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Abstract—It is crucial to detect zero-day polymorphic worms vulnerable program for analysis. However, such host-level
and to generate signatures at the edge network gateways or h© schemes are too slow to counteract the worms that can
eynets so that we can prevent the worms from propagating at tir propagate at exponential speed. Given the rapid growth of

early phase. However, most existing network-based signates twork bandwidth. todayv’ ; y t
generated are not vulnerability-based and can be easily edad by N€WOrK banawidin, oday's Viruses/worms can propagate

attacks. In this paper, we propose generating vulnerabiliy-based quickly and infect most of the vulnerable machines on
signatures on the network level without any host-level angsis the Internet within ten minutes [11] or even less than 30
of worm execution or vulnerable programs. As the first step, seconds with some highly virulent techniques [12], [13]
we design a network-based Length-based Signature Generato 41 negr-exponential propagation speed. At the early stage
(LESG) for worms based on buffer overflow vulnerabilities'. of worm propagation. onlv a verv limited number of worm
The signatures generated are intrinsic to buffer overflows,and w propagation, y a very limi u worm
are very hard for attackers to evade. We further prove the Samples are active on the Internet, and the number of machine
attack resilience bounds even under worst case attacks with compromised is also limited. Therefore, signature germmat
deliberate noise injection. Moreover, LESG is fast and nois- systems should be network-based and deployed at high-speed
tolerant and has efficient signature matching. Evaluation ased on g rder routers or gateways where the majority of traffic can b
real-world vulnerabilities of various protocols and real network -

traffic demonstrates that LESG is promising in achieving thee observed._ S_UCh a requllrement for network-l_:)ased deployment
goals. severely limits the design space for detection and sigeatur

| INTRODUCTION generation as discussed in Section II.

: Existing exploit-based schemes are less accurate and can

Computer worms are serious threats to the Internet cauys- ded.S tth h work-based and
ing billions of dollars in economic loss. Recently, zerorda € évaded.>ome ol these schemes are network-based and are

worm attacks that exploit unknown vulnerabilities havediae much faster than those in the former category. However, most

popular [2]. Intrusion detection/prevention systems @53], of §UCh sphgm_es are content-based, which aim to e_pr0|t the
[4] are proposed to defend against malicious worm attacks B‘?{S'dual S|m|I<_’;\r|ty in the byte sequences Qf d|ffe_rentam$1es
searching the network traffic for known patterns stgnatures of polymorphic worms [1_4]_[18]' As mentioned in [18], there_
Such signatures for the IDSes are currently generated nignu§2n P& some worms which do not have any content-based sig-

or semi-manually, a process too slow to defend against setrfﬁture dattﬁ”' Fur:he{rgore,dva}rlouts attaclkg hz;\;e El’%enfg:;bo
propagating computer worms. 0 evade the content-based signatures [19]-[22]. The 0

Thus it is critical to automate the process of worm des_chemes_ in this category [23], [.24] generate signatureeobas
tection, signature generation and signature dispersiothén onl explgqf_tcode ftrtjcdturedanalysus, WS'Ch |sdn%|t qgererthm
early phase of worm propagation, especially at the netwoYK.Nerabiiity exploited and can aiso be evade [ ]‘.
level (gateways and routers). There is some existing wor Therefore, our goal is to design a signature generatiomrByst

towards this direction [5]-[7]. However, to evade deteatiry which has both the accuracy of vulnerability-based schemes

signatures generated with these schemes, attackers cdoyem] nd the speed of exploit-based schemes so that we can deploy
at the network level to thwart zero-day polymorphic worm

polymorphicworms which change their byte sequence at eve tacks. As the first step towards this ambitious goal, we

successive |.nfect|(;]n. Recently, some Eolymordp hic Wr? rmag -groposé LEngth-based Spignature Generator (ca.ﬂa‘_a?S'G)’

ture generation schemes are proposed. Based on chargcseris " -~ ; e

of the generated signatures, they can be broadly classif‘@H'Ch _'S a net\/\{ork-based approach for generating efﬂmeﬂta
ength-based signatures which cannot be evaded. Thatas, ev

into two categories -vulnerability-basedand exploit-based ;
The former signature is inherent to the vulnerability thia¢ t when the attacker knows what the signatures are and how the

worm tries to exploit. Thus it is independent of the Womz?ignatures are generated, they still cannot find an effic@adt

implementation, unique and hard to evade, while explogteia eﬁECt'V?hV\éay t% eyadet the stlgnattut:efsf. f ttackelvhi
signatures capture certain characteristics of a specifiowo engtn-based signatures target bulter overtiow attackswn

implementation. However, schemes of both categories ha stitute the _majority of attacks [1]. The "?Y.idea is that |
their limitations ' order to exploit any buffer overflow vulnerabilities, thentgth

