
Throughput Guaranteed Restorable Routing
Without Traffic Prediction
M. Kodialam T. V. Lakshman Sudipta Sengupta

Bell Laboratories, Lucent Technologies, NJ, USA

Abstract— Two-phase routing, where traffic is first distributed
to intermediate nodes before being routed to the final destination,
has been recently proposed [10], [11], [18] for handling widely
fluctuating traffic without the need to adapt network routing
to changing traffic. Pre-configuring the network in a traffic
independent manner using two-phase routing simplifies network
operation considerably.

In this paper, we extend this routing scheme by provid-
ing resiliency against link failures through two different fast
restoration mechanisms – local (link/span) based and end-to-end
(path) based. We view this as important progress towards adding
carrier-class reliability to the robustness of the scheme so as to
facilitate its future deployment in Internet Service Provider (ISP)
networks. The main contribution of the paper is the development
of fast combinatorial algorithms for routing under the scheme
with link and path restoration mechanisms so as to minimize the
maximum utilization of any link in the network, or equivalently,
maximize the throughput. The algorithms developed are Fully
Polynomial Time Approximation Schemes (FPTAS) – for any
given ε > 0, an FPTAS guarantees a solution that is within a
(1 + ε)-factor of the optimum and runs in time polynomial in
the input size and 1

ε
. To the best of our knowledge, this is the

first work in the literature that considers making the scheme
resilient to link failures through pre-provisioned fast restoration
mechanisms. We evaluate the performance of link and path
restoration (in terms of throughput) and compare it with that
of unprotected routing. For our experiments, we use actual ISP
network topologies collected for the Rocketfuel project.

I. INTRODUCTION

To provide good service when network traffic patterns
can change uncontrollably, carriers must either quickly and
repeatedly adapt their intra-domain routing to avoid network
congestion or must have sufficient capacity set aside a priori
to accommodate the different traffic patterns that can oc-
cur without resorting to routing changes. Service providers
prefer to avoid frequent intra-domain routing changes due
to operational complexity and costs, and due to the risk of
network instability if link metric changes are not implemented
correctly. Moreover, routing changes in one Autonomous
System (AS) may cause cascading traffic changes in other
ASes affecting the overall stability of many Internet paths.
The trade-off in avoiding routing changes is the significant
capacity overprovisioning that must be done to accommodate
changing traffic patterns while keeping the routing fixed.
Ideally, providers would like to use a fixed routing scheme
that does not require traffic dependent dynamic adaptation of
configuration parameters and which does not use too much
extra capacity.

The recently proposed two-phased routing scheme [10],
[11], [18] meets the service provider need of reducing opera-
tional complexity by allowing the network to handle all traffic
patterns possible, within the networks ingress-egress capacity
constraints, without dynamic adaptation. Avoiding dynamic
adaptation reduces the need for accurate traffic forecasts and

constant monitoring of changes to traffic patterns. The two-
phase routing scheme works as follows: Incoming traffic
is sent during the first phase from the source to a set of
intermediate nodes in predetermined proportions that are a
function of the intermediate node. Next, in the second phase,
the traffic is sent from the intermediate nodes to the final
destination.

This routing scheme can be used in a wide variety of
networking scenarios as discussed in [11]. Some examples
are: (i) provisioning service overlays such as the Internet
Indirection Infrastructure (i3) [17], (ii) provisioning Virtual
Private Networks, (iii) adding QoS guarantees to services
that require routing through a network-based middlebox, and
(iv) reducing IP layer transit traffic and handling extreme
traffic variability in IP-over-Optical networks without dynamic
reconfiguration of the optical layer.

In this paper, we extend the two-phase routing scheme by
providing resiliency against link failures through two different
fast restoration mechanisms – local (link/span) based and end-
to-end (path) based. We view this as important progress for
two-phase routing towards achieving carrier-class reliability so
as to facilitate its future deployment in ISP networks.

The restoration models we consider are introduced in Sec-
tion V and have been classified in the literature under “fast
restoration” because of their (relatively) low restoration laten-
cies. In both restoration models, backup bandwidth is shared
across single link failure events so as to reduce restoration
capacity overhead. Backup bandwidth can also be allocated
in a dedicated manner. The focus on shared allocation in this
paper is because of its reduced cost, the rarity of concurrent
multiple link failures in networks, and the increased com-
plexity of the optimization problems that arises from sharing
backup bandwidth.

The main contribution of the paper is the development
of fast combinatorial algorithms for two-phase routing with
link and path restoration mechanisms so as to minimize the
maximum utilization of any link in the network, or equiva-
lently, maximize the throughput. This is the first work in the
literature that considers making two-phase routing resilient to
link failures through fast restoration mechanisms.

The combinatorial algorithms developed are Fully Polyno-
mial Time Approximation Schemes (FPTAS). An FPTAS is an
algorithm that finds a solution with objective function value
within (1 + ε)-factor of the optimal solution and runs in time
that is a polynomial function of the input parameters and 1

ε .
The input parameters in our problem are the number of nodes
n and links m in the network, and the size (number of bits)
of the input numbers, e.g., link capacities and node ingress-
egress capacities. The value of ε can be chosen to provide the
desired degree of optimality for the solution.

In this paper, we use the inverse of the maximum link
utilization as the performance metric. This is because this

1371-4244-0593-9/06/$20.00 ©2006 IEEE

metric, which we refer to as throughput in the rest of the
paper, is directly related to link congestion. Also, it is a widely
used metric in capacity planning. When considering feasibility
of a traffic matrix on (various what-if) capacitated network
deployment scenarios, throughput is probably the most suitable
metric to consider (feasibility is indicated by a throughput
greater than or equal to 1).

The paper is structured as follows. In Section II, we discuss
some aspects of the inherent difficulty in measuring traffic
and reconfiguring the network in response to changes in it
and introduce the traffic variation model. Related work is
reviewed in Section III. In Section IV, we briefly discuss
the two-phase routing scheme so as to provide context for
this paper. The restoration models we consider are introduced
in Section V. In Section VI, we propose addition of link
restoration to the two-phase routing scheme and develop linear
programming formulations and fast combinatorial algorithms
for maximum throughput routing. In Section VII, we pro-
pose addition of path restoration to the two-phase routing
scheme and develop linear programming formulations and fast
combinatorial algorithms for maximum throughput routing.
We evaluate the performance of link and path restoration (in
terms of throughput) and compare it with that of unprotected
routing in the two-phase scheme in Section VIII. For our
experiments, we use actual ISP network topologies collected
for the Rocketfuel project [13]. We conclude in Section IX.
We briefly describe some notation below before moving on to
the next section.

