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Abstract

IP networks have seen tremendous growth in not only
their size and speed, but also in the volume of traffic they
carry. Over-provisioning is commonly used to protect net-
work performance against traffic variations, be they caused
by failures or transient surges. This paper investigates the
influence that increasing network size has on the efficacy
of over-provisioning in absorbing a certain range of traf-
fic variations and preserving performance guarantees. For
that purpose, we develop a general model that accounts for
network topology, base offered traffic, and traffic variations,
and allows us to explore how their combination behaves as
the network and the traffic it carries grow. The model’s
generality enables us to investigate several representative
scenarios and to identify critical thresholds in the relation
between network and traffic growth, which delineate re-
gions where a given amount of over-provisioning provides
increasingly better protection against traffic variations. The
results offer insight into how to grow IP networks in order
to enhance their robustness.

1 Introduction

Over-provisioning is commonly used to protect network
performance against traffic variations. It typically involves
dimensioning links so that their bandwidth exceeds the ex-
pected traffic load by a certain margin, which is selected
to ensure that the link can absorb both expected and unex-
pected traffic fluctuations. In other words, the bandwidth B,
of link / is chosen such that B; > (1+ f3) fvlb, where fvlb is the
expected base offered traffic on link [, and 8 > 0 denotes
the over-provisioning factor. The challenge is in determin-
ing what 3 is needed to offer a desired level of protection
against a given range of traffic surges. As a result, and be-
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cause of the need to accommodate the relatively large traf-
fic fluctuations caused by link failures, values of § ~ 5
or even higher are not uncommon in large IP backbones
[1, 18]. However, the emergence of high-speed applications
and access links, and the ever greater heterogeneity of user
traffic profiles, e.g., machine-to-machine, mean that there is
considerable uncertainty regarding whether even such con-
servative over-provisioning factors can remain adequate as
networks and the user population they serve continue grow-
ing.

It is, therefore, of interest to develop a better understand-
ing of if and when the efficiency of over-provisioning in
protecting network performance against traffic variations
changes as networks grow larger. We define efficiency more
precisely later, but it essentially amounts to identifying the
minimum over-provisioning factor, which ensures that even
in the presence of traffic variations, the network still main-
tains good performance, namely, the actual link load re-
mains below link capacity with a certain (high) target prob-
ability. In other words, efficiency is a measure of the net-
work’s robustness against such traffic variations.

Focusing on the impact of network size is relatively nat-
ural, as the increased efficiency of large scale systems is a
well documented phenomenon. For example, a property of
the Erlang formula known as “trunking efficiency” tells us
that as the number of circuits (trunks) grows large, the call
blocking probability goes down to zero even as the system
load approaches 100%. Similarly, the statistical multiplex-
ing gain achievable on data links is known to increase (un-
der certain assumptions) with the link bandwidth and the
number of flows. The situation is, however, much less clear
when it comes to networks, because of the many parame-
ters involved, e.g., topology, routing, traffic model, etc., and
their complex interactions. For example, as we shall see
later, some related works that investigated the likely evo-
lution of maximum link loads with network size, reached
somewhat different conclusions simply because of their use
of different models for routing and network traffic.

As a result, and because there is considerable uncer-



tainty regarding appropriate models for capturing network
and traffic growth, the approach we take is centered around
the development of a parametric model that enables us to
investigate the efficiency of over-provisioning across a rea-
sonable range of operating conditions and assumptions. As
described in Section 5, using such a model we are able to
identify the presence of thresholds in the relative growth
of traffic volume compared to network size (measured in
number of network nodes), which play a critical role in de-
termining how the efficiency of over-provisioning changes
with network size. The results provide insight into how to
possibly grow backbone networks to improve their robust-
ness against traffic variations.

The paper’s contributions are two-fold. It formulates a
number of scenarios that capture possible evolutions of net-
work size and traffic volume, and for each assesses the ef-
ficiency of over-provisioning in absorbing traffic variations.
However, the paper goes beyond investigating specific sce-
narios, it also develops a flexible model that can serve as a
basis for further investigations using different traffic mod-
els. This is of interest, as the continued evolution of the
network and its usage is expected to yield new and poten-
tially different traffic patterns, whose impact will need to be
assessed anew.

The rest of the paper is organized as follows. Sec-
tion 2 introduces and motivates our models for both net-
work topology and traffic. Section 3 discusses related works
and reflects on the differences between these works and the
present paper. Our main analytical results are presented
in Section 4. In Section 5, we explore if and when over-
provisioning becomes more efficient in larger networks by
applying the tools of Section 4 to a number of representative
traffic scenarios. Section 6 concludes the paper.

2 Network and Traffic Models

The ability to absorb traffic variations through over-
provisioning depends on both the amount of spare band-
width set aside for traffic surges, and the magnitude of
these surges. The main parameters that influence these two
quantities include the network topology, the routing in use
in the network, the “base” traffic matrix, i.e., the antici-
pated “average” volume of traffic between different source-
destination (SD) pairs, and the sources and destinations of
traffic surges as well as their intensities. Specifically, net-
work topology, routing, and the base traffic matrix together
generate the expected load a link is designed to carry. The
expected load and the over-provisioning factor /3 in turn de-
termine the resulting link capacity, i.e., if the expected load
onlink [ is fj, the corresponding link bandwidth is (1+ ) f;
and the spare capacity available to absorb traffic surges is
Bfi. Similarly, network topology, routing, and the traffic
surge matrix that captures the intensity and distribution of

Figure 1. Abilene inspired topology.

