scheme described above. A peer in
ality. Thus, a crucial requirement for SSW-1D is how to er¢luster 4 maintains short range contacts to neighboring pee
code a naming space to facilitate efficient navigation basedclusters 2 and 5. It also maintains a long range contact to a
their high dimensional semantic information (i.e., SVsj-codistant peer cluster 10. The contacts of other peers are not
responding to the original semantic space. In other wordsstpwn here for clarity of presentation.
search needs to be able to reach its destination in semantic

Peer-to-Peer Search

space (a cluster) quickly. This issue is addressed as fellow™
This section details the search operation in SS\W-1R-

To maintain the 1-1 mapping between the naming of clus- , . g _— :
ters in SSW-1D and their semantic subspaces, we use adf- 1 summarizes the information maintained in each peer
nary bit string (callectluster 1D) to name the cluster. Eachnede. ClusterState consists of ClusterRange, specifyieg t

peer maintains a variabl®ar Bit, which initially points to Semantic subspace covered by the cluster that this peer node
the most significant bit of the cluster ID. PBit indicates resides in, ClusterSize, indicating the current size otlits-

the bit to be set (to 0/1) in the next cluster split. After eadff» ParHis, recording the previous partitions that this peer
split, the two sub-clusters decrease their Biiby one (reset 'S been involved in, and PB8it, indicating the position
ParBit to the next less significant bit). The first peer clustélf Next bit to be set for future sub-clusters during next
in the network sets all bits of its cluster ID to 0. When peeR&tition. ParHis consists of tuples ofDimension, PaPY
continue to join the network and eventually trigger a C|ug\_{h|ch |n(_1llcates Fhe par_tltlon point along the specified dime

ter splitting, the two sub-clusters obtain IDs by setting it SION- NeighborList, for intra-cluster search, stooeis-degree

pointed by PaiBit separately and retaining ali other bits thlodelds of peer nodes within the same cluster. ShortCon-
same as the ID of the original cluster. The sub-cluster that ¢t and LongContact are self-explanatory. Each contaet co

smaller centroid along the partition dimension obtainsmn SiSts of @ Nodeld and the ClusterRange of the subspace that
with the bit pointed by PaBit set to 0 and the other one ob
tains an ID with the bit pointed by Pa&it set to 1. The same 5 Due to space constraint, readers are referred to [8] fatetsil of main-
process is employed as more peers join the system and in-enance.




the pointed node resides in. Foreignindex, for the locatien Algorithm 1 PCN estimation.
formation of data objects stored at other nodes, consisis GiCN estimation for Q at Peer i (B isthesize of bit stringsused for Clus-
set of semantic vectors of data objects as well as the Nodef®4D)

of their source nodes. 1: for = = B 1o Par_Bit + 1 do
2: Obtain partition dimensiorl and partition pointp from Peer i's
ClusterState{ClusterRange, ClusterSize, 5 F;gng;sx o < pandQ, <
. . : IT2.Clusteriangeg < p an dSp
. - ParHis, Pa[Blt} ori.Cluster Rangeg > p andQg > p then

NeighborList:{Nodeld} 4 PCN, = Ciy.
ShortContact{Nodeld, ClusterRange 5 dse
LongContact{Nodeld, ClusterRange 6: PCNy =1—Clig.
Foreignindexj{ Semantic Vector, Nodeld ; enngak'

Table 1. Data structure maintained at each peer 9: end for

est peer node, which is a peer in Cluster 10 in this example.

When the query reaches a peer in Cluster 10, this peer re-

¥stimates the PCN for the query since the query is still notin

its cluster range. This time, the query PCN is estimated as 11

Fhe searchis finally forwarded to a peer in Cluster 11, which

finds @ within its own cluster range, so it floods the clus-
for search results.