Existing  vulnerability-based ~ signature  generation of certain protocol fields must be long enough to overflow

schemes are host-based and cannot work at the network.the buffer. A butfer overflow vulnerability happens when rhe

router/gateway level. These schemes [8]-[10] either requirés a vulnerable buffer in the server implementation and some
rt of the protocol messages can be mapped to the vulnerable

exploit code execution or the source/binary code of t o9 o
P y uffer. When an attacker injects an overrun string inputtfer

L1t is reported that more than 75% of vulnerabilities are dase buffer particular field of the .protocol to tri_gge_r the buffer overflo
overflow [1]. the length of such an input for that field is usually much lange



than those of the normal requests. Thus we can use the fiettkt-based vs. network-based. The former requires eitker e
input length to detect attacks. This is intrinsic to the buff ploit code execution or the source/binary code of the valhler
overflow, and thus it is very hard for worm authors to evadeprogram . On the other hand, the network based approaches rel
In addition to being network-based and having high accyrasplely on network-level packets. The classification of &xg
LESG has the following important features. schemes and LESG is shown in Table I.
Noise tolerance Signature generation systems typically need Exploit-based schemesWe have discussed most of them in
a flow classifier to separate potential worm traffic from nothe introduction [14]-[18], [23], [24]. For example, Chiopher
mal traffic. However, network-level flow classification techet alproposes using the structural similarity of the Control
niques [7], [25]-[28] invariably suffer from false posiéis that Flow Graph (CFG) to generate a fingerprint as signatures [24]
lead to noise in the worm traffic pool. Noise is also an issue félowever, their approach can be evaded when the worm body
honeynet sensors [5], [16], [23]. For example, attackery mis encrypted. Furthermore, compared with length-basediasig
send some legitimate traffic to a honeynet sensor to polldtges, it is much more computationally expensive to mateh th
the worm traffic pool and to evade noise-intolerant sigreatufingerprint with the network packets. Thus it cannot be agpli
generation. Our LESG is proved to be noise tolerant or evém filter worm traffic at high-speed links.
better, attack resilient,e., LESG works well with maliciously ~ In comparison with most recent work in this category, such
injected noise in an attempt to mislead NIDS [19]. as Hamsa [14], LESG has better attack resilierecg, it has
Efficient Signature Matching. Many users patch their sys-better bounds for deliberate noise injection attacks [19].
tems slowly due to the fact that they may have to restart theVulnerability-based and host-based scheme®Brumley et
applications or reboot the machines. It is more efficient ar.presents the concept of a vulnerability signature in [1G] an
effective to deploy signatures at the NIDS/firewall to filteargues that the best vulnerability signatures are Turingtime
out the malicious traffic of an entire enterprise networkncgi  signatures. However, since the signature matching fornguri
the signatures generated are to be matched agewesy flow machine signatures is undecidable in general, they recwee t
encountered by the NIDS/firewall, it is critical to have fassignatures to symbolic constraint signatures or regulpres¢
signature matching algorithms.In the LESG system, thetlengsion signatures. Their approach is a heavyweight hostebase
based signatures can be matched at the network level witlagproach, which has high computational overhead and also
protocol length parser without any host-level analysis. needs some information such as the vulnerable programi-mult
In the rest of the paper, we first survey related work iple execution traces, and the vulnerability condition. igirty,
Section 1l and discuss the LESG architecture in Section I¥igilante [29] proposed a vulnerability-based signaturieick
Then we present the length-based signature generatiotepnobis similar to the MEP symbolic constraint signatures in [10]
in Section IV, generation algorithm in Section V, and itsaak Liang et alproposed the first host-based scheme to generate
resilience in Section VI. After that, in Section VII, we usdength-based signatures [1], [8]. Packet Vaccine [9] ferth
real Internet traffic and seven real exploit code (enhanc#udproves the signature quality by using binary search. Un-
with polymorphic capabilities) on five different protocals fortunately, both of them are host-based approaches and are
test the performance of LESG prototype. Results show trgitbject to the limitations mentioned before and some autuiti
LESG is highly accurate, noise tolerant, capable of detgctishortcomings. First, they need to know the vulnerable grogr
multiple worms in the same protocol pool, and capable &ometimes, they have to try many different implementation
online signature generation with small memory consumptioversions to find the vulnerable ones. Second, the signatmne g
Finally, we discuss some practical issues in Section VId arerated by [8] based on a small number of samples may be too