traffic surges across SD pairs, determine which links will
be affected and to what extent. As a result, exploring how
network size influences the efficiency of over-provisioning
calls for a model that incorporates all of the above param-
eters, and provides as much flexibility as possible in their
specification. In this section, we describe the approach we
take for developing such a model and the choices we make.
Let us first consider what is involved in selecting a net-
work model that is both representative of the network struc-
ture, and can be scaled to account for its growth. Devel-
oping models that reflect the key characteristics of today’s
IP networks, and can track their evolution has been an ac-
tive research area over the past few years. Large IP net-
works, such as the Internet, have been observed to obey a
power-law degree distribution [4, 8, 9]. However, Li et. al.
[13] observed that while a power-law degree distribution in-
deed matches observations, it is by itself not sufficient as
networks of totally different topological structure can obey
the same power-law degree distribution. In particular, most
methods that are used to generate power-law networks, e.g.,
the preferential attachment method [4], can fail to capture
other structural properties of IP topologies such as mesh-
connected backbones and tree-connected access networks.
Liet. al. argued that more realistic topologies should reflect
the different topological structures of each network level,
while preserving an overall power-law degree distribution.
In this paper, we focus on the backbone component of
networks where over-provisioning is most common, and
therefore only model the topology of that component. Note
that the topological properties of the backbone can be quite
different from that of access layers as pointed out in [13].
A typical network topology [13], as shown in Fig. 1!, con-
sists of a backbone network (the red nodes and red links),
which often exhibits a mesh-like topology, and several lay-
ers of access networks that exhibit tree-like structures. The
backbone itself is usually comprised of one, possibly two,
levels of hierarchy, especially when dealing with either very
large backbones or the interconnection of multiple back-
bones. The number of backbone nodes (routers) is typi-
cally much smaller than the total number of nodes in the
network, so that the degree distribution of backbone nodes

I'See [1] for the topology of the Abilene network.



(counting only connections between them) has little or no
impact on the degree distribution of the overall network,
which as mentioned above commonly obeys a power-law
distribution. In this work, we represent the backbone using
a two-level random graph model that captures its mesh-like
topology and is amenable to analysis. The impact of access
networks is accounted for by incorporating the traffic they
source and sink into the traffic associated with the backbone
node to which they are attached. In other words, the power-
law degree distribution of the overall network is reflected in
the distribution of the traffic intensities of backbone nodes.
In Section 5, we investigate a gravity traffic pattern that is
based on this approach.

The first or top level of the backbone topology is gener-
ated using a G(n1, p1) random graph model [6]. A random
graph G generated by the G(n, p) model has n vertices and
includes each potential edge (between any two nodes) with
probability p. Specifically, the G(n,p) probability space
consists of all graphs with vertex set V = {1,2,...,n}, and
Pr{g} =p°s(1—p)(3) =% forall g € G(n, p). in which e,
denotes the number of edges in graph g. For lack of a bet-
ter notation, we call nodes in the top level “domains.” We
then expand each domain using a G(n2, p2) random graph
model, where each node now represents a physical router.
The end-points of “inter-domain” links in the top level are
assigned to randomly selected nodes in the corresponding
“domains.” It is worth noting that while we limit ourselves
in this paper to two levels, which we believe is a reasonable
first step to capture the key topological features of IP back-
bones, the model can be extended to more than two levels
to account for more complex topologies, e.g., multiple tiers
of providers with different connectivity (degree p;) at each
tier. In terms of routing, we assume a hierarchical short-
est path routing policy that first selects shortest paths at the
inter-domain level, and expands them inside each domain
using again shortest paths. When multiple equal cost paths
are available, the traffic is either evenly split among them
or sent on one of them chosen randomly. We believe that
such a choice is a reasonable approximation of the routing
policies used in IP networks.

Besides network topology and routing, the two other fac-
tors that a model needs to specify are the base offered traffic,
and how to represent traffic surges.

The base offered traffic is the traffic that the network ex-
pects to carry under normal circumstances and for which
it is, therefore, designed. Statistics on carried traffic are
routinely collected by service providers, e.g., using SNMP
[7] to poll counters that track the volume of data transmit-
ted on links. These measurements are then used to build a
(base) offered traffic matrix, which because of the inherent
“noise” in the measurement process, represents only an es-
timate of the expected traffic offered to the network. Some
of the factors that contribute to variations in the base traf-

fic around these expected values include changes over time
in the intensity and the geographical distribution of flows
between end-users, e.g., from peak hour traffic to off-peak
hour traffic, from corporate traffic to residential traffic, etc.
Similarly, typical SNMP poll cycles are of the order of 5
minutes, and therefore only capture link loads averaged over
such durations, which masks out traffic variations at smaller
time scales [15]. See [10, 16, 17] for extensive discussions
on this issue, but the sources of errors or fluctuations in the
base traffic are well understood, so that their magnitude can
be estimated and their impact incorporated in the dimen-
sioning of the network, i.e., reflected in the choice of . In
our analysis, we account for possible variations in the base
traffic by allowing the specification of an arbitrary general
traffic matrix X, whose entries are allowed to be random
variables. The mean values of the traffic matrix entries to-
gether with routing are used to compute average link loads,
and therefore determine the resulting link capacities.

Traffic surges on the other hand, represent unexpected
variations in offered traffic in terms of either their loca-
tion or magnitude. Such fluctuations have many causes and
come in different forms. One major source is link failures,
which result in traffic being rerouted from one path to an-
other. Traffic variations can also arise because of Denial-of-
Service (DoS) attacks, the sudden popularity of a web site,
or as a result of external (BGP) routing changes. In order
to provide as much flexibility as possible in specifying traf-
fic surges, we model them through an independent general
traffic surge matrix AX. As with X, the elements of AX
are random variables, and represent traffic surges between
pairs of backbone routers®>. The generality of both X and
AX allows experimentation with a broad range of base and
surge traffic models.