To initiate a semantic-based searchse@arch seman-
tic vector (denoted agy) is generated based on the quer
The search process consists of two stadiesding search
and navigation Correspondingly, the search operation at
peer node has two modesearch-within-clusteandsearch-
across-cluster When a message is received, a peer no

will first Ch?Ck whetherQ. falls within the range of its clus- Usually, the PCN resolves very fast as the message moves
ter. If th‘.”lt is the case, it starts Sea.rch'W'th'n'CIUSte.'dmotowards the destination, but occasionally, it takes moas th

by flooding the message to peers in its NeighborList (e ne step to resolve a bit in PCN. We group the step(s) to re-
cept for the one from_whqm the message was recé)\_/e olve one bit of PCN asRCN resolving phasé\ search may
Then the data object with highest similarity to the queneisT 4 to go through multiple PCN resolving phases, where
turned as the result. Search-across-cluster mode is idvoke - phase brings the search message half-way closer to the

when @ is not within the range of current peer's clus: : .
ter. In this case, a pseudo-cluster-name (PCN), the %%:gseé.WT_hleDfollowmg theorem obtains the search path lengt

timated ID for the cluster covering the search semantic . ) )

vector, is first calculated fo€) based on the partition his- | h€orem 1 For a k dimensional space, given a SSW-1D of

tory (ParHis) stored at this peer (as explained later). W& nodes, with maximum cluster sizé and number of long

call the process to calculate PCN f@) as PCN esti- @ange contactg, the average search path length for search
. o 2

mation The search-across-cluster mode is continued Bgross clusters IQ(M).

forwarding the search message to the contact with the sh@itoof: Omitted due to space constraint. Interested readers

est naming distance to the PCN. The above processpigase refer to [8].

repeated until the cluster whose semantic subspace coverNote that even though dimension reduction has been used

ing @ is reached. to build a tractable SSW-1D overlay, search is conducted us-
The algorithm for PCN estimation is illustrated in Algoing all dimensions of the search semantic vector.

rithm 1. We first set all the bits of PCN to 0. Iterating through During the search process, SSW adapts to locality of users

the ParHis of current peer (Peerin the algorithm), the bits interests by maintaining a search-hit list at each peer node

of PCN (starting from the most significant ##) are set as the that consists of the nodes which have search hits in the past

same value of corresponding bits of PéerCluster ID,C;, X searches issued by this peer. For ev&rgearches, a node

as long ag) confirms to the same Patis entry (see Lines replaces the long range contact having the lowest hit rate wi

3-4 in Algorithm 1). Otherwise, the corresponding bit is sehe entry in the search-hit list having the highest hit rait w

to a different value and the PCN estimation process at Pegfobability of do/(do + dn) wheredo anddn represent the

stops (see Lines 6-7) since this peer does not have further gigming distance of the old long range contact and the candi-

tails about the PCN. date long range contact to current peer, respectively.
Here, we show an example to illustrate the search process

in SSW-1D. Let's go back to Figure 2(b). Assuming that Pe& Performance Evaluation
1 in Cluster 4 wants to search for data objects basedon We move on to evaluate SSW’s benefits using extensive
[0.9,0.3], it first checks its own cluster range. Since [0.3], simulations. We compare SSW-1D (we refer it as SSW in
is not within the subspace of the cluster, Peer 1 then esfiis section for simplicity) with pSearch, the state-of-trt
mates the PCN for the query as 8 using above algorithii semantic-based P2P search. The goal of a search is to find a
Peer 1 checks its contacts and forwards the search to the ciza object semantically similar to the specified queryeBas
on [15], pSearch takesgroups of the most important dimen-
6 A sequence number is attached to each search message so ddat agions, each withn dimensions (i.ep = 4, m = 2.3InN). In

can recognize and drop a search message that appeared before.  4qdition, we also implement the rolling index used in pSkearc




on top of m-dimensional small world network, calledsasall parameter4) that we control. In addition, similar to data pa-
world rolling index (SWRI)to compare the effectiveness ofameters, we consider two factors in generating queriss: di
our proposed dimension reduction method, ASL, vs. rollirtigbution of queries emanating across the nodes in themsyste
index in terms of search performance, maintenance cost amdl the skewness of the queries emanating from a single peer.
result quality. For fair comparison, the long range contget The former controls query hot spots (i.e. more users are-inte
date (as described in Section 4) is turned off if unspecifiedted in a few data items) in the system and the latter centrol
otherwise. The simulation setup, parameters and perfarenathe locality of interest for a single peer, namelyery local-

metrics are explained below. ity (i.e. a user is more interested in one part of the semantic
_ _ space). As with the data distributions, we use two Zipf dis-
5.1. Simulation Setup tributions with parameters,; (for Queryseed-Zipfanda,,,