conclude in Section X. specific to represent the overall worm population. Thersfor
detection based on their generated signatures tends tdigtve
Il. RELATED WORK false negatives. Moreover, the protocol specification leug
. Signature generation mechanisms they used is not expressive enough for many protocols.
Property of Signares| Nemwork-based Host-based Other related work. There are previous research efforts on
Exploit-based Polygraph [15],| DACODA [18], . .
Hamsa [14], | Taint check [17] network-level detection of buffer overflow exploits. Hovesy
PADS [16], they do not generate any effective signatures due to high
gggeéz] (23], matching overhead and high false positives. TCTP [30] detec
Vulnerability-based Vulnerability buffer overflow attacks by recognizing jump targets withe t
LESG :\sfigr)lauire £190], sessions. Approaches like SigFree [31] dgtect exploit gode
Jglante [ [8]]" based on control flow and data flow analysis.
Packet Vaccine [9] [Il. ARCHITECTURE OFLESG
TABLE | As shown in Figure 1. ESG can be connected to multiple

COMPARISON WITH OTHER POLYMORPHIC WORM SIGNATURE GENERATIO  networking devices, such as routers, switches and gateways
SCHEMES a span (mirror) port or an optical splitter. Most modern swis

Early automated worm signature generation efforts includge equipped with a span port to which copies of entire packet

Honeycomb [5], Autograph [7], and EarlyBird [6], but they dadn the traffic from a list of ports can be directed. In addition

not work well with polymorphic worms. LESG can also be used to monitor traffic for a large-scale
Existing work on automated polymorphic worm signaturboneynet/honeyfarm by sniffing traffic at its gateways. Tae-h

generation can be broadly classified into vulnerabilitgdzh eynet/honeyfarm can be either centralized or distribug]-{

and exploit-based. Based on signature generation inpuireeq [34].

ments, we can further categorize these schemes on another ax Similar to the basic framework of Polygraph [15] and



LESG

system @ tool. Because of these advantages, we use BINPAC and Bro for

m - packet flow reassembling and protocol parsing in our re$earc
® _ IV. LENGTH-BASED SIGNATURE DEFINITION AND
[switeh = spiter PROBLEM STATEMENT

In this section, we model each application message as a field
hierarchy, and present it as a vector of fields. Based on this
model, we formally define the length-based signatures aed th
length-based signature generation problem.

A. Field Hierarchies

Each of the application sessions (flows) usually contaires on
or more Protocol Data Units (PDUs), which are the atomic
Hamsa [14], we first need to sniff traffic from networks an@rocessing data units that the application sends from ode en
classify the traffic as different application level protteo point to the other endpoint. PDUs are normally specified in
Next, we filter out known worms and then further separatée protocol standards/specifications, such as RFCs. A PDU
the traffic into a suspicious traffic pool and a normal traffits @ sequence of bytes and can be dissected into multiple
reservoir using an existing flow classifier [7], [25]-[28]. fields Here, a field means a sub-sequence of bytes with special

Similar to Polygraph [15] and Hamsa [14], we use an existifgmantic meaning or functionality as specified in the proltoc
flow classifier that may use various techniques (such as hgtandard. Typically, a field encodes a variable with a certai
eynet/honeyfarm [32]-[34], port scan detection [7], [35}te data structure, such as a string, an aredy. Take the DNS
frequency detection [26], [27], and other advanced teares) Protocol as an example. Figure 3 shows the format of the DNS
to identify suspicious flows. Note that the flow classifiers caPDUs. It has a header and four other sections — QUESTION,
operate at the line speed of routers as achieved in our previNSWER, AUTHORITY and ADDITIONAL. Each section is
work [35]. The scan detection based flow classifiers fir§irther composed of a set of fields. The QUESTION section
detect the hosts scanning a particular port number and tHegntains one or more DNS queries that are further composed
classify successful TCP connections from any of the scannifif field class QNAME, QTYPE and QCLASS. The other three
hosts with that particular destination port number as slisps Sections contain one or more Resource Records (RRs), ahd eac
flows. It is effective against any scanning worm. Meanwhild&¥R is composed of six lower level fields (NAME, TYP&c).
the honeynet/honeyfarm based approach considers any traPrrowing terms from the object model, we call the type of
caught in the honeynet/honeyfarm as suspicious flows. fields, such as QNAME and QTYPE, tfield class and each