3 Related Works

Several previous works have studied the scaling proper-
ties of IP networks. Their focus has been on understanding
how maximum link loads grow with network size, but they
share some motivations and methodologies with our work.
In this section, we briefly discuss two of the most relevant
works, and comment on differences with our work.

Gkantsidis et. al. [11] showed that there exists an op-
timal routing policy such that the maximum link load is at
most O(n log® n) (n is the number of nodes). The result is

2The impact of link failures can, for example, be captured by identi-
fying the set of links over which traffic is re-routed after each failure and
the corresponding load increases these link see, and then create an equiva-
lent surge matrix with matching entries for the routers associated with the
links experiencing those increases. Simulations of all single-link failure
scenarios on a 500-node network indicate that failures could be modelled
by a surge matrix with traffic loads between adjacent node pairs that are
less than 10% of the original link loads. Large-scale failure events can be
investigated similarly through simulations.



established assuming that for each pair of nodes with degree
d,, and d,, there are O(d,d,) units of traffic demand.

Akella et. al. [2, 3] showed that when shortest path rout-
ing is used, the expected value of the maximum link load
in a power law graph with exponent o grows as Q(nl‘H/ @)
with n. This result is established under the assumption that
there is a unit traffic demand between all pairs of nodes.

Although both works investigated how the maximum
link load grows with the network size, their different
choices in routing and traffic models led them to different
conclusions. Specifically, the upper bound derived in [11]
is asymptotically smaller than the lower bound of [2, 3].
This realization together with a different focus, namely, the
investigation of the impact of network size on the efficiency
of over-provisioning, is what led us to develop a parametric
model that can accommodate different operating conditions
and assumptions, especially when it comes to how traffic
grows. As a result, both the approach used in this paper and
its contributions differ from those of [2, 3, 11] in several im-
portant aspects. Specifically, we allow arbitrary traffic mod-
els, where each element is a random variable that captures
intrinsic traffic variations. In addition, we allow the specifi-
cation of both a base traffic matrix and a separate surge traf-
fic matrix, where the base traffic matrix is assumed known
and used to dimension the network, while the surge traffic
matrix accounts for the unexpected traffic variations that the
over-provisioning of link bandwidth is meant to absorb. Fi-
nally, using this model we derive a closed-form expression
for the traffic load on a link, as opposed to a bound on the
expected link load, and use this expression to estimate the
probability that traffic variations result in a link load that
exceeds the link capacity. This then allows us to explore,
as a function of network size, the level of over-provisioning
needed to ensure a certain robustness against traffic surges.
As we shall see, we find that this is critically dependent on
the assumed underlying traffic model, and in particular how
traffic grows in relation to network size.

4 G(n,p) networks with general traffic matri-
ces

This section introduces the main analytical results we
rely on to evaluate the influence of network growth on the
efficiency of over-provisioning. Due to space constraints,
proofs and derivations are omitted and can be found in [12].

As mentioned earlier, the network model is a two-level
random network based on the G(n,p) model. Links are
bidirectional, so that an edge between nodes ¢ and j rep-
resents two directed links, namely, link ¢ — j and link
j — 4. Nodes correspond to backbone routers that can gen-
erate (source nodes), receive (destination nodes), and for-
ward (transit nodes) traffic. Traffic consists of a base traffic
matrix X and a surge matrix AX, defined as follows:

Definition 1 In a network with node set V of cardinality n,
let random variable X & (AXgt) be the base traffic (surge)
generated by source s to destination t (s,t € V, s # t).
Let X (AX) be the n x n base (surge) traffic matrix, in
which the elements are X4 (AXg), for s # t, and Qs on
the diagonal.

We first consider a single-level G(n,p) network with
base traffic matrix X, and derive the base traffic load
F;;(X) on link 4 — j. We then extend the result to a
two-level G(n, p) network, and obtain the actual traffic load
F; ;(X+AX) onlink ¢ — j, where the actual network traf-
fic accounts for the contributions of both base and surge
traffic. Based on the availability of expressions character-
izing the link load, we then rely on Chebyshev’s inequality
to estimate the probability that the actual traffic stays be-
low the link capacity, which indicates no congestion and
good network performance. We finally use this expression
to measure the efficiency of over-provisioning as a function
of network size (as reflected in n) and traffic (as represented
by X and AX), under the assumption that link capacities

are chosen in proportion to the expected base traffic load.

4.1 Link traffic load in single-level G(n, p) random
networks

Consider a single-level G(n, p) network with minimum
hop count routing, i.e. shortest path routing with equal
weight links. In case of multiple shortest paths, traffic is
either evenly split among the shortest paths or sent on a ran-
domly chosen path among them. In this setting, we intro-
duce the following notation:

Definition 2 For a given graph g, let f;j(g,s,t) be the
amount of traffic on link i — j when there is one unit of
traffic from source s to destination t (s # t). If there is no
link i — j in graph g, then f;;(g,s,t) = 0.

Definition 3 For a given graph g, let f;j(9,X) be the
amount of traffic on link © — j when the traffic generated
by SD pairs are represented by traffic matrix X. If there is
no link i — j in graph g, then f;;(9,X) = 0.

Definition 4 For a random graph G with a traffic matrix
X, let the unconditional mean traffic load on link i — j
be fij = Efij(G, X) = Engf”(G,X) Let .F”(X) =
Eq {fi;(G,X)|link i — j exists }, namely the conditional
expected traffic on link i — j with regard to the random
graph and conditioned on the event that link © — j exists.