The simulation is initialized by having one node pre-exiéfor Query-Zipj to control the skewness, i.ex,; captures
in the network and then injecting node join operations inthe skewness of the queries around the centroid that is-gener
the network till the network reaches a certain six8.(After ~ated byaq;.
this point, a mixture of operations including peer join, Pe& 5> Metrics
leave and search are randomly (based on certain ratios) -’
jected into the network. This is also when statistics ctitec ~ While the main focus of this paper is to improve search
begins. On the average, each peer isd06searches during Performance at a minimum overhead, we also try to explore
each run of the simulation. The proportion of join to leave oghe strengths and weaknesses of SSW in other aspects, such
erations is kept the same to maintain the network at appr@é fault tolerance and load balance. We use the following met
imately the same size. The simulation parameters, their V¢s for our evaluations:
ues and the defaults (unless otherwise stated) are givem ingearch path length is the average number of logical hops
ble 2. Most of these parameters are self-explanatory. Mdfaversed by search messages to the destination.

details for some of the parameters are given below. Search cost is t_he average num_ber of messages incurred per
search. Flooding techniques like Gnutella may have short
Descriptions Values, default path length, but their search cost is high.
N Number of nodes in the network | 256 - 16K,1K Maintenance cost is the number of messages incurred
! Number of long range contacts | 4 per membership change, consisting oferlay mainte-
M Size of peer clusters 1-10248 o dforei ind blishi . Si th
X Out-degree within peer clusters | 4 n,ance co ,an oreign Index pl,J . Isning co " ince e
n Number of data records per peer | 1 - 100,100 Size of d|ffere_nt messages (Jom, query, index publish-
ag1 | Skewness of Dataseed-Zipf 0-1.0,0 ing, cluster split, cluster merge) is more or less the same
a4z | Skewness of fD,at.a;IZIpf , 00- 1'0'% - (dominated by the size of one SV (400 bytes)), we fo-
¥ Percentage of join/leave operatlor s0% - 50%,20% cus on the number of messages in the paper.
aq1 | Skewness of Queryseed-Zipf 0-1.0,0 . ..
g2 | Skewness of Query-Zipf 0-1.0,0 Search failure ratio is the percentage of unsuccess-
. . . ful searches that fail to locate existing data objects in the
Table 2. Parameters used in the simulations system

. . . Index load is the number of foreign index entries maintained
Data Parameters: Without loss of generality, we set the di-; 2 yoge.

mensionality of SV (and the semantic space)0. The data
set is defined by the number of data objects per peearid rocessed
the data distribution in the semantic space, which is detgy: - .

mined by two factors: 1) semantic distribution of data b%esult quality is to measure the quality of the returned data

. e bject. To calculate this metric, we first calculate the nalrm
tween the different peers; and 2) semantic distributioradd.d . il - . o
. : ' ized dissimilarity (Euclidean distandelissimreal, between
objects at a single peer. The former controls the data hass y( o

) ata nosspg- query and the result returned by SSW (or pSearch/SWRI),
in the system and the latter controls the semantic simflar nd the normalized dissimilaritgissimideal, between the

between data objects ata single peer,_namel‘y_antlg clpset uery and the data object that is most similar to the query in
ness To model both factors, we associate a Zipf-distributi o S

h Dat d-Ziofor the f Data-Zioffor the lat e system. Then we use- (dissim_real — dissim_ideal)
fac D a;:a.e d Itp'tc))rt' € ormg(; anda a-d iptiorthe fat- 4, represent result quality. When the difference between dis
er, since this distribution provides a ready parametg ( sim_ideal and dissinreal is very small, the result quality is