Leveraging the normal traffic selection policy mentionegoncrete instance of a certain field astanceof the field.
in [14], we can create the normal pool. The suspicious poolAmong all the field classes in PDUs, songeg, QNAME,
and the normal pool are inputted to the signature generator®MAME and RDATA, arevariable-length fieldsothers ardixed-
shown in Figure 2. We first specify the protocol semantics af@ngth fields in which the instances all have the same length
use a protocol parser to parse each protocol message into a@edefined in the protocol standard.
of fields. Each field is associated with a length and a type. TheWe make the following two observations on such a rep-
field length information of both the suspicious pool and thgsentation of PDU. First, the number of instances of one
normal pool are given as input to the “LESG core”(signaturéeld class in a PDU may vary. For example, one PDU may
generation a|gorithm) module to generate the Signatures_ contain one instance of fielﬂ, and another PDU may contain
two. Second, in certain server implementations, it is dussi

A. Protocol Parsing L . that the concatenation of multiple field instances (of thmesa
As emphasized in [36], protocol parsing is an important St? Id class or not) are stored in one buffer. That is, if the

montoring, network insion detection systems 3], hart _CVer has an overflow vulnerabily related 1o this bufier,

firewalls. efc. We analyzed three text-based protoc’ols ’(HTTI§ the concatenation of several field instances that carflover

FTP an'd SMTP) and seven binary protocols (DNS, SNM e buffer. For example, imagine a D_NS server receives a
i ' NS PDU and stores the entire PDU in a vulnerable buffer.

SMB, WINRPC, SUNRPC, NTP, SSL). We find that, in geny hat overflows the buffer is the concatenation of all the field

eral, it |s_much easier and faster to parse the lengths of AStances. These two observations have been further tedida
protocol fields than full protocol parsing.

on other protocols such as SNMP and WINRPC.

Some recent research, such as BINPAC [36], has StUdIec‘/\/ith these considerations, we design a hierarchical model

how fo ease the job of writing a protocol parser. BINPAQO describe the possible field classes in a PDU. As Figure 5

is a yacc-like tool for writing application protocol parseit hows, we denote the QUESTION section as a new fi2ld
has a declarative Ianguage_ and Pomp"e'@ and _actl_JaIIy WOIXS oncatenation of all the instances of fieldand B? 0O =
as a parser generator. Its input is a script which is actua Y

a protocol specification written in BINPAC language. Th at : .
X potentially correspond to vulnerable buffers. We dbgilich
output is a parser code for that protocol. Currently, BINPAC a hierarchy for every flow.

executed in connection with Bro [4], which implements other : .
: : . o In the rest of the paper, we refer to variable-length fields
necessary traffic analysis at lower levels. With BINPAC ting simply as fields for the sake of brevity. Suppose there isa tot

a protocol parser_has beer_1 greatly _3|mpI|f|ed. Furthermuse, of K classes of fields in the hierarchy constructed for a certain
only can the available scripts provided by Bro be reused, but

also many people can _ppteptially contribute and produceemorzye genote the variable-length field QNAME a and the concatenation
reusable protocol specifications for BINPAC as an open ®ourd fixed-length field QTYPE and QCLASS 3.

B)*. In short, we include all possible variable-length fields
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protocol. We use an index sét = {1,2,..., K} to denote the network level are not perfect and always have some false
these K fields. Letxi, k = 1,2,..., K, be the maximum positives, and therefore, the suspicious pool may have some
among the lengths of potentially multiple instances of fieJd normal flows. Finding signatures from a noisy suspiciousl poo

then a vectorX = (z1,x2,...,2k) iS generated to representmakes the problem NP-Hard (Theorem 1). On the other hand,
the field lengths for each field in a session (flow). due to the large volume of traffic on the Internet, we assume
B. Length-based Signature Definition the noise (worm flows) in the normal pool is either zero or very

Based on the length vector representation of a session, Nwgited, and thus it is negligible.
formally define the concept of length-based signatura this After filtering existing known worms, there can be multiple
section. A signature is a pal; = (f;,1;), wheref; € E, f; worms of a given protocol in the suspicious pool, though the
is the signature field ID, and} is the corresponding signaturemost common case is a single worm having its outbreak under-

length for field f;. way in the newly generated suspicious pool. The output of the
When using the signature to detect the worms, the matchigignature generation is a signature set= {S1, Sa2,...,S;}.
process is as follows. For a flod = (z1,22,...,2x), We A flow matched by any signature in this set will be labelled as

comparexy, andl;. If zy, > [;, then the flowX is labelled a worm flow.
as a worm flow; otherwise it is labelled as a normal one. More In Table I, we define most of the notations used in the
than one signature corresponding to different fields casiptys problem formulation and theorems.

be generated for a given protocol, resulting irsignature set problem 1 (Noisy Length-Based Signature Generation
S ={51,52,...,5;}. Aflow, which may contain one or more (NLBSG)).