Definition 5 For any given graph g, Vs,t € V, (s # t), we



define the path length from node s to node t as

hop counts of the shortest path from s to t
if s,t are connected,
0 if s,t are not connected.

d(g,s,t) £

In the G(n,p) model, we denote the expected path length

from s to t by d(s,t) & Egd(G, s,t), and the average ex-

pected path length over all SD pairs in the G(n,p) model
A

byd =3, d(s,t)/n(n - 1).

To obtain our first result (see Theorem 1) on ﬁ‘ij (X), we
introduce the following three lemmas.

Lemma 1 For any given graph g and Vs, t € V,(s # t),
we have d(g,s,t) = >2,.; fij(g,8,t). That is, the path
length from s to t is equal to the sum of the traffic carried
on all links when s sends one unit of traffic to t.

Lemma 2 In the G(n,p) model, we have d(s,t) = d,
Vs, t € V,(s # t). That is, in the G(n,p) model, the ex-
pected path length between any two nodes is the same, and
thus equal to the average expected path length d.

Lemma 3 In the G(n, p) model, if every source node sends
one unit of traffic to every other node, then f;; = d. That is,
the unconditional mean traffic load on link © — j is equal
to the average expected path length d.

The result of Lemma 3 assumed a simple, determinis-
tic traffic matrix X with unit traffic exchanged between all
SD pairs. Our goal is to allow the specification of arbitrary
traffic matrices with different (and possibly random) traffic
entries for different SD pairs. For that purpose, it is nec-
essary to understand for a link ¢ — j, how much of the
traffic exchanged between any given SD pair (s, t) actually
traverses link ¢ — j. This depends on the position of s and
t relative to ¢ and j. For example, it is easy to see that if
s = ¢ and t = j, then all of the traffic from s to ¢ traverses
link ¢ — j as long as link ¢+ — j exists. Conversely, no
traffic from s to ¢ traverses link ¢ — jif s = jand ¢t = ¢.
In fact, for any given link ¢ — j, we can partition SD pairs
into five subsets based on their relative position with respect
to ¢ and j, such that their expected contribution to the link
load depends only on which subset they belong to.

Definition 6 For any two node i,j € V, (i # j), we parti-
tion all source and destination pairs (s,t), (Vs,t € V,s #
t), with regard to their relative position to i, j as follows:

5§J,1> = {(s,t):s#4,j and t #14,5}

SO = {(st):s=it#j or s#it=j}
S§ = {shis=it=j)

Sl.(;) = {(s,t):s=4t#1i ors#jt=1}

5 . .
Si(j)z (8,t) : s =3, t =1}
We are now ready to state our first main result.

Theorem 1 In single-level G(n, p) networks with a traffic
matrix X, Vi,j € V, (i # j), the conditional expected traf-
fic on link i — j given the existence of link i — j is:

- d+p—20
Fi;(X) = X
z]( ) ( tg(l) st™ 7 an/ . ay p(n — 2)(n — 3)
+ > Xat )+ > X ()
(s,t)ess) (s,t)esL

in which § = Pr{there is a path from s to t}, and ¢ < 6 <
1, c is a constant related to the average node degree np.

600

number of samples

g

% 100 120 a0 160 80 200 20
load on link 0->1

n = 1000, p = 0.02, 5000 samples of load on link 0 — 1.

Figure 2. Histogram of link loads with uniform
traffic matrix.

Theorem 1 gives the conditional (given that the link
exists) expected (over all graphs) traffic on a link, as a
weighted sum of the traffic generated by all SD pairs based
on their locations relative to the link. The weight associated
with the traffic from a particular SD pair depends only on
which of the five subsets of SD pairs it belongs to.

F;;(X) is essentially the link load averaged over all
graphs in G(n,p) that contain this link. We illustrate by
simulation that such an averaged value is representative of
the actual link load in a graph randomly generated by the
G(n,p) model. Fig. 2 shows the histogram of link loads
for link 0 — 1 with data samples collected from 5000 ran-
dom graph generations of a 1000-node network. A uniform
traffic matrix with 1 unit of traffic between every SD pairs
is used in the simulation. The histogram has a reasonably
narrow bell shape with mean 131.84 and standard devia-
tion 14.16. The F;;(X) in this case can be calculated from
Eq. (1) with X = 1 for all s # t. The resulting value
F;(X) = % = 131.95 (the average path length from the
5000 randomly generated graphs is 2.639), is very close to
the sampled mean of 131.84. Extensive simulations with
different topology parameters show similar results.



4.2 Link traffic load in two-level G(n,p) random
networks

We now consider a two-level hierarchical random net-
work, which consists of a base level, i.e., the router-level;
and a top level or “domain-level.” We generate the two-level
network as described in Section 2. There are, therefore, nq
domains, and each inter-domain edge is chosen indepen-
dently with probability p; ; each domain contains 1 nodes,
and each intra-domain edge is chosen independently with
probability p». Connected node pairs are randomly cho-
sen within domains to serve as gateways, and inter-domain
edges are anchored to these end nodes. In total, the network
consists of 71 na nodes and nqma(nine — 1) SD pairs.

Routing is as described earlier, namely, inter-domain
routing is determined by considering only inter-domain
links and choosing the path(s) with the smallest domain
hop count. In case of multiple shortest paths, traffic is
evenly split among them or sent on a randomly selected
one. For every domain in an inter-domain path, the path(s)
from the entry gateway to the exit gateway is a minimum
hop count path(s) between the two nodes, considering only
intra-domain links. Again, when multiple equal cost paths
exist, traffic is evenly split among them or sent on a ran-
domly selected one. This amounts to shortest path routing
where all intra-domain links have the same weight, and all
inter-domain links have the same but a much higher weight.