andargz respect_ively) for controlling the skewness/uniformi%i h. For pSearch/SWRI, the most similar data object is re-
(the skewness is high when these values are 1, and the di fed from each of the partial semantic spaces and the

o ea e age e e o oo St one among Tosedate ot i eumed 2
A ) . he result and used for calculating the result quality.
trolled by a1 . This serves as the centroid around which the u u utating uft quaity

actual data objects for that peer are composed followizg 7 To perform the normalization, we divide the Euclidean distsbetween
Workload Parameters: The percentage of join/leave opera-  two vectors byv/k, which is the maximum Euclidean distance between
tions (note that the ratio of joins:leaves is itself set 4) is a two vectors in the semantic space.

Routing load is the number of search messages that a node




6. Simulation Results (20 short range contacts antilong range contacts) (2

In this section, we first demonstrate the scalability of SS@10Mt range contacts addong range contacts) for pSearch,
in terms of the size of the network and the number of data oBYVRI and SSW respectively. Figure 3(b) shows the overlay
jects in the system. This is followed by an examination of tiBaintenance cost for the same experiments as Figure 3(a).
effect of cluster sizes on SSW. The benefits of constructiggese two figures confirm our expectation that compared to
overlay based on semantics and updating long range cont&st§arch, SSW can achieve better search performance with
is subsequently illustrated with different workload beioas. Much smaller number of states maintained per peer.
Lastly, we show the strength of SSW in tolerating peer fail-

4000

ures and balancing the load. ol psés\%:% T | ’
6.1. Scalability § ao00 |

In terms of scalability to network size, we vary the num- 3 2500 ¢ = : L
ber of nodes fron2® to 2! to evaluate the search efficiency 2 2000 L L
and maintenance cost of SSW. In our preliminary study [9], S 1500 | e e
we find that SSW with 4 long range contacts has reasonable £ 1000 f e

. . . > '3 o

trade-off between search efficiency and maintenance over- € s00f s
head for most of the settings, and we use this value in the & gm0
experiments. Since pSearch does not use any clustering, we 0 10 20 30 40 50 60 70 80 90 100

number of data objects per peer (n)

disable the clustering feature of SSW (i.e., cluster sizets . _ o o
to 1) in these experiments. A later experiment will evaluate Figure 4. Comparing the foreign index publishing
SSW with various cluster sizes and show that it can perform costs as a function of the number of data objects

even better with appropriate cluster sizes. per peer.
0w —— é;g S The other maintenance cost to consider is the overhead of
£50f PR - Sl PSR . publishing foreign index at peer joins (apart from the cost
540 . g% , shown in Figure 3(b)). This cost is proportional to the num-
R ‘ gig ber of data objects that need to be published, and the corre-
8 s Zay sponding relationship is shown in Figure 4. Due to the fact
g %gg that pSearch/SWRI have to publish a data object multiple
10 85 times, the index publishing costs for pSearch/SWRI are much
EPY)

T e higher than SSW. In addition, the index publishing cost for
number of nodes () o nlf:;e,i?iide:ﬁ e SWRI is lower than pSearch due to the fact that small world
(a) search path length  (b) overlay maintenance cost  network has shorter search path length compared to CAN as
demonstrated earlier in Figure 3(a). Note that these efrlt
SSW are conservative sineg, = 0 (uniform data distribu-
tion) and the overheads are likely to be lower with any skew-
ness (as will be shown later).

0 . . . . .
256 512 1024 2048 4096 8192 16384

Figure 3. Comparing the network size scalability of
the schemes with respect to search path length and
maintenance costs.