PDUs, will be labelled as a worm if it is matched by at leagiypuT: Suspicious traffic pooM = {M;y, My, ...} and nor-

one signature in the set. _ mal traffic poolN = { N1, Ny, ...}; valuey < 1.
The length-based signatures are designed for buffer ovejytpuT: A set of length-based signaturesS =
flow worms. The signature field should be exactly mapped f, 1,),... (f;,1;)} such thatFPs is minimized subject to

to a vulnerable buffer. In this case, the field of this ins@neCOvg > 1 — .
must be longer than the buffer to overflow it, while normai.h - 1. NLBSG is NP-Hard
instances must be shorter than the buffer. Note that diftere eorem L. 1S NF-Har
servers may implement different buffer lengths if the maaim . S i ; :
length is ngt sgecified in the REC. Heregwe focus on pOI_l;_Unlon, which is equivalent to Maximurk-Intersection [37].
ular implementations because the spread speed and scope of V. SIGNATURE GENERATION ALGORITHM u
worms will be significantly limited if they only targetunpofar ~ Although the problem NLBSG is NP-Hard in general, for
implementations. We define the minimum buffer length diuffer overflow worms, the algorithms we proposed are fast
popular implementations ale ground truth signaturedenoted and have fair accuracy even in the worst case scenarios. We
as B = (fg, L) where Lp is the vulnerable buffer length. formally proved the theoretical false positive and falsgae
Even with multiple different implementations, for the fieldive bounds with or without adversaries to inject intenitin
related to the vulnerable buffer, the distributions of natm crafted noise. To the best of our knowledge, we are firs
flows and worm flows should be well apart. That is, the lengthetwork based signature generation approach that has the ac
of normal flows should be less thdnz because for a popular curacy bound even with adversaries’ injected noise.
server implementatiore(g, FTP), there are often various client The protocol parsing step generates (field id, length) gairs
programs communicating with it without knowing its bufferall flows in the normal traffic pool and suspicious traffic pool
length. SoL 5 should be large enough for most of the normdespectively. Based on that, we design a three-step digorit
flows. On the other hand, those of worm flows should obviouslg generate length-based signatures.
be larger tharl 5. Step 1: Field Filtering Select possible signature field candi-
As elaborated below, our algorithm will not output any sigdates.
natures for non-buffer-overflow worms because our algorithStep 2: Signature Length Optimizatio@ptimize the signature
ensures that all generated signatures have low false yessiti lengths for each field.
C. Length-Based Signature Generation Problem Formulatiotep 3: Signature Pruning-ind the optimal subset of candidate
If the flow classifier is perfect, all the flows in the suspicousignatures with low false positives and false negatives.
pool are worm samples. If the worm is a buffer overflow worma. Field Filtering
finding a length-based signature amounts to simply findirg th In this step of the algorithm, we make the first selection
best field and the field length with minimal false negatived aron the fields that could possibly be signature candidates. Th
minimal false positives. However, in practice, flow clagsgiat goal is to limit the searching space. Two parameters are set

Proof Sketch: The proof is by reduction from Minimum



M suspicious traffic pool N normal traffic pool
[M] - number of suspicious flows i [T - number of noise flows GV’
M set of true worm flows inM M? " set of noise flows inM
«a  :coverage of true worms K : number of variable length fields
M set of suspicious flows covered by signature Set Ns : set of normal flows covered by signature st
COVs : “Aj\lj“ for a signature sef FPs : %5‘—‘ for a signature sef
COVj : minimum coverage requirement for a signature candidat&’Py : maximum false positive ratio for a signature candidaie
~7 minimum coverage increase requirement for a signature+y : minimum coverage increase requirement for a signature
to be outputted in the first loop of the Step 3 algorithm to be outputted in the second loop of the Step 3 algorithm
TABLE I

TABLE OF NOTATIONS

Algorithm Step 1Field filtering (M,N)