Vu € V, A(u) denotes the domain that node u belongs
to, and we extend Definition 6 as follows:

Definition 7 Given any two domains A;, A;, (i # j), we
partition all ny(ny — 1) domain pairs (with regard to A;
and A;) into sets SX?AJ k =1,...,5, as in Definition 6,
except that domains are considered instead of nodes.

For any two node i and j (i # j) in the same domain (i.e.
A(i) = A(j)), we partition all nodes in A(i) (with regard
to © and j) into sets ng), k =1,...,5, as in Definition 6,
except that only nodes in domain A(4) are considered.

The next theorem is a natural extension of the single-level
result of Theorem 1:

Theorem 2 In two-level hierarchical G(n,p) networks
with a general traffic matrix X, the conditional expected
traffic on inter-domain link i — j between domains A; and
Aj (i # j) is given by

= di + p1 — 261
Fa 4, (X) = X163 2
a4, (X) Z - ¢ 3p1(n1 —2)(n1 - 3) 2)
(A(S),A(t))ESAiAJ.
2 01—m 2
+ Z Xst637 + Z Xst93

p1(n1 —2)

(AG),A()EST) (A(s), A()EST),

Similarly, the conditional expected traffic on intra-domain
link i — j between nodes i and j (i # j) is given by

~ ds + p2 — 26,
Fy(X) = Xot 3)
’ L, 2
s ij
02 — po
+ Z )(stpzi(n2 — 2) + Z Xst
(s.)esy (s,es(y
Xot(da — 62) X162
+ elog{ 3 Xaldo =)
A, Prra(n2—2) - T pam

SEA(i), 71,5

Xat(ds — 0 X0
+ alag{ > Xulboty 5 —;2}
sga(, 22 sga) P22
tEA(D), t44,]
6:63 Xopdo(di — 1)

(23 2(n1 — 2)na(ne — 1)

A)yEAm#£AG) P
in which dy and dy are the average expected path length in
G(n1,p1) and G(na, p2), respectively.

01, 02 are Pr{there is a path from s to t} in G(ny,p1) and
G(na,p2), respectively. 03 = [ni2 + (1 - %2)62]. ¢ <
01,02,03 < 1, ¢ is a constant related to n1p1 and naps.

Theorem 2 gives the conditional expected traffic on any
link in a two-level G(n,p) random network as a function
of network topology and traffic. We investigate next the
robustness of such a network, i.e., measure the likelihood
that the total (base + surge) traffic on a link is below its
capacity, assuming that the link capacity is (1+8) EF;;(X),
where Eﬁ}j (X) is computed using Egs. (2) and (3).

4.3 Robustness in G(n,p) networks with general
surges

Theorem 2 allows us to derive an explicit expression for
the probability that the link capacity is larger than the ac-
tual load, as a function of the statistical properties of both
the base and surge traffic. For simplicity, we rely on Cheby-
shev’s inequality to express this probability as a function of
just the mean and variance of the total offered traffic. This
yields the following relationship between link bandwidth
and the actual offered traffic:

Proposition 1 Let B;; be the bandwidth on link i — j. For
any € > 0, if B;; satisfies B;; > EF;;(X + AX) + ¢, then

Pr {Bi]‘ > ﬁ','j (X + AX)} >1- Varﬁij (X + AX)/62

Proposition 1 gives a lower bound on the probability,
= Pr{B;; > F;;(X + AX)} that a link can accom-
modate its actual load. We refer to 1) as the target network
tolerance probability. As mentioned before, link bandwidth
is provisioned proportionally to the expected base offered



load f}; 2 EF;;(X),ie., Bij = (1+ ) ~zb] Using Propo-

ij
sition 1, we can find the appropriate 3 for any target value

VVarFy (X + AX)/(1 - ).

of 9 by setting € to be

Definition 8 For any constant 0 < ¢ < 1, we define the
minimum over-provisioning factor 3* as

5 @) =min {1+ HEF, (X0 2 BF; (X + AX)

+y/VarF; (X + AX)/(1 - w)}

B* determines the lowest over-provisioning factor that
meets a required tolerance probability of ). Using Theorem
2, we can express B;;, EF;;(X + AX), and VarF;; (X +
AX) as functions of ny, p1, di, na2, ps2, d2, X and AX
for both inter-domain and intra-domain links. Therefore,
for a given target ¢, we can identify the required over-
provisioning factor £*, as a function of those parameters.

4.4 Average expected path length d in G(n, p)

From Theorem 2, ﬁ,'j (X) depends on n, p, and d. n and
p are input parameters to the model, but d still needs to be
determined. The next proposition provides an expression
for the order of d as a function of n and p.

Proposition 2 In the G(n,p) model, if np > c for some
constant ¢ > 1, but np = O(log® n) for some constant
a >0, thend = © (logn/lognp).

Combining Propositions 1 and 2, we can now identify 3*
as an explicit function of the base and surge matrices, and
the size of the network, namely, 7.

5 Representative results

In this section, we assume a given tolerance probabil-
ity ¢ and use the analytical results of the previous sec-
tion to evaluate for a selected set of base and surge traf-
fic models, how network growth affects the minimum over-
provisioning factor 5*.