Figure 3(a) shows the average path length. Since the size 1 S 1 —
H H H H H 0.98 0.98
of peer clusters is set td in this experiment, there is no 058 psearch ¢ O%/M
flooding within a cluster and the average search path length g /// o ssw

for SSW represents the search cost as well. The search pagps g 0% pSearch -

length for SSW increases slowly with the size of network, 5 088 %Oig

confirming search path length bound in Theorem 1. In ad-® oss © 086

dition, the constant hidden in the b{g@-notation is much g:: PR 4 ggg

smaller tharl as shown in the figure. The slope of pSearch's g4 08

path length is close to SSW withlong range contacts but 26 51z 1024 208 40% 8192 16384 1 4 16 B4 26 10M
ith a much higher offset. In fact, the search path length P oo pibedi

wi g : , p g (a) network size (b) cluster size

of SSW is about 40% shorter compared to pSearch at net-

work size 16K. The search path length of SWRI is between Figure 5. Comparing result quality of the schemes.

pSearch and SSW. This confirms the shorter path length_of

small world network compared to CAN. In addition, it con- Figure 5(a) shows that, as expected, the result quality of

firms the effectiveness of ASL vs. rolling index in terms o8SW is higher than pSearch and SWRI since all semantic

search path length. dimensions are considered in ASL while rolling index only
Overlay maintenance cost is proportional to the nurgensiders a portion of the 100 semantic dimensions in each

ber of states maintained at each peer, which 2rg24 of thep partial semantic spaces. Even though pSearch/SWRI




10000
90 W search cost within clusters

80 40 ® path length within clusters M O search cost across clusters
40
30
20 4 H
10 4 |‘|
0 A BB O NN

-~ o < (ee] © o <t

-~ @ ©

O path length across clusters
70 A l
o < @ o
& N
& )
cluster size (M)

60 -
50 4

(a) maintenance cost (b) path length (c) search cost
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choose the best answer from th@bjects returned from the sult is likely to increase with the cluster sizes. This is-con
p searches, result quality of all thopeobjects might not be firmed by Figure 5(b).
as good as the one returned by SSW. This confirms the benWe have also conducted simulations by considering differ-
efits of ASL vs. rolling index. pSearch and SWRI actuallgnt mixes of the join/leave and search operations. Based on
have the same result quality since both apply rolling indee results (omitted due to space constraint), we set tise clu
with the same setting (i.e., sameandp). ter size to 8 for the rest of the simulations.

This set of experiments confirms the scalability of SSW. )
It also confirms our expectations that ASL is a better dimefi-3. Semantic Closeness
sion reduction method than rolling index in terms of various
aspects, such as search cost, index publishing cost, and re-
sult quality. In the remaining experiments, we only compare
with pSearch for presentation clarity.
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[ Se—
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400

6.2. Clustering Effects

Until now the size of the peer clustekf) has been set at
1. WhenM is larger, cluster splits or merges occur less fre-
quently, resulting in lower overlay maintenance costs- Fur
ther, the total number of clusters in the system decreagshs wi
larger cluster sizes, thereby reducing searches acrageidu
The down-side of large sized clusters is the higher searsth co
within a cluster (due to flooding).

The effect of the cluster size on the maintenance cost,

overlay navigation path length/cost (across clustersyi an |n SSW, a peer selects the semantic centroid of its largest
flooding search path length/cost (within clusters) are wivéocal data cluster as the join point when it joins the network
in Figure 6. The cluster size is varied between 1 and 102#e rationale is that when data is more skewed around the
(the whole network is one big cluster). In these graphs, tbentroid, fewer foreign indexes for data objects need to be
bars for pSearch (the last bar) is also given for easier compgublished outside the cluster, thereby reducing overh&ads
ison. As expected, the maintenance cost decreases wherp#iger understand the impact of semantic closeness onrthe fo
cluster size increases (drops 1Y% when the size increaseseign index publishing cost, we synthesize various data dis-
from 1 to 4). The path length, though decreases slightly (agibutions at a peer by varyingy.., the skewness for Data-
cause of the steeper drop in path length across clusters);, iszipf from 0 to 1. In addition, we also varyy,, the skewness
as sensitive to the cluster size compared to the overaltlsedor data seed distribution (Dataseed-Zipf) frono 1 to ob-
cost (note that the third graph has y-axis in log scale). Thigrve the effect of data hot spots. The effeatgf on the for-
is because the effect of the flooding within the cluster dorgign index publishing costs for SSW are shown in Figure 7
inates for larger clusters. Within a spectrum of clusteesizwith different values ofvy;. As pointed out, a higher skew-
between 2 and 16, SSW does better than the size of 1 (whages lowers the foreign index publishing cost of SSW signif-
results were presented in the previous section) in termB ofigantly. pSearch’s foreign index publishing costs are i@ th
maintenance cost, path length and search cost. range of3500 and only decrease slightly under skewed data
With larger cluster size, the semantic subspace to be eistribution. We omit the plot for pSearch from this figure to
amined for each query increases. Therefore, the quality-of avoid distorting the graph.
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Figure 7. Effect of data distributions. Cost for
pSearch is much higher (not shown for clarity).
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Figure 8. Effect of query characteristics. Cost for Figure 9. Effect of node failure ratio on the failure
pSearch is much higher (not shown for clarity). of search operations (y = 0%).