T in [14], to determine the best tradeoff between the falsdtipes
for field f; = 1 to K and coverage. For example, we need to make a choice between
find 1, such that% < FPy < W‘zjf‘ﬂ; COV = 70%, FP = 0.9% and COV = 68%, FP = 0.2%.
My In the Step 2 algorithmM = {X3, Xs,..., X\ }, Where
if — > COVy 1 2 K : IMI
SM:‘SD{(f; L) X :.(xmzxm, ceTn)y M =12,..., |M| is the length of
ond el each field in a flown. We defineM* = {7, 25, ... o}y }.
gnotl s Signature sef5 generated in Step 1 is the input of this step.
utput S ;

With the sorted lengths as input, for candidate signature
fields, each length above the candidate length selecteeéptlSt
as the inputFP, and COVy, which indicates the most basicwill be tested for its goodness according to the score fongti
requirement on the false positives and detection coverage. and the best one with the maximum score will be selected. The
example, in our experiments, we chooB®, = 0.1% and first loop picks a longer length value with the best score.riThe
COVy = 1%. in the second loop, we further optimize it by finding a smaller

In the algorithm below,\;, and M;, denote the flows length with the same score.
detected by signaturef;, /;) in pools N and M respectively.  |n pmf = {2f7 27 ’fvfjg }, if 2% is in the ascending

We set a lowk'P as the basic low-false-positive requiremenirder, it is easy to know that between any two consecutive
A conservatively small value is chosen fatOV, initially elements, m‘me%f#1 and 27 the score is monotonically

because attackers may inject noise into the suspicious. pQQj,_gecreasing im;. Thus we only need to search among all
We will further optimize the values in the subsequent steps.the 21 m=me... . M| for the best scord,ethe total

We process each field class separately. For every field claﬁﬁ .
. : , . mber we need to try is at mojst1]|.
the algorithm takes)(| V| log |A']) time to find the signature The rationale for theysecond I(El(t)/;| is as follow. The signature

rain, and len ko) ime o CIGURe e Gee g o th adge of e e f o s 1
O(K|Nlog [N + Kl./\/l|) Since'|/\/l| is usually far smaller not a go_od gh0|ce, especially Wh_er_1 the_leng_th distributioihs
than| ], the overall time'cost (KA log [N]) normal field |ns'Fances and of malicious field mst_ances ané we
This s’,tep makes use of the fact that, for b'uffer overﬂoseparated. S in the second loop of the algorithm Stef 2,
! Yecreases until the score changes (decreases actually) or
worms, the true worm samples should have longer lengths M) ches the median of two consecutive elementstifi . In the

the vulnerable fields than the normal flows and the noise in t € ction VI-B. we will analvze the advantages of this choice
suspicious pool that is not injected by attackers should feav To sort eac;h/\/lfj needsOy(|M| log M), T% e en e best'
similar length distribution to traffic in\ . If the coveragen score frommy to | M| needs at mos(|M|log |[A]). In the

of true worm samples in the suspicious poedl is more than ) . ) wép
COV,, the vulnerable field length with small false positiveV/Orst case, to find the best signature in the gap between

ratio FP, should have a larger coverage th@i®V, in the andayi, half of the gap needs to be searched. Siife< K,
suspicious pool. Th€OV, andFP, are the very conservative the total running time iO (X (|M|log M| + [M|log|N| +
estimates of the coverage and the false positive of the worrfiz)). G is the possible maximum gap among all the fields.

B. Signature Length Optimization C. Signature Pruning

The first step selected candidate signatures to meet the mostill we have a set of candidate field and length signatures.
basic requirements. In the second step, we try to optimiee thoo many length signatures will cause unnecessary false pos
length value of each candidate signature to find the bestafad itives because we try to match any of the length signatures in
between the coverage and false positives. If the lengttatiige the detection phase. Therefore, in this final step, we willl fin
selected is too long, there will be less coverage of maliioan optimal small subset of signature candidates to be the fina
worm flows. On the other hand, if the length selected is ta@ignature set. Usually, the more signatures we use, the more
short, there will be a lot of false positives. The first stepisery false positives there are but with better coverage.
conservative estimate of coverage. Sometimes a length doeés proved in Section IV-C, to select the optimal small set
improve a lot on the coverage of the suspicious pool but alsé signatures in general is NP-Hard. The algorithm proposed
increases false positives. We need to have a method to cemgeere is not to search for the global optimum but to find a
different lengths to determine which one is a “better” sigme. good solution with bounded false positives and negatives. |
For the sake of brevity, IefP;, denote the false positive ratiothe Step 3 algorithmy’ and v are parameters ang’ < ~.
of signature(f;,l;) and let COV;, denote its coverage onThe Step 3 algorithm has two stages. The first one is the
M. This step aims to maximiz&core(COVy,,FP;,) for each opportunistic stage. We opportunistically find the signesu
field f;. We used the notion score function, which is proposeshich can improve at least’ percent of the initial suspicious