Network growth is obviously driven to a large extent by
traffic growth. However, there is considerable uncertainty
regarding what are appropriate models not only for the rate
of traffic growth, but also for how it is to be distributed be-
tween SD pairs. This uncertainty applies to the base traf-
fic, and possibly even more so to traffic surges. The mod-
els we have developed so far are capable of handling this
generality, as they can accommodate any type of base and
surge patterns. However, exploring how network growth
might affect the minimum over-provisioning factor 8* calls
for introducing some structure into how one expects the

network and the traffic to grow. As more data points be-
come available to better characterize how network and traf-
fic are growing, specific models will likely emerge and can
then be “plugged” into the equations of Theorem 2, but in
the absence of such definite answers, it is useful to intro-
duce strawman traffic scenarios in order to explore possible
trends in the evolution of #*. For that purpose, we rely on
three types of traffic patterns, which we believe are not only
representative of possible evolutions of traffic patterns, but
also have enough structure that we can use them to develop
meaningful insight. In the remainder of this section, we use
these three patterns to produce three distinct combinations
of base and surge traffic for which we explore the evolution
of #* as the network grows. Investigations of additional
traffic combinations can be found in [12].

The first pattern we consider corresponds to a traffic ma-
trix where each entry (except for the diagonal terms that are
zero) is an i.i.d. random variable. The use of random vari-
ables allows us to incorporate temporal fluctuations in the
traffic exchanged between pairs of nodes. The main limita-
tion of this model is obviously the i.i.d. constraint, which in
particular assumes that every node sends equally to all other
nodes in the networ, irrespective of the network size. How-
ever, an i.i.d. pattern, in spite of its limitations, is a good first
step in capturing the variable nature of network traffic and
allows us control this variability in a systematic manner.

The second traffic pattern we consider is a random desti-
nation selection pattern. It consists of a traffic matrix where
each row is limited to having only k£ (0 < k < m) non-zero
entries, where the locations of those entries (columns) are
randomly chosen. This allows us to account for scenarios
where at any point in time a node sends traffic to only a
subset of possible destinations, rather than to all of them.
For simplicity, we assume that the amount of traffic sent to
each selected destination is constant and equal to a units of
traffic. We use this traffic pattern to explore the impact of
having a node distribute its traffic across a variable set of
possible destinations, which does induce traffic variations.

The third traffic pattern we consider is one that allows us
to incorporate the impact of access networks on the traffic
exchanged between backbone nodes. For this purpose, we
use a gravity traffic pattern in which the base traffic between
two backbone nodes, is a function of the nodes’ rank, where
the rank of a backbone node is a function of the number of
access networks attached to it, and therefore of its aggregate
traffic generating (or receiving) capacity. Specifically, the
traffic between nodes s and ¢, X4, is proportional to rgry,
where 75 and r; are the “ranks” of s and ¢ respectively. In
other words, traffic from a given source node is “fanned out”
to destination nodes in proportion to their ranks. In [5], it
was observed that backbone nodes could be ranked roughly
into three categories (large, medium and small), where the
“large” category contributes the majority of POP-level traf-
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fic but comprises only a small number of nodes, while the
majority of nodes are in the “medium” and “small” cate-
gories which contribute only a small fraction of the total
POP-level traffic. Such an observation is consistent with
the heavy-tail degree distribution and uneven geographical
distribution of user population that have been reported for
large-IP networks. The use of such a gravity traffic pattern,
allows us to investigate how the disparate rank of backbone
nodes affects not only the expected base load on backbone
links, but also their ability to absorb traffic variations.

We now explore three scenarios involving different com-
binations of the above three traffic patterns, as summarized
in Table 1. The network we consider is a two-level G(n, p)
network as previously described, where the average inter-
domain and intra-domain degrees are taken to be constant?
and equal to n1p1 = ¢1 and naps = ca, respectively. We
further assume that the total size of the two-level network is
N = ning withn; = N andny, = N2 (0 < A < 1).
The parameter A provides some flexibility in deciding how
network growth translates into growth in either the size or
the number of domains. Our findings are summarized in
Table 1 (see [12] for the underlying derivations), which dis-
plays for each scenario the expected base offered load f;b]
and the minimum over-provisioning factor 8*. The results
give the order of those quantities as functions of the total
number of nodes, and the characteristics of the base and
surge traffic of each scenario.

When interpreting these results, we make the follow-
ing two general assumptions. First, we assume that the

3This restriction can be readily removed, and was introduced to limit
the number of variables to consider.

expected fotal base intra-domain and inter-domain traffic
sourced by a single node, denoted by y; and y» respec-
tively, are non-decreasing functions of N. We believe this
to be a reasonable assumption that is consistent with cur-
rent observations and predictions of future traffic growth,
e.g., as in [14]. Note from Table 1 that although y; and ys
may differ in each scenario, the expressions for ﬁbj , as func-
tions of y; and ya2, are similar in all three. They all point to
increasing link bandwidth as the network grows under the
assumption that y; and y» are non-decreasing. Our second
assumption is that the ratio of the average intensity of traffic
surges and the base traffic remains approximately constant,
namely Ay _ Ay 4. and is not a function of N. We also
believe this to be a reasonable assumption, since both types
of traffic are influenced by the same parameters such as link
and host speeds, application characteristics, etc.

5.1 i.i.d normal traffic and i.i.d surges

In this scenario, the base traffic between any two nodes
in different domains (inter-domain traffic) is i.i.d. with mean
1 and variance a%, and the base traffic between any two
nodes in the same domain (intra-domain traffic) is i.i.d. with
mean z2 and variance 0. We also assume i.i.d. inter-
domain traffic surges with mean Az; and variance AO’%,
and i.i.d. intra-domain traffic surges with mean Az, and
variance Ao3. This yields y1 = O(z1N), y2 = O(z2N'1?),
Ay1 @(A.’LjN),&Ild Ayz @(AIQNI_}‘).

4Ay1 and Aysg are the fotal inter-domain and intra-domain traffic
surges sourced by a node, respectively.
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Figure 3. Efficiency of over-provisioning for
scenarios 1 and 2.