A. Notation

We assume that we are given a network G = (N,E) with
node set N and (directed) edge set E where each node in the
network can be a source or destination of traffic. Let |N | = n
and |E| = m. The sets of incoming and outgoing edges at
node i are denoted by E−(i) and E+(i) respectively. We let
(i, j) represent a directed link in the network from node i to
node j. To simplify the notation, we will also refer to a link by
e instead of (i, j). The capacity of link (i, j) will be denoted
by uij . The utilization of a link is defined as the traffic (sum
of working traffic and maximum restoration traffic due to any
single link failure) on the link divided by its capacity.

II. TRAFFIC MEASUREMENT AND VARIABILITY

In an utopian network deployment scenario where complete
traffic information is known and does not change over time,
we can optimize the routing for that single traffic matrix – a
large volume of research has addressed this problem. The most
important innovation of the two-phase routing scheme is the
handling of traffic variability in a capacity efficient manner
through static pre-configuration of the network and without
requiring either (i) measurement of traffic in real-time or (ii)
re-configuration of the network in response to changes in it.
We address the difficulties associated with (i) and (ii) so as to
further bring out the novelty of two-phase routing.

A. Difficulties in Measuring Traffic

Network traffic is not only hard to measure in real-time
but even harder to predict based on past measurements. Direct
measurement methods do not scale with network size as the

number of entries in a traffic matrix is quadratic in the number
of nodes. Moreover, such direct real-time monitoring methods
lead to unacceptable degradation in router performance. In
reality, only aggregate link traffic counts are available for traf-
fic matrix estimation. SNMP (Simple Network Management
Protocol) provides these data via incoming and outgoing byte
counts computed per link every 5 minutes. To estimate the
traffic matrix from such link traffic measurements, the best
techniques today give errors of 20% or more [14].

The emergence of new applications on the Internet, like P2P
(peer-to-peer), VoIP (voice-over-IP), and video-on-demand has
reduced the time-scales at which traffic changes dynamically,
making it impossible to extrapolate past traffic patterns to the
future. Currently, ISPs handle such unpredictability in network
traffic by gross over-provisioning of capacity. This has led to
ISP networks being under-utilized to levels below 30% [14].

B. Difficulties in Dynamic Network Re-Configuration

Even if it were possible to track changes in the traffic
matrix in real-time, dynamic changes in routing in the network
may be difficult or prohibitively expensive from a network
operations perspective. In spite of the continuing research
on network control plane and IP-Optical integration, network
deployments are far away from utilizing the optical control
plane to provide bandwidth provisioning in real-time to the IP
layer. The unavailability of network control plane mechanisms
for reconfiguring the network in response to and at time-scales
of changing traffic further amplifies the necessity of the static
pre-configuration property of two-phase routing in handling
traffic variability.

C. Traffic Variation Model

We consider a traffic variation model where the total amount
of traffic that enters (leaves) an ingress (egress) node in the
network is bounded by the total capacity of all external ingress
links at that node. This is known as the hose model and was
proposed by Fingerhut et al . [7] and subsequently used by
Duffield et al. [6] as a method for specifying the bandwidth
requirements of a Virtual Private Network (VPN). Note that
the hose model naturally accommodates the network’s ingress-
egress capacity constraints.

We denote the upper bounds on the total amount of traffic
entering and leaving at node i by Ri and Ci respectively.
The point-to-point matrix for the traffic in the network is
thus constrained by these ingress-egress link capacity bounds.
These constraints are the only known aspects of the traffic to
be carried by the network, and knowing these is equivalent
to knowing the row and column sum bounds on the traffic
matrix. That is, any allowable traffic matrix T = [tij] for the
network must obey

n∑

j:j 6=i

tij ≤ Ri,
n∑

j:j 6=i

tji ≤ Ci ∀ i ∈ N

For given Ri and Ci values, denote the set of all such
matrices that are partially specified by their row and column
sums by T (R, C), that is

T (R, C) = {[tij]|
∑

j 6=i

tij ≤ Ri and
∑

j 6=i

tji ≤ Ci ∀ i}

138

We will use λ ·T (R, C) to denote the set of all traffic matrices
in T (R, C) with their entries multiplied by λ.

Note that the traffic distribution T could be any matrix
in T (R, C) and could change over time. Two-phase routing
provides a routing architecture that does not make any as-
sumptions about T apart from the fact that it is partially
specified by row and column sum bounds and can provide
QoS guarantees for routing all matrices in T (R, C) without re-
quiring any detection of changes in traffic patterns or dynamic
network reconfiguration in response to it. For the Rocketfuel
topologies, the throughput of two-phase routing is within 6%
of the optimal scheme among the class of all schemes that
are allowed to reconfigure the network in response to traffic
changes [11].

III. RELATED WORK

Direct routing from source to destination (instead of in
two phases) along fixed paths for the hose traffic model has
been considered by Duffield et al. [6] and Kumar et al. [9].
In related work, Applegate et al. [3] consider fixed path
routing and provide relative guarantees for routing an arbitrary
traffic matrix with respect to the best routing for that matrix.
However, they do not provide absolute bandwidth guarantees
for routing variable traffic under the hose model.

Two aspects of direct source-destination path routing,
namely, (i) the source needs to know the destination of a
packet for routing it, and (ii) the bandwidth requirements of
the (fixed) paths change with traffic variations, render them
unsuitable for some network architectures and applications.
Because of (i), these methods cannot be used to provide
indirection in service overlay models like i3 where the final
destination of a packet is not known at the source. Because
of (ii), the adaptation of these methods for IP-over-Optical
networks necessitates detection of changes in traffic patterns
and dynamic reconfiguration of the provisioned optical layer
circuits in response to it, a functionality that is not present in
current IP-over-Optical network deployments.

Applegate et al. [2] extend their work to cope with net-
work failures. However, they do not consider any restoration
mechanisms with pre-provisioned backup paths. Instead, they
provide linear programming formulations for re-routing af-
fected traffic after failure. In addition to the above points in
favor of two-phase routing, providing fast restoration through
pre-provisioned shared backup paths is another differentiating
aspect of our current work.

Our current work is a sequel to [11]. In [18], the capacity
impact of arbitrary IP layer link and node failures is considered
for a version of the scheme with equal traffic split ratios of 1

n
and equal ingress-egress capacities (Ri = Ci = c for all i).
The authors in [18] further assume that the IP layer topology
is a full-mesh (fully connected complete graph), so that the
Phase 1 and Phase 2 paths are one hop in length. These paths
need to be routed (via multi-hop paths) on the physical WDM
topology (which is a sparse graph), an important aspect which
they do not consider. Also, if the IP topology is not full-mesh,
the Phase 1 and Phase 2 paths will be multi-hop at the IP layer
itself. Our problem formulation for two-phase routing in [10],
[11] (and in this paper) models the multi-hop routing of Phase
1 and Phase 2 paths and can be applied to a general IP layer
topology and a physical WDM topology.