Algorithm Step 2 Signature Length Optimizatio(S,M N ,Score(-,-))

Algorithm Step 3Signature PruningS,M,N)

for signature(f;,1;) € S
sort M /i in ascending order;
find mg such thatri{071 <lj < xi{o;
max_score «— 0;
for m’ = mg to |[M]|
l’, — T j/ —1;
m

if (max_score < Score(COVy ,FP;))

m— [M[; Q—0;
S1 < {ele € S;FP. =0} ; S2 — {e|e € S;FP. > 0} ;
LOOP1:
while (S1 # 0)
Find s € S1 such that
| M| ’
If (5 =9
Q—QU{s} ;51 < S1 —{s};
Remove all the samples which matghn M ;

% is the maximum one b ;

maz_score < Score(COV,;/ ,FP;/); else
I U ’ ’ Break ;
I, end
meemy end
v LOOP2:
5 5 while (S2 # 0)
while (1; > W) Find s € Sz such that‘M—nj‘ is the maximum one b3 ;
if (Score(COVy,,FP;,) == Score(COV;, _1,FP;; 1)) If (2al > )
lj—1;—1 Q—QU{s}t; S2 < S2—{s};
else Remove all the samples which matghn M ;
updateS with 7;; break; else
end Break ;
end end
end end
Output S ; Output 2 ;

pool coverage than the existing signature set without gdimgr we call the best approximated signatureecause it has the

any false positives. Usually; is small. If the best signatures wetightest bound to the corresponding ground truth signatimen

can find for each worm have no false positive, the opportimistompared with signatures generated with adversaries. Then

stage can help improve the true positives even when adiessawith different adversary models and depending on whether th

are present. Then, we use a similar process to find othearmal and worm flow length distributions have a noticeable

signatures with a marginal improvement requirement gap, our algorithm will output different approximated sign
Calculating | M| takes O(log |M]), and thus finding the tures with different attack resilience bounds.

signature with maximum coverage takég K log | M|). Fur- Let M! be the set of true worm flows in and let M? =

thermore, removing samples matched by signaturéakes A — M!, which is all the noise inM. Let the fraction of

O(|M]). Therefore, the final running time for the Step 3Jvorm flows in M be a, i.e.I‘MWI‘ = «. Due to the interest of

algorithm can be bounded y(K (K log [ M|+ [M])). space, we ignore the proofs heRlease refer to our technique
With our three-step algorithm, we guarantee low false poseport [38] for all the detailed proofs

tives and false negatives on the generated signatures ﬂmr:bu 1) Performance Bounds with Crafted Noisés:Theorems 2

overflow worms. For non-buffer-overflow worms, the algonmith 5+ 3, we prove the worse case performance bounds of our

will output an empty set, having found no signatures to megfstem under the deliberate noise injection attacks, with
the minimal requirements on false positives and false W&t crafted noises. This is the worst case. The attackers ngt onl

VI. ATTACK RESILIENCE ANALYSIS fully craft the worms but also inject the crafted noises. The
In this section, we analyze and prove attack resilience of odifference between Theorem 2 and Theorem 3 is that Theo-
algorithm, i.e,, the quality of signatures generated (evaluateem 2 assumes the length distributions of normal flows and
by false negatives and false positives) when attackerscaurworm flows are well apart which is the most common case in
attacks to try to confuse and evade the LESG system. rgrlity. Theorem 3 considers even more general cases, which
particular, attackers may deliberately inject some naise the the length distributions of normal flows and worm flows might
suspicious pool to fool LESG. not be well apart.