Based on Table 1, the minimum over-provisioning factor
B* exhibits different behaviors depending on how fast nodal
traffic grows with N. In order to facilitate the discussion,
we introduce the additional constraint that the variances of
the base and surge traffic for any SD pair, 6, 03, Ao? and
Aa%, remain constant, and not be functions of N.

Incorporating those constraints into Table 1, we find that
on inter-domain links 8* = ©(y;'N*/?log~! N) and on
intra-domain links 8* = ©((y1log N + y2)"'N % log™' N).
As a result, for inter-domain links 8* decreases asymptoti-
cally as N grows, i.e., over-provisioning becomes more ef-
ficient, if and only if y; grows faster than ©(N*/2/log N).
This states that the growth in the expected base load needs to
exceed a certain threshold to ensure that the bandwidth mar-
gin grows faster than the variations induced by surges. A
similar but different threshold exists for intra-domain links,
for which 8 decreases as N grows, if and only if either y;
grows faster than ©(v/N/log? N) or y, grows faster than
O(v/N/log N). Fig. 3 displays graphically the four cor-
responding regions. The results for this specific scenario
highlight a theme common to all three, namely, the exis-
tence of thresholds in the growth of traffic sourced by a
node that define regions in which over-provisioning is ei-
ther more or less efficient as networks grow.

5.2 i.i.d base traffic and random destination selec-
tion surges

In this scenario, the base traffic is the same i.i.d as that
of scenario 1, but the traffic pattern used for surges is differ-
ent and based on the random selection of a certain number
of destinations. Specifically, each source s generates Aa;
units of surge to each of Ak; destinations uniformly chosen
among all possible (n1 — 1)ns nodes not in its domain; and
generates Aas units of surge to each of Aks destinations

uniformly chosen among all possible ny — 1 nodes within
its own domain (s does not send traffic to itself). Traffic sent
by different source nodes are independent of each other, and
so are inter-domain and intra-domain traffic.

In this scenario, we have y1 = ©O(z1N), y2 =
O(z2N'7?), Ayr = O(Aa1Ak:1), and Ays = O(AasAks).
As in scenario 1, we assume that o7 and o3 are con-
stant. We also assume that Ak; = O(N%) (0 < € < 1),
Aky = O(NUIN4) (0 < ¢ < 1), indicating that the number
of nodes that a source node sends traffic to grows, but not
as fast as the network size.

Incorporating these assumptions into Table 1 and fo-
cusing on only the higher order terms, we find that
on inter-domain links there exists a transition point at
©(N*?/log N), such that 3* decreases asymptotically as
the network grows, if and only if y; grows faster than this
value. For intra-domain links, we find that 8* also ex-
periences a transition and decreases asymptotically as the
network grows, if and only if either y; grows faster than
O(v/N/log® N)or y grows faster than ©(v/N/log N). In
summary, the behavior of 8* for both inter-domain and
intra-domain links is essentially the same as that of the pre-
vious scenario as illustrated in Fig. 3.

5.3 Gravity base traffic and i.i.d traffic surges

In this third scenario, we consider a combination of a
gravity base traffic and i.i.d traffic surges. The gravity
traffic pattern translates into a base traffic matrix with en-
tries that are proportional to the ranks of the correspond-
ing source and destination nodes. Specifically, we have
Xt = x17rsry for inter-domain traffic and Xz = xorsry
for intra-domain traffic. Backbone nodes are classified ac-
cording to their rank into three rank categories “large”,
“medium” or “small”, denoted by sets L, M, and S, respec-
tively. Based on the observations of [5], we assume that
the rank categories obey the following two rules: (1) Each
category generates twice as much traffic as the next lower
category, namely, 4 oy = 2D crrTu = D yer Tu-
(2) The size of these three categories are: |S| = sN,
|[M| = mN, and |L| = IN, in which s = 0.5 — o(1),
m = 0.5—0(1),] = o(1) > n1_1’ and N = nyny is again
the total size of the backbone network. We assume that 1
is large enough, so that sny, mn and Inq are integers. Note
that [ reflects the extent to which the majority of backbone
traffic is concentrated on only a few nodes with high rank.

Note that the gravity traffic pattern itself does not con-
tain variations. It only determines the base offered loads
on links, which when scaled by 3 determines their spare
capacity. Traffic variations in this scenario are solely con-
tributed by the i.i.d. traffic surge matrix, for which we as-
sume i.i.d. inter-domain surges with mean Az, and vari-
ance Ao?, and i.i.d. intra-domain surges with mean Az,



and variance AcgZ. Results from scenario 1 show that under
such a surge model, traffic variations are uniform across all
links. As a result, the minimum over-provisioning factor is
solely determined by the link that has the smallest amount
of spare capacity, i.e., the link with the lowest base load.
The base load ﬂ’] on the “thinnest” link depends on how
nodes of different ranks are distributed across domains. The
next proposition establishes that when nodes are assigned to
domains according to a “strict ordering” of their rank, this
results in a network with min-min link loads (see [12] for
a proof). Furthermore, this particular distribution of nodes
also provides a lower bound on the difference between base
link loads, i.e., the difference between the “fattest” and the
“thinnest” links, which provides yet another perspective on
the impact that such an imbalanced base traffic on has the
efficiency of over-provisioning.

Proposition 3 In two-level G(n, p) networks with gravity-
type traffic matrices, the minimum loaded link achieves its
min-min value when nodes are assigned to domains accord-
ing to a “strict ordering” of their ranks:

Domain A; contains no nodes ranging from the [(i —
1)na + 1]** smallest rank to the [ins]t" smallest rank, i =
]., ceey .