Source Node

Destination Node

Intermediate Node

Phase 1 Routing

Phase 2 Routing

Source Node

Destination Node

Intermediate Node

Phase 1 Path

Phase 2 Path

Physical View Logical View

Fig. 1. Two-Phase Routing

IV. OVERVIEW OF TWO-PHASE ROUTING SCHEME

In this section, we give an overview of the two-phase
routing scheme from [10]. As mentioned earlier, the scheme
does not require the network to detect changes in the traffic
distribution or re-configure the network in response to it. The
only assumption about the traffic is the limits imposed by the
ingress-egress constraints at each node, as outlined in Section
II-C.

As is indicative from the name, the routing scheme operates
in two phases:
• Phase 1: A predetermined fraction αj of the traffic

entering the network at any node is distributed to every
node j independent of the final destination of the traffic.

• Phase 2: As a result of the routing in Phase 1, each node
receives traffic destined for different destinations that it
routes to their respective destinations in this phase.

This is illustrated in Figure 1. Note that the traffic split
ratios α1, α2, . . . , αn in Phase 1 of the scheme are such
that

∑n
i=1 αi = 1. A simple method of implementing this

routing scheme in the network is to form fixed bandwidth
paths between the nodes. In order to differentiate between
the paths carrying Phase 1 and Phase 2 traffic, we will refer
to them as Phase 1 and Phase 2 paths respectively. The
critical reason the two-phase routing strategy works is that the
bandwidth required for these tunnels depends on the ingress-
egress capacities Ri, Ci and the traffic split ratios αj but not
on the (unknown) individual entries in the traffic matrix.

We now derive the bandwidth requirement for the Phase 1
and Phase 2 paths. Consider a node i with maximum incoming
traffic Ri. Node i sends αjRi amount of this traffic to node j
during the first phase for each j ∈ N . Thus, the traffic demand
from node i to node j as a result of Phase 1 routing is αjRi.
At the end of Phase 1, node i has received αiRk traffic from
any other node k. Out of this, the traffic destined for node j
is αitkj since all traffic is initially split without regard to the
final destination. The traffic that needs to be routed from node
i to node j during Phase 2 is

∑
k∈N αitkj ≤ αiCj . Thus, the

traffic demand from node i to node j as a result of Phase 2
routing is αiCj .

Hence, the maximum demand from node i to node j as
a result of routing in Phases 1 and 2 is αjRi + αiCj . Note
that this does not depend on the matrix T ∈ T (R, C). The
scheme handles variability in traffic matrix T ∈ T (R, C) by
effectively routing the fixed matrix D = [dij] = [αjRi+αiCj]

139

Backup path (detour) for

link s-a

s a b t

Fig. 2. Link backup detours protecting links on primary path

that depends only on aggregate ingress-egress capacities and
the traffic split ratios α1, α2, . . . , αn, and not on the specific
matrix T ∈ T (R, C). This is what makes the routing scheme
oblivious to changes in the traffic distribution.

An instance of the scheme requires specification of the traf-
fic distribution ratios α1, α2, . . . , αn and routing of the Phase
1 and Phase 2 paths. In [11], linear programming formulations
and fast combinatorial algorithms are developed for computing
the above so as to maximize network throughput.

V. RESTORATION MODELS

We introduce the two restoration models considered in this
paper, namely link restoration, also called local (span) restora-
tion, and path restoration, also called end-to-end restora-
tion. Both these mechanisms have been classified under fast
restoration in the literature because of their (relatively) low
restoration latency. The explanation for this is provided in the
respective description of the mechanisms.

In the two-phase routing scheme described above, each
of the Phase 1 and Phase 2 paths can be protected against
link failures by link restoration or path restoration. The main
contribution of this paper is the development of algorithms
for maximum throughput two-phase routing with resiliency
against link failures provided by the described restoration
mechanisms.

A. Link Restoration

For protecting link failures with link restoration, a path
P consists of a primary (working) path, denoted by W (P),
and a link backup detour, denoted by Be(P), for each link
e on W (P). This is illustrated in Figure 2. Thus, a primary
path with h hops is associated with h link detours for local
restoration against link failures. When we refer to a path P in
the context of link restoration, it will consist of the primary
path and the link backup detours for each link on the primary
path.

Under the single link failure model, backup paths for
different links can share bandwidth both within the same as
well as across different connection(s). As illustrated in Figure
3, backup detour a-3-4-b for link a-b and backup detour b-3-
4-5-t for link b-t can share bandwidth on their common link
3-4.

The fast nature of link restoration arises from two aspects:
(i) fast failure detection by the nodes adjacent to the failed
link, and (ii) fast signaling after failure along short link detours
paths, in case such signaling is required, as in optical mesh
networks in order to setup cross-connects on the link detours
[16].

s a b t

1

2

3
4

5

Link Backup Path (Detour)

s-a s-1-2-a

a-b a-3-4-b

b-t b-3-4-5-t

Fig. 3. Backup bandwidth sharing across link backup detours

Primary Path P1

Primary Path P2

Backup Path B

s t

Fig. 4. Diverse primary paths P1, P2 and backup path B for path restoration

B. Fast Path Restoration

For path restoration, each connection consists of K (≥ 2)
link-disjoint paths from source to destination. For the special
case K = 2, also called 1:1-protection, a connection P
consists of a primary (working) path, and a link-disjoint
backup path. Traffic is sent on the primary path during normal
(no-failure) conditions and switched to the backup path after
any failure that affects the primary path.

The 1:1-protection scheme can be extended to a more
general scheme with the objective of reducing the protection
capacity overhead of the network. We allow a connection P to
consist of K(≥ 2) link-disjoint paths from source to destina-
tion. If the working traffic associated with this connection is
∆, then an amount ∆

K−1 of working traffic is sent on each of
K − 1 disjoint paths. The remaining path is designated as the
backup path. This is illustrated in Figure 4. Under a single link
failure model, only one of the K − 1 (disjoint) primary paths
can fail, in which event the backup path carries ∆

K−1 portion
of the working traffic. One can designate any K − 1 of the
paths (usually the K − 1 shortest ones) as primary and the
remaining as backup. Clearly, for K = 2, the scheme reduces
to 1:1-protection.

The fast nature of the extended scheme arises from the fact
that the source needs to just switch traffic to the backup path
after one of the primary paths fails and the destination needs
to select traffic from the backup path. (The source needs to
receive failure notification from the destination or the nodes
adjacent to the failed link before switching.) For optical mesh
networks, cross-connects are already setup on the backup path
during provisioning, hence no signaling on the backup path is
required after failure.

VI. ADDING LINK RESTORATION TO TWO-PHASE
ROUTING

In order to make two-phase routing resilient to link failures
using link restoration, we add link backup detours protecting
each link as discussed in Section V-A. Given a network

140

with link capacities and constraints Ri, Cj on the ingress-
egress traffic as discussed, we consider the problem of two-
phase routing with link restoration so as to minimize the
maximum utilization of any link in the network. The problem
is equivalent to finding the maximum multiplier λ (throughput)
such that all matrices in λ · T (R, C) can be feasibly routed
with link restoration.