In SSW, long range contacts can be updated based on
query history to exploit query locality. To study this im6.5. Load Balance

provement, we synthesize different query workloads byvary We evaluate the load balance of SSW from two aspects:
ing, a2, the skewness for Query-Zipf frofto 1. We also index load and routing load. For the index load, we evaluate
vary, a1, the skewness for Queryseed-Zipf to observe the éffie distribution of the foreign index maintained at eachrpee
fect of query hot spots. Figure 8 compares the search paHtler two extreme data distribution patterns: uniform tjwit
length of SSW (a) without updates and (b) with updates Bbtha,; anday, set to 0) and skewed (with bothy; andovgs

long range contacts for every 10 searches (based on whatgi®o 1). Since the load is evenly balanced under the uniform
scribed in Section 4). Without any updates, query localitlistribution for both pSearch and SSW, we present only the
has little impacts on the results. With long range contaet tipdex load for the skewed distribution in Figure 10(a). As we
dates, however, query locality significantly enhancescseaexpected, pSearch has a much more uneven index load distri-
performance. For instance, we see nearly a 78% reductiomiition compared to SSW (more rectangles with a higher load
path length whei,, increases frond to 1.0 with a1 setto than triangles). In fact, Peer 87 in charge of a hot data regio
1.0. pSearch’s result (plot is not shown here) is similar to the pSearch stores abo28% of the index load of the whole
one without update except that pSearch’s path length is muglstem. In contrast, SSW displays a relatively even distrib

higher (in the range of0). tion of index load even under this skewed data set, confirm-
ing our intuition that placing peers in the semantic space in
6.4. Toleranceto Peer Failures accordance with their local data objects can effectivelyipa

tion the search space according to data densit
Peer failure is a common event in P2P systems. Thus, a ro- P g Y

bust system needs to be resilient to these failures. To evalu
ate the tolerance of SSW to peer failures, a specified percenL 30
age of nodes are made to fail after the network is built up. Wev o] °
then measure the ratio of searches that fail to find data obg 2 4
jects existing in the network (we do not consider failures du "« 5 |
to the data residing on the failed nodes). o
Figure 9 shows the fraction of searches that fail as a func- 5
tion of the number of induced peer failures (frofii to 50%). o
Since the fault tolerance of SSW is largely dependent on the®
cluster size, we also consider different values idr (the
cluster size) in these experiments. Even though each peer in ) i
pSearch maintains a large number of states (20), the search  (@)indexload (b)routing load
failure ratio grows rapidly with the number of node failures  Figure 10. Distribution of foreign index load and rout-
At cluster size of 1, SSW with much smaller number of states jnq |0ad amongst the nodes. More points with heavy load
(2 short range contacts and 4 long range contacts) maiwtaine 4 ¢ indication of imbalance.
per peer has similar search failure rate as pSearch. However
moving to a cluster size of 4 substantially improves SSW’s
fault tolerance. Beyond sizes of 4, the search failure ratio
even with as high as 30% node failure, is very clos&.to  Similarly, we have varied the query distribution in or-
These results reiterate the benefits of forming clusters.  der to study the routing load distribution across the nodes,
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again with uniform and skewed distributions (this time with{4] A. lamnitchi, M. Ripeanu, and I. T. Foster. Locating data in
queries). We only present the results for the skewed queries (small-world?) peer-to-peer scientific collaborations.Pho-

(g1 andayz setto 1) in Figure 10(b). We find that the routing ~ ceedings of International Workshop on Peer-to-Peer Systems
load is more evenly distributed in SSW compared to pSearch. (IPTPS) pages 232-241, March 2002.