A. Worst Case Performance Bounds . Theorem 2. If the best approximated signature has no false
Note that the noisy length signature generation problefggative and no false positive, the three step algorithrputst

(NLB_SG) is a NP-Ha_rd_prob_Iem an_d evéme globa_ll optimum 5 signature sef? such thafNg < b andFPq < FP,-[1=2 .
solution due to the limited input size can be different from & - v

the ground truth signaturd as defined in Section IV-B. The Theorem 3. If the best approximated signature has no false
signatures we generated aapproximated signaturedn the negative and th_e false positive ratio is boundedH¥y,, the
Step 1 and Step 2 algorithms, we always select the figld tvhree—step algorithm 0L11t_pauts a signature Sesuch that*N, <
in the signature candidate set if the worm coverage is IargTera”d FPq =FPq - (LTJ +1).
than COV,. However, in our algorithm, instead of getting the These bounds are still tight, as shown in the example of
optimal lengthL 5, we might getZL’;. We denote the signaturedeliberated noise injection attacks in Section VI-A3.
B’ = (fB,L’%). In the Step 2 algorithm, we tend to choose a 2) Performance Bounds without Crafted Noiselince in-
more conservative signature than the ground truth sigadir jected crafted noises will slow down the worm propagatibe, t
i.e, L'y < Lp. ThereforeFN gy = 0 andFP gy < FPy. worm authors might not want to do that. For example, when the
For most cases, the distributions of normal flows and wornoise ratio is 90%i(e., 90% of traffic from a worm is crafted
flows are well apart, and there is a noticeable gap between ti@ses), the worm will propagate at least 10 times slowen tha
two distributions. In these cases we will d& 3/, = 0, which before based on the RCS worm model [12]. For example, the
has the same power as the ground truth signature. Withd@ade Red Il may take 140 hours (six days) to compromise all
adversaries, our algorithm will output the signatud& which vulnerable machines instead of 14 hours.



Without crafted noisesj.e, the noises are from normalapproximated signature with zero false positive existst Fo
traffic, we are able to prove even tighter performance boundsample ify’ = 1% and~v = 5%, even with 90% crafted
for our system. Here, the Theorem 4 below assumes the lengtiise, in most cases the false negative rate can be bound as
distributions of normal flows and worm flows are well apart0% and the false positive rate as 1.8%. Note, this is thetwors
while the Theorem 5 removes this assumption. Both theorewese theoretical bound, in practice it is very hard to apghoa
assume the noises in the suspicious pool are randomly sdmple the best of our knowledge, we are tfiest network-based
from the normal traffic. approach that can achieve this performance.

Theorem 4. If the noise in the suspicious pool is normal There are several different attacks proposed in
traffic and not maliciously injected and the best approximdat Paragraph [20]. Among them, thguspicious pool poisoning
signature has no false positives and no false negatives, thdtackis similar to the deliberate noise injection attack. Next,
the three-step algorithm outputs a signature §esuch that we discuss other attacks.

FNq = 0 andFPg, = 0; in other words, with no false negative Randomized red herring attack or coincidental attaskio

and false positive. inject unnecessary tokens into the content based appreache
In this case, the outputted signature Setontains the best With @ probability model so that these tokens are highlylyike
approximated signature. to be included in the signatures, producing more false ezt

fA similar attack can be proposed for our approach, but it

traffic and not maliciously injected and the best approxmdat requires .the attackers to use .the don'g care fields, .Wh'Ch
signature has no false negative and a false positive ratfy€ the fields that can be manipulated without influencing the

bounded byFP,, then the three-step algorithm outputs & > exr?cutlo_r;hUn::kehth?tcoatent-basgd_ S|%nature geln?ril
signature sef such thatFN, < FPy-1=¢ and FPg, < FP,. approaches with which attackers can inject as many tokens

. . . ; .as they want, there may be zero or only a small number of
The evaluation results in Section VII-B are consistent Wltie 4 y y

he th d fon b han the bound di uch “don’t care” fields in a protocol, so the attack may not
the theorem and are often better than the bounds proved In €, jicable. Moreover, we use a signature set, so when any

theorems. . . . . _ signature in this set matches the sample, we label the sample

3) Discussions: In this section, we discuss some issUegs 5 worm. This is more resilient than using the whole set as
related to the attack resilience theorems. a signature.

Multiple worms.For single worm cases, the theorems can Dropped red herring attackincludes some tokens in the
be di_rectly applied. In the case that multiple worms are & trbeginning of the worm spread and drops those tokens in
suspicious pool, for each worm we treat the other worms e hropagation of the worm. Again, a similar attack can be
noises, and thus we have the same bound. proposed for our approach, but there are several problems as

Parameterk'P. From the theorems above, we can tell thafe|| a5 countermeasures for such attacks. Firstly, thischitt
FP, plays an important role on the bound. We have thgs, requires “don't care” fields. Secondly, we can potéigtia
following observations for its value. Usually given a starl )| getect the worm with any disjunction in the signature
protocol, a popular implementation of peer/server showd