Before proceeding, we give an alternative (but equivalent)
definition of throughput. Suppose we relax the requirement
that the traffic split ratios sum to 1 in a feasible solution of the
problem. Recall that the demand from i to j is αjRi + αiCj .
Consider the sum

λ =
∑

i∈N

αi

The traffic split ratios can be normalized (divided) by λ so that
they sum to 1, in which case all matrices in λ ·T (R, C) can be
feasibly routed. Thus, the appropriate measure of throughput
is the quantity λ as defined above when the traffic split ratios
are not constrained to sum to 1.

We first present a path indexed linear programming for-
mulation for this problem. This will be subsequently used to
develop the fast combinatorial algorithm in Section VI-B.

A. Path Indexed Linear Programming Formulation
Let Pij denote the set of all paths (with link detours)

from node i to node j. Let x(P) denote the working traffic
associated with path P . Then, the problem of two-phase
routing with link restoration so as to maximize the network
throughput can be formulated as the following path-indexed
linear program:

maximize
∑

i∈N αi

subject to
∑

P∈Pij

x(P) = αjRi + αiCj

∀ i, j ∈ N, i 6= j (1)∑

i,j

∑

P∈Pij ,e∈W (P)

x(P) +
∑

i,j

∑

P∈Pij ,e∈Bf (P)

x(P) ≤ ue

∀ e, f ∈ E, e 6= f (2)
x(P), αi ≥ 0 ∀ P ∈ Pij , ∀ i, j ∈ N (3)

Constraints (1) correspond to the routing of αjRi + αiCj

amount of flow from node i to node j along link-restored
paths. Constraints (2) state that that the sum of working traffic
on a link and the restoration traffic that appears on that link
after failure of any other link is at most the capacity of the
link.

Let α∗i be the αi values in an optimal solution of the above
linear program. Then, the maximum achievable throughput is
given by λ∗ =

∑
i α∗i . The α∗i values can be reduced by a

factor of λ∗ to get the actual split ratios that sum to 1.
In general, a network can have an exponential number

of paths (in the size of the network). Hence, this linear
program can have possibly exponential number of variables
and is not suitable for running on medium to large sized
networks. The path-indexed formulation can be converted to a
polynomial size link-indexed program, thus allowing it to be

solved in polynomial time using a general linear programming
algorithm. We omit this for lack of space. In Section VI-B, we
consider the dual of the above linear program. The usefulness
of the primal and dual formulation is in designing a fast
(polynomial time) combinatorial algorithm for each problem.

B. Combinatorial Algorithm

In this section, we develop a fast combinatorial algorithm
(FPTAS) for two-phase routing with link restoration. We begin
with the dual formulation of the linear program discussed
above. The primal-dual approach we develop is adapted from
the technique in Garg and Könemann [8] for solving the
maximum multicommodity flow problem, where flows are
augmented in the primal solution and dual variables are
updated in an iterative manner.

The dual formulation of the linear program outlined in
Section VI-A associates a variable w(e, f) with each link
capacity constraint in (2) and a variable πij with each demand
constraint in (1).

For each link e = (i, j) ∈ E, denote by g(e) the cost of
the shortest detour from node i to node j under link costs
c(e′) = w(e′, e) ∀ e′ ∈ E, e′ 6= e and c(e) = ∞. Also, let
SP (i, j) denote the cost of the shortest path from node i to
node j under links costs

c(e) = g(e) +
∑

f∈E,f 6=e

w(e, f) ∀ e ∈ E

Essentially the definition of SP (i, j) corresponds to a
minimum cost path P ∈ Pij whose links e on working path
W (P) have cost

∑
f 6=e w(e, f) and backup detours Be(P)

protecting each primary link e have cost g(e).
With the definition of the quantity SP (i, j) as above and

simplification and removal of the dual variables πij , the dual
linear program can be written as:

minimize
∑

e∈E

∑
f∈E,f 6=e uew(e, f)

subject to
∑

i:i 6=k

RiSP (i, k) +
∑

j:j 6=k

CjSP (k, j) ≥ 1 ∀ k ∈ N (4)

w(e, f) ≥ 0 ∀ e, f ∈ E, e 6= f (5)

For a given node k ∈ N , let V (k) denote the left-hand-side
(LHS) of constraint (4). Given the weights w(e, f), note that
V (k) can be computed in polynomial time by simple shortest
path computations.

Given a set of weights w(e, f), it is a feasible solution for
the dual program if and only if

min
k∈N

V (k) ≥ 1

The algorithm works as follows. Start with equal initial
weights w(e, f) = δ (the quantity δ depends on ε and is
derived later). Repeat the following until the dual feasibility
constraints are satisfied:

1) Compute the node k = k̄ for which V (k) is minimum.
This identifies a node k̄ as well as paths (with link

141

detours) Pi from node i to node k̄ for all i and paths
(with link detours) Qj from node k̄ to node j for all j.

2) For each e, f ∈ E, e 6= f , let NP (e) be the set of nodes i
for which W (Pi) contains link e and N ′

P (e, f) be the set
of nodes i for which Bf (Pi) contains link e. Similarly,
let NQ(e) be the set of nodes j for which W (Qj)
contains link e and N ′

Q(e, f) be the set of nodes j for
which Bf (Qj) contains link e. Compute the quantity α
as follows:

S(e) =
∑

i∈NP (e)

Ri +
∑

j∈NQ(e)

Cj ∀ e ∈ E

S′(e, f) =
∑

i∈N ′
P

(e,f)

Ri +
∑

j∈N ′
Q

(e,f)

Cj ∀ e 6= f

α = min
e,f∈E

ue

S(e) + S′(e, f)

3) Send αRi amount of flow on path Pi for all i and αCj

amount of flow on path Qj for all j. For each link
e, compute the total working flow ∆(e) and the flow
∆′(e, f) that appears on link e after failure of any other
link f 6= e.

4) For each e, f ∈ E, e 6= f , update weights w(e, f) as

w(e, f) ← w(e, f)
(

1 +
ε[∆(e) + ∆′(e, f)]

ue

)

5) Increment the split ratio αk̄ associated with node k̄ by
α.

When the above procedure terminates, dual feasibility con-
straints will be satisfied. However, primal capacity constraints
on each link will be violated, since we were working with
the original (and not residual) link capacities at each stage. To
remedy this, we scale down the split ratios αi uniformly so
that capacity constraints are obeyed.

Note that since the algorithm maintains primal and dual
solutions at each step, the optimality gap can be estimated by
computing the ratio of the primal and dual objective function
values. The computation can be terminated immediately after
the desired closeness to optimality is achieved.