This is due to the randomness of the long range contacts afid J. Kleinberg. Navigation in a small worldNature, 406(845),

the good balance within a cluster itself. August 2000.
. [6] J. Kleinberg. The small-world phenomenon: an algorithm per-
7. Conclusion spective. InProceedings of ACM Symposium on Theory of

In this paper, we propose a new P2P overlay network, se- Computing pages 163-170, May 2000. _
mantic small world (SSW), to facilitate efficient semanticl?] M. Li, W.-C. Lee, and A. Sivasubramaniam. Neighborhood
based search. SSW is unique in the aspect that the overlay Signatures for searching P2P networks. Rroceedings of
network is constructed based on a semantic space. Peer nodes!Nternational Database Engineering and Application Sympo-

are clustered and organized in accordance with the seman- S'Um (IDEAS)pages 149-158, July 2003.

tics of data objects stored locally. These peer clustens thé®! M- Li, W--C. Lee, and A. Sivasubramaniam. Semantic Small
World: An overlay network for peer-to-peer search. Technical

self-organize into a small world network which has efficient ) A
search performance with low maintenance overhead. Repgrt CSE 04-016, Pgnnsylvama State University, 2004.
~C[’g] M. Li, W.-C. Lee, A. Sivasubramaniam, and D. L. Lee. A

For many real life applications, the number of attribute , .
used to identify data objects and to precisely specify @seri 2;?(2:2”1;\:52: d?ﬁ;‘gogrxgiiﬁg:técnbgzemdaiﬁi?; 'g:ezf
is pretty large. The high dimensionality of semantic space to-Peer énd Grid Computing (SemPGrid), in conjunction with
represents a primary challenge for maintaining an overlay the World Wide Web Conference (WWW);y 2004
that facilitates efficient traverse and search in such aesp 0 . '

. . . ) [10] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and
In this paper, we proposed a dynamic dimension reduction replication in unstructured peer-to-peer networksPitoceed-

method, calleq adaptive space Iinearization_(ASL_), to con- ings of ACM International Conference on Supercomputing
struct a one-dimensional SSW that operates in a high dimen- pages 84-95, June 2002.

si_onal s_ema_ntic space. ASL, based on the idea of reduc'@] W. Nejdl, M. Wolpers, W. Siberski, C. Schmitz, M. T.
dimensionality of the overlay network, has been shown to be™ gcpjosser, 1. Brunkhorst, and A. Lser. Super-peer-based rout-
more effective than rolling index, a technique that reddbes ing and clustering strategies for RDF-based peer-to-peer net-
dimensionality of the semantic vectors. works. InProceedings of International World Wide Web Con-
SSW has many highly desirable features. It facilitates ef-  ference (WWw)pages 536-543, May 2003.
ficient search without incurring high maintenance overhegg>] c. H. Ng, K. C. Sia, and C. H. Chang. Advanced peer clus-
By placing and clustering peers in the semantic space based tering and firework query model in the peer-to-peer network.
on the semantics of their data objects, SSW adapts to dis- In Proceedings of International World Wide Web Conference
tribution of data automatically, gains high resilience &ep (WWW) May 2003, Poster.
failure and balances index and routing load nicely. In adgi3] S. Ratnasamy, P. Francis, M. Handley, R. M. Karp, and
tion, SSW harnesses the locality of queries and user ifteres S. Schenker. A scalable content-addressable networRrain
naturally. All of the above advantages of SSW are verified ceedings of ACM SIGCOMMages 161-172, August 2001.
through extensive simulation. We believe that SSW can h&ye] |. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakr
a significant impact on the deployment of large scale P2P ap- ishnan. Chord: A scalable peer-to-peer lookup service for In-
plications. ternet applications. IRroceedings of ACM SIGCOMMages
We are tuning the performance of SSW further and ex- 149-160, August 2001.
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