Based on the strict ordering domain formation, Z-bj and

B* can be computed for both minimum loaded links and
maximum loaded links (see [12] for details) as shown in
Table 1. Focusing first on inter-domain links, we see that
for minimum loaded links fzbj and B* are essentially sim-
ilar in their order as that of the scenario 1. Therefore,
on inter-domain links 8* exhibits the same behavior and
thresholds as in this earlier scenario. Considering next max-
imum loaded inter-domain links illustrates that the gravity
traffic model can introduce very substantial differences in
how over-provisioning performs on different links. Specifi-
cally, when [ is not too small, i.e., | = w(log_1 N), the base
load on the minimum loaded and maximum loaded links
are of the same order, and therefore correspond to a simi-
lar 8*. However, when [ is small, indicating a highly con-
centrated base traffic pattern, the difference in the base of-
fered load on maximum loaded and minimum loaded links
can be substantial. This indicates that a much smaller level
of over-provisioning is needed on those maximum loaded
links. This is in a sense “good news” as the very high capac-
ity of these links may make it technically difficult to over-
dimension them by the same amount as lower bandwidth
links. If we focus next on intra-domain links, we see that
the impact of traffic imbalance is even more pronounced on
those links. This is due to the added contribution of intra-
domain traffic on the link, which shows a difference of the
order of 2 between maximum loaded and minimum loaded
links. However, as with inter-domain links, the difference is

in the “right” direction, with higher capacity links requiring
a much lower level of over-provisioning.

In summary, our initial investigation revealed that in
many cases, the level of over-provisioning required to
achieve a given tolerance probability decreases as long as
the rate of (base) traffic growth exceeds that of network
growth by a certain factor. This conclusion is obviously
predicated on the specific traffic models used, but it indi-
cates that under a reasonably broad range of conditions,
over-provisioning can become more efficient as the network
grows. In the next section, we briefly touch on possible
guidelines to promote such an outcome.

5.4 Implications for network design and provi-
sioning

There are many decisions that network providers face
when designing and provisioning networks, which affect
network performance in various ways. For example, should
one use many low capacity routers or fewer high capacity
ones, or is it better to structure a network into multiple small
domains or fewer larger ones? The analytical tools devel-
oped in this work can help explore the implications of such
decisions, at least in terms of network robustness to traffic
variations.

Our analysis of various traffic scenarios indicates that the
relative growth of traffic volume versus network size plays a
critical role in determining whether or not over-provisioning
is more efficient in larger networks. From a practical stand-
point, this means that we need to be concerned with how
growth in router capacity® compares with the increase in
the number of routers in the network. In particular, our re-
sults indicate that as long as router capacity grows faster
than the number of routers by a certain ratio, the robustness
of the network against traffic variations (assuming a given
level of over-provisioning) will keep increasing. Obviously,
this conclusion needs to be tempered by the fact that not all
routers in a network are of the same type and capacity, but
one can argue that routers in backbone networks, which are
the focus of this paper, are reasonably homogeneous. As a
result, this gives some guidelines on how to best grow such
networks. Specifically, the rate at which backbone routers
are upgraded to higher capacity versions should exceed the
rate at which new routers are deployed. When looking back,
it appears that we might have been heading in the right di-
rection. Specifically, today’s largest routers boast capaci-
ties of roughly 10 Terabits (103 bits/sec), in comparison
to a capacity of about 10 T1 links (107 bits/sec) for some
of the early NSFNet routers®. This translates into a growth

5 Assuming that router capacity is reasonably correlated with the traffic
sourced by the router.

6See for http://moat.nlanr.net/INFRA/NSFNET.html for a perspective
on the evolution of the NSFNet.



ratio of 108, and while the backbones of large Internet Ser-
vice Providers have also grown in the mean time, the corre-
sponding growth ratio has been more of the order of 102 or
maybe 103 (the early NSFNet had of the order of 20 routers,
while the backbones of tier 1 providers typically consist of
several hundred routers). There is, therefore, hope that if
router capacity continues to grow at a similar pace, the effi-
ciency of over-provisioning will continue improving.

The influence of domain sizes can also be studied using
our models by varying the parameter A. A smaller A corre-
sponds to fewer but larger domains. Under the assumptions
of our three traffic scenarios, the cost of over-provisioning
on intra-domain links is independent of domain size, as the
threshold in the relative growth of traffic generated by a sin-
gle node compared to the network size is not affected by .
Howeyver, the threshold for the inter-domain links does de-
pend on A, and a smaller A translates into a lower threshold
for the relative traffic growth, which is thus easier to meet.
As aresult, fewer domains with larger domain sizes are pre-
ferred when it comes to the efficiency of over-provisioning
on inter-domain links. This being said, there are clearly
other factors that affect this choice, e.g., routing complexity
and stability, and this is a decision that should be made only
after accounting for these parameters.

6 Conclusion

This paper has investigated the extent to which the size
of the network can play a positive role in its ability to ab-
sorb traffic variations through over-provisioning. Given the
many parameters that have the potential to affect the an-
swer and the complex interactions that exist between them,
the approach taken was to develop a model that could be
adjusted to account for different scenarios in terms of net-
work and traffic growth. The first contribution of the paper
is, therefore, in developing such a model that can be used
under a broad range of conditions. The second contribution
of the paper is in using the model to explore a specific set
of traffic scenarios that are representative of possible traffic
growth models. The investigation identified the ratio of net-
work size and traffic growth rates as a key parameter, and
pointed to thresholds separating regions associated with dif-
ferent behaviors. The results provide some insight into how
to possibly grow networks as a function of the underlying
traffic growth and the available technology.
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