We briefly outline an efficient method for computing the
value of the LHS of dual constraint (4) for a given k ∈ N
at each iteration of the algorithm. The quantity SP (i, j), for
each i, j ∈ N , is computed as follows:

A. For each link e = (i, j) ∈ E, compute the cost g(e)
of the shortest link detour from node i to node j
under link costs c(e′) = w(e′, e) ∀ e′ ∈ E, e′ 6= e
and c(e) = ∞, using Dijkstra’s algorithm [1].

B. Using an all-pairs shortest paths computation,
compute the cost SP (i, j) of the shortest path
from i to j under link costs c(e) = g(e) +∑

f∈E,f 6=e w(e, f) ∀ e ∈ E.
The complete path P ∈ Pij (primary path with link detours)

with cost SP (i, j) is identified as follows. The primary path
W (P) is given by the path computed in Step B. The link
backup detours for each f ∈ W (P) are obtained from Step
A.

Step A involves m single shortest path computations. Step B
involves n single shortest path computations. Hence, the above
procedure involves m+n Dijkstra shortest path computations
plus O(n+m) time. Dijkstra’s shortest path algorithm can be

implemented in O(m + n log n) time using Fibonacci heaps
[1]. Hence, each iteration of the procedure can be implemented
in O(m2 + nm log n) time.

In the context of optical mesh networks [16], cross-connects
need to be setup on the link backup detour(s) after failure
for restoration. This involves end-to-end signaling on the link
detour. Hence, in order to bound restoration latency in optical
networks, it may be necessary to impose a hop constraint (say,
at most h hops) on each link detour. This is easily incorporated
into our algorithm by restricting link backup detours to have
at most h hops and using the Bellman-Ford algorithm [1] in
Step 1 above to compute shortest cost paths bounded by a hop
count of h.

Algorithm LINK RESTORATION:

αk ← 0 ∀ k ∈ N ;
w(e, f) ← δ ∀ e, f ∈ E, e 6= f ;
work(e) ← 0 ∀ e ∈ E ;
bkp(e, f) ← 0 ∀ e, f ∈ E, e 6= f ;
G ← 0 ;

while G < 1 do
For each e = (i, j) ∈ E, compute shortest path
from i to j that excludes link e under link costs
c(e′) = w(e′, e) and denote its cost by g(e) ;
For each i, j ∈ N , compute shortest path from
i to j under link costs c(e) = [

∑
f :f 6=e

w(e, f)+
g(e)] and denote its cost by SP (i, j) ;
V (k) ← ∑

i6=k
RiSP (i, k) +

∑
j 6=k

CjSP (k, j) ;
G ← mink∈N V (k) ;
if G ≥ 1 break ;
Let k̄ be the node for which V (k) is minimum ;
Let Pi be shortest path from i to k̄ for all i ;
Let Qj be shortest path from k̄ to j for all j ;
NP (e) ← {i : Pi contains e} for all e;
N ′

P (e, f) ← {i : Bf (Pi) contains e} for all e 6= f ;
NQ(e) ← {j : Qj contains e} for all e;
N ′

Q(e, f) ← {i : Bf (Qj) contains e} for all e 6= f ;
α ← mine∈E

ue∑
i∈NP (e)

Ri+
∑

j∈NQ(e)
Cj

;

Send αRi flow on path Pi for all i and
αCj flow on path Qj for all j and compute
resulting working flow ∆(e) on link e for all e
and restoration flow ∆′(e, f) on link e due to
failure of link f for all e 6= f ;
work(e) ← work(e) + ∆(e) ∀ e ;
bkp(e, f) ← bkp(e, f) + ∆′(e, f) ∀ e 6= f ;
w(e, f) ← w(e, f)(1 + ε[∆(e) + ∆′(e, f)]/ue)

∀ e 6= f ;
αk̄ ← αk̄ + α ;

end while

bkp max(e) ← maxf 6=e bkp(e, f) ∀ e ∈ E ;
scale(e) ← work(e)+bkp max(e)

ue
∀ e ∈ E ;

scale max ← maxe∈E scale(e) ;
αk ← αk/scale max for all k ∈ N ;
Output the traffic split ratios αk ;

The pseudo-code for the above procedure, called Algorithm
LINK RESTORATION, is provided in the box above. Arrays
work(e) and bkp(e, f) keep track respectively of the working
traffic on link e and the restoration traffic that appears on link
e due to failure of link f . The variable G is initialized to
0 and remains < 1 as long as the dual constraints remain
unsatisfied. After the while loop terminates, the factor by
which the capacity constraint on each link e gets violated

142

is computed into array scale(e). Finally, the αi values are
divided by the maximum capacity violation factor and the
resulting values output as the optimum.

Let L = (n − 1)(n + m − 2)(
∑

i∈N Ri +
∑

j∈N Cj)
and L′ denote the minimum non-zero value of the Ri’s and
Cj’s. The values of ε and δ are related, in the following
theorem, to the approximation factor guarantee of Algorithm
LINK RESTORATION.

Theorem 1: For any given ε′ > 0, Algorithm
LINK RESTORATION computes a solution with objective
function value within (1 + ε′)-factor of the optimum for

δ =
1 + ε

L′[(1 + ε) L
L′]

1/ε
and ε = 1− 1√

1 + ε′

We end this section with a bound on the running time of
Algorithm LINK RESTORATION.

Theorem 2: For any given ε > 0 chosen to provide the
desired approximation factor guarantee in accordance with
Theorem 1, Algorithm LINK RESTORATION runs in time

O

(
m3

ε
(m + n log n) log1+ε

L

L′

)

which is polynomial in the network size, the number of bits
used to represent the Ri, Cj values, and 1

ε .
Proofs of the above theorems are omitted for lack of space.

VII. ADDING PATH RESTORATION TO TWO-PHASE
ROUTING

In order to make two-phase routing resilient to link failures
using path restoration, Phase 1 and Phase 2 traffic is routed
along link-disjoint path sets as discussed in Section V-B. Given
a network with link capacities and constraints Ri, Cj on the
ingress-egress traffic as discussed, we consider the problem of
two-phase routing with path restoration so as to minimize the
maximum utilization of any link in the network. The problem
is equivalent to finding the maximum multiplier λ (throughput)
such that all matrices in λ · T (R, C) can be feasibly routed
with path restoration.

We first present a path indexed linear programming for-
mulation for this problem. This will be subsequently used to
develop the fast combinatorial algorithm in Section VII-B.

A. Path Indexed Linear Programming Formulation
Let PK

ij denote the set of all K link-disjoint path sets from
node i to node j. Let x(P) denote the traffic associated with
each (link-disjoint) path in the set P . Let χ(P) denote the
number of link-disjoint paths in P . Then, the working traffic
that is carried on P is (χ(P)−1)x(P). The problem of routing
with path restoration under the scheme so as to maximize the
network throughput can be formulated as the following path-
indexed linear program:

maximize
∑

i∈N αi

subject to∑

K

∑

P∈PK
ij

(K − 1)x(P) = αjRi + αiCj ∀ i, j ∈ N (6)

∑

i,j∈N

∑

K

∑

P∈PK
ij

,e∈P

x(P) ≤ ue ∀ e ∈ E (7)

x(P), αi ≥ 0 ∀ P ∈ PK
ij , ∀ K, ∀ i, j ∈ N (8)

Constraints (6) correspond to the routing of αjRi + αiCj

amount of demand from node i to node j along link-disjoint
path sets. Constraints (7) are the link capacity constraints.
Similarly to the formulation for the link restoration case, the
throughput is the sum of the traffic split ratios αi when these
ratios are not constrained to sum to 1.

In Section VII-B, we state the dual of the linear program.
The usefulness of the primal and dual formulation is in
designing a fast (polynomial time) combinatorial algorithm
for the problem.

B. Combinatorial Algorithm
In this section, we develop a fast combinatorial algorithm

(FPTAS) for two-phase routing with link restoration that can
compute the split ratios and routed paths up to (1+ε)-factor of
the optimal objective function value for any ε > 0. The value
of ε can be chosen to provide the desired degree of optimality
for the solution.

We begin with the dual formulation of the linear program
outlined in Section VII-A. The dual program associates a
variable w(e) with each link capacity constraint in (7) and
a variable πij with each demand constraint in (6). For any
i, j ∈ N , define DP (i, j) as

DP (i, j) = min
K

min
P∈PK

ij

∑
e∈P w(e)
K − 1

After simplification and removal of the dual variables πij ,
the dual linear program can be written as:

minimize
∑

e∈E uew(e)

subject to
∑

i:i 6=k

RiDP (i, k) +
∑

j:j 6=k

CjDP (k, j) ≥ 1 ∀ k ∈ N (9)

w(e) ≥ 0 ∀ e ∈ E (10)

For any node k ∈ N , let U(k) denote the left-hand-
side (LHS) of constraint (9). Given the weights w(e), note
that DP (i, j) can be computed in polynomial time using,
for example, a successive shortest paths based K-disjoint
paths routing algorithm [4]. Thus, U(k) can be computed in
polynomial time for all k ∈ N .

Given a set of weights w(e), it is a feasible solution for the
dual program if and only if

min
k∈N

U(k) ≥ 1

The algorithm works as follows. Start with equal initial
weights w(e) = δ (the quantity δ depends on ε and is derived
later). Repeat the following until the dual feasibility constraints
are satisfied:

1) Compute the node k = k̄ for which U(k) is minimum.
This identifies a node k̄ as well as link-disjoint path set
Pi from node i to node k̄ for all i and link-disjoint path
set Qj from node k̄ to node j for all j.

2) For each e ∈ E, let YP (e) be the set of nodes i for
which Pi contains link e and YQ(e) be the set of nodes

143

j for which Qj contains link e. Compute the quantity α
as follows:

S(e) =
∑

i∈YP (e)

Ri

χ(Pi)− 1
+

∑
j∈YQ(e)

Cj

χ(Qj)− 1
∀ e ∈ E

α = min
e∈E

ue

S(e)
3) Send αRi amount of working flow from node i to node

k̄ along path set Pi for all i (this sends a flow of value
αRi/(χ(Pi)−1) on each path in Pi). Send αCj amount
of working flow from node k̄ to node j along path set
Qj for all j (this sends a flow of value αCj/(χ(Qj)−1)
on each path in Qj). Compute the total flow ∆(e) that
is sent on link e for all e ∈ E. Increment the flow on
link e by ∆(e).

4) Update the weights w(e) for all e ∈ E as

w(e) ← w(e)
(

1 +
ε∆(e)

ue

)

5) Increment the split ratio αk̄ associated with node k̄ by
α .

When the above procedure terminates, dual feasibility con-
straints will be satisfied. However, primal capacity constraints
on each link will be violated, since we were working with
the original (and not residual) link capacities at each stage. To
remedy this, we scale down the split ratios αi uniformly so
that capacity constraints are obeyed.

Algorithm PATH RESTORATION:

αk ← 0 ∀ k ∈ N ;
w(e) ← δ ∀ e ∈ E ;
flow(e) ← 0 ∀ e ∈ E ;
G ← 0 ;

while G < 1 do
For all i, j ∈ N , compute link-disjoint path set P

from i to j such that

∑
e∈P

w(e)

χ(P)−1
is minimized

and denote this value by DP (i, j) ;
U(k) ← ∑

i6=k
RiDP (i, k) +

∑
j 6=k

CjDP (k, j) ;
G ← mink∈N U(k) ;
if G ≥ 1 break ;
Let k̄ be the node for which U(k) is minimum ;
Let Pi be associated path set from i to k̄ ∀ i ;
Let Qj be associated path set from k̄ to j ∀ j ;
YP (e) ← {i : Pi contains e} for all e;
YQ(e) ← {j : Qj contains e} for all e;
S(e) ← ∑

i∈YP (e)
Ri

χ(Pi)−1
+

∑
j∈YQ(e)

Cj

χ(Qj)−1
∀ e ;

α ← mine∈E
ue

S(e)
;

Send αRi working flow on Pi for all i and
αCj working flow on Qj for all j and compute
resulting capacity usage ∆(e) on link e for all e ;
flow(e) ← flow(e) + ∆(e) for all e ;
w(e) ← w(e)(1 + ε∆(e)/ue) for all e ;
αk̄ ← αk̄ + α ;

end while

scale(e) ← flow(e)/ue for all e ∈ E ;
scale max ← maxe∈E scale(e) ;
αk ← αk/scale max for all k ∈ N ;
Output the traffic split ratios αk ;

The pseudo-code for the above procedure, called Algorithm
PATH RESTORATION, is provided in the box below. Array

flow(e) keeps track of the traffic on link e. The variable G is
initialized to 0 and remains < 1 as long as the dual constraints
remain unsatisfied. After the while loop terminates, the factor
by which the capacity constraint on each link e gets violated
is computed into array scale(e). Finally, the αi values are
divided by the maximum capacity violation factor and the
resulting values output as the optimum.

Let L = m(
∑

i∈N Ri +
∑

j∈N Cj) and L′ denote the mini-
mum non-zero value of the Ri’s and Cj’s. The values of ε and
δ are related, in the following theorem, to the approximation
factor guarantee of Algorithm PATH RESTORATION.

Theorem 3: For any given ε′ > 0, Algorithm
PATH RESTORATION computes a solution with objective
function value within (1 + ε′)-factor of the optimum for

δ =
1 + ε

L′[(1 + ε) L
L′]

1/ε
and ε = 1− 1√

1 + ε′

We end this section with a bound on the running time of Al-
gorithm PATH RESTORATION. Let Kmax be the maximum
number of link-disjoint paths between any pair of nodes in G.

Theorem 4: For any given ε > 0 chosen to provide the
desired approximation factor guarantee in accordance with
Theorem 1, Algorithm PATH RESTORATION runs in time

O

(
n2m

ε
Kmax(m + n log n) log1+ε

L

L′

)

which is polynomial in the network size, the number of bits
used to represent the Ri, Cj values, and 1

ε .

VIII. EVALUATION ON ISP TOPOLOGIES

In this section, we evaluate the throughput performance of
the unprotected, link restoration protected, and path restoration
protected versions of two-phase routing. To compute the
throughput for two-phase routing with link restoration and
path restoration, we use the fast combinatorial algorithms from
Sections VI-B and VII-B respectively. For the throughput
of the unprotected scheme, we use the fast combinatorial
algorithm from [11]. We run all algorithms so as to provide
solutions up to 5% of optimality. The running times range
from tens of seconds to few minutes on a Pentium III 1GHz
256MB machine.

A. Topologies and Link/Ingress-Egress Capacities
For our experiments, we use six ISP topologies collected

by Rocketfuel, an ISP topology mapping engine [13]. These
topologies list multiple intra-PoP (Point of Presence) routers
and/or multiple intra-city PoPs as individual nodes. We co-
alesced PoPs into nodes corresponding to cities so that the
topologies represent geographical PoP-to-PoP ISP topologies.
Some data about the original Rocketfuel topologies and their
coalesced versions is provided in Table I.

Link capacities, which are required to compute the maxi-
mum throughput, are not available for these topologies. Rock-
etfuel computed OSPF/IS-IS link weights for the topologies
so that shortest cost paths match observed routes. In order
to deduce the link capacities from the weights, we assumed
that the given link weights are the default setting for OSPF
weights in Cisco routers, i.e., inversely proportional to the
link capacities [5]. The link capacities obtained in this manner
turned out to be symmetric, i.e., uij = uji for all (i, j) ∈ E.

144

Topology Routers Links PoPs Links
(original) (inter-router) (coalesced) (inter-PoP)

Telstra (Australia) 1221 108 306 57 59
Sprintlink (US) 1239 315 1944 44 83
Ebone (Europe) 1755 87 322 23 38
Tiscali (Europe) 3257 161 656 50 88
Exodus (Europe) 3967 79 294 22 37
Abovenet (US) 6461 141 748 22 42

TABLE I
ROCKETFUEL TOPOLOGIES: ORIGINAL NUMBER OF ROUTERS AND INTER-ROUTER LINKS, AND NUMBER OF COALESCED POPS AND INTER-POP LINKS.

There is also no available information on the ingress-
egress traffic capacities at each node. Because ISPs commonly
engineer their PoPs to keep the ratio of add/drop and transit
traffic approximately fixed, we assumed that the ingress-egress
capacity at a node is proportional to the total capacity of
network links incident at that node. We also assume that Ri =
Ci for all nodes i since network routers and switches have
bidirectional ports (line cards) – hence the ingress and egress
capacities are equal. Thus, we have Ri(= Ci) ∝

∑
e∈E+(i) ue.

The coalesced Rocketfuel topologies are not bi-connected
and hence do not allow diverse link detours for some links
and link-disjoint paths between some source-destination pairs.
Any graph that is not bi-connected has one or more bridge
links whose removal disconnects the graph into two connected
components. We overcome this limited connectivity of the
topologies by splitting bridge links into two diverse links, each
of half the capacity as the original link. Because the original
Rocketfuel topologies contained many parallel links that were
coalesced, this bridge splitting transformation preserves the
essential ISP-like topological properties of the networks. Also,
the throughput of unprotected routing remains unchanged as
a result of this transformation.

B. Experiments and Results
We denote the throughput values for the different cases as

follows: (i) λunp for unprotected, (ii) λlr for link restoration,
and (iii) λpr for path restoration. Clearly, λunp > λlr and
λunp > λpr. We are also interested in the number of inter-
mediate nodes i with αi > 0, which we denote for the three
cases by Nunp, Nlr, and Npr.

1) Throughput: In Table II, we list the lambda values for
the three cases for the six Rocketfuel topologies. When either
the link capacities or ingress-egress capacities are scaled by
a constant, the throughput values are scaled by the same
constant. Hence, for comparison purposes, we have normalized
the values so that the throughput for the unprotected case is
λunp = 3.0.

Topology λunp λlr λpr

Telstra (Australia) 1221 3.0 1.3265 1.3245
Sprintlink (US) 1239 3.0 1.8642 1.6800
Ebone (Europe) 1755 3.0 1.1565 1.1289
Tiscali (Europe) 3257 3.0 1.8882 1.5984
Exodus (Europe) 3967 3.0 1.6383 1.6170
Abovenet (US) 6461 3.0 1.2957 1.2552

Table II. Throughput of two-phase routing for unprotected (λunp),
and link restoration (λlr), path restoration (λpr) extensions.

The overhead of protecting against link failures can be
measured by the percentage decrease in network throughput

over that for the unprotected case. For link restoration, this
is Olr = (λunp − λlr)/λunp. For path restoration, this is
Opr = (λunp − λpr)/λunp. These values are listed in Table
III.

For link restoration, the overhead ranges from 35-60% for
the six topologies. For path restoration, the overhead ranges
from 45-60% for the six topologies. Both overheads are
relatively high because of the limited diversity available in
these six topologies. Also, in all cases, we have Opr > Olr.
Because path restoration shares its backup capacity among
link-disjoint paths, it is more constrained by the physical
diversity of the network than link restoration. Hence, the
increased overhead of path restoration.

Topology Olr Opr

Telstra (Australia) 1221 55.78% 55.85%
Sprintlink (US) 1239 37.86% 44.00%
Ebone (Europe) 1755 61.45% 62.37%
Tiscali (Europe) 3257 37.06% 46.72%
Exodus (Europe) 3967 45.39% 46.10%
Abovenet (US) 6461 56.81% 58.16%

Table III. Overhead of link restoration (Olr) and path restoration
(Opr) compared to unprotected case for two-phase routing.

2) Number of Intermediate Nodes: In Table IV, we list the
number of intermediate nodes i with αi > 0 for the three cases
for the six Rocketfuel topologies. Interestingly, the number of
intermediate nodes in each case is a small fraction of the total
number of nodes. This may have favorable implications in the
adaptation of the scheme to providing i3-like functionality and
middlebox routing (e.g., content filtering) in networks. In these
two application scenarios, the intermediate nodes are sites for
locating i3 servers and middleboxes respectively.

Topology Nunp Nlr Npr

Telstra (Australia) 1221 1 1 1
Sprintlink (US) 1239 5 6 4
Ebone (Europe) 1755 4 5 3
Tiscali (Europe) 3257 7 6 2
Exodus (Europe) 3967 3 7 3
Abovenet (US) 6461 7 6 1

Table IV. Number of intermediate nodes in two-phase routing for
unprotected (Nunp), and link restoration (Nlr), path restoration

(Npr) extensions.

The number of intermediate nodes for link restoration is
the same as that for the unprotected case for almost all the
topologies. However, we observe a marked decrease in the
number of intermediate node for the path protection case.

145

This is again because of the limited diversity available in the
six topologies. For path restoration, the algorithm intelligently
selects only those intermediate nodes that have sufficient path
diversity to many other nodes in the network. In contrast, link
restoration involves the restoration of working traffic on a link
in a local manner – it is much less constrained by global
diversity in the selection of intermediate nodes.

IX. CONCLUSION AND FUTURE WORK

The two-phase routing scheme was recently proposed for
routing highly dynamic and changing traffic patterns with
bandwidth guarantees and in a traffic-oblivious manner. It
allows preconfiguration of the network such that all traffic pat-
terns, permissible within the network’s natural ingress-egress
capacity constraints, can be handled in a capacity efficient
manner without the necessity to detect any traffic changes in
real-time. For the Rocketfuel topologies, the throughput of
two-phase routing is within 6% of the optimal scheme among
the class of all schemes that are allowed to reconfigure the
network in response to traffic changes [11].

In this paper, we extended the two-phase routing scheme by
providing resiliency against link failures through two different
fast restoration mechanisms – local (link/span) based and end-
to-end (path) based. We developed combinatorial algorithms
for determining optimal traffic split ratios and routing along
primary and backup paths for the two restoration mechanisms.
We view this as important progress for two-phase routing
towards achieving carrier-class reliability so as to facilitate
its future deployment in ISP networks.

One would ideally like the network to be quasi-static in its
configuration and not require frequent adaptation to network
events. ISPs typically use a combination of overprovisioning
and dynamic network adaptation to avoid network congestion
caused by unpredicted events. However, both overprovisioning
and frequent adaptation lead to increased costs. In partic-
ular, frequent adaptation incurs high operational costs and
risks further instability elsewhere in the network. Two-phase
routing, with the extensions for restoration proposed in this
paper, can handle extreme traffic variability and link failures
in a network with a static network configuration and without
requiring high capacity overprovisioning. The ability to handle
traffic variation in a failure resilient manner without any
routing adaptation will lead to more stable and robust Internet
behavior.

We evaluated the throughput performance of two-phase
routing with link restoration and path restoration on actual ISP
topologies taken from the RocketFuel project and compared
it with the unprotected case. We also looked at the number of
intermediate nodes for all cases.

We have also considered another restoration mechanism,
shared backup path restoration, for protecting against link
failures in two-phase routing [15]. Under this, backup paths
can share bandwidth on common links so long as their primary
paths are link disjoint. Thus, backup bandwidth is shared to
provide completely recovery against single failures. Shared
backup path restoration has been shown to have lower restora-
tion capacity overhead compared to the two mechanisms
considered in this paper.

The handling of node failures in two-phase routing poses
additional challenges. Failure of non-intermediate nodes lying
on Phase 1 or Phase 2 paths can be restored by using node

detours in link restoration or node-disjoint paths in path
restoration. The failure of intermediate nodes is naturally
accommodated in two-phase routing by redistributing traffic
split ratios to other intermediate nodes, as proposed in [12].
Because a single node failure can lead to both of the above
scenarios, the corresponding mechanisms can be integrated.

REFERENCES

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory,
Algorithms, and Applications, Prentice Hall, February 1993.

[2] D. Applegate, L. Breslau, and E. Cohen, “Coping with Network Failures:
Routing Strategies for Optimal Demand Oblivious Restoration”, ACM
SIGMETRICS/Performance 2004, June 2004.

[3] D. Applegate and E. Cohen, “Making Intra-Domain Routing Robust to
Changing and Uncertain Traffic Demands: Understanding Fundamental
Tradeoffs”, ACM SIGCOMM 2003, August 2003.

[4] R. Bhandari, Survivable Networks: Algorithms for Diverse Routing,
Kluwer International, January 1999.

[5] “Configuring OSPF”, Cisco Systems Product Documentation,
http://www.cisco.com/univercd/home/home.htm.

[6] N. G. Duffield, P. Goyal, A. G. Greenberg, P. P. Mishra, K. K.
Ramakrishnan, J. E. van der Merwe, “A flexible model for resource
management in virtual private network”, ACM SIGCOMM 1999, August
1999.

[7] J. A. Fingerhut, S. Suri, and J. S. Turner, “Designing Least-Cost
Nonblocking Broadband Networks”, Journal of Algorithms, 24(2), pp.
287-309, 1997.

[8] N. Garg and J. Könemann, “Faster and Simpler Algorithms for Multi-
commodity Flow and other Fractional Packing Problems”, 39th Annual
Symposium on Foundations of Computer Science (FOCS), 1998.

[9] A. Kumar, R. Rastogi, A. Silberschatz , B. Yener, “Algorithms for
provisioning VPNs in the hose model”, ACM SIGCOMM 2001, August
2001.

[10] M. Kodialam, T. V. Lakshman, and S. Sengupta, “Efficient and Robust
Routing of Highly Variable Traffic”, Third Workshop on Hot Topics in
Networks (HotNets-III), November 2004.

[11] M. Kodialam, T. V. Lakshman, and S. Sengupta, “A Versatile Scheme for
Routing Highly Variable Traffic in Service Overlays and IP Backbones”,
IEEE Infocom 2006, April 2006.

[12] M. Kodialam, T. V. Lakshman, J. B. Orlin, and S. Sengupta, “Pre-
configuring IP-over-Optical Networks to Handle Router Failures and
Unpredictable Traffic”, IEEE Infocom 2006, April 2006.

[13] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson, “Measuring ISP
Topologies with Rocketfuel”, IEEE/ACM Transactions on Networking,
vol. 12, no. 1, pp. 2-16, February 2004.

[14] A. Medina, N. Taft, K. Salamatian, S. Bhattacharyya, C. Diot, “Traffic
Matrix Estimation: Existing Techniques and New Directions”, ACM
SIGCOMM 2002, August 2002.

[15] Sudipta Sengupta, Efficient and Robust Routing of Highly Variable
Traffic, Ph.D. Thesis, Massachusetts Institute of Technology (MIT),
December 2005.

[16] S. Sengupta and R. Ramamurthy, “From Network Design to Dynamic
Provisioning and Restoration in Optical Cross-Connect Mesh Networks:
An Architectural and Algorithmic Overview”, IEEE Network Magazine,
vol. 15, No. 4, July/August 2001.

[17] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, S. Surana, “Internet
Indirection Infrastructure”, ACM SIGCOMM 2002, August 2002.

[18] R. Zhang-Shen and N. McKeown “Designing a Predictable Internet
Backbone Network”, Third Workshop on Hot Topics in Networks
(HotNets-III), November 2004.

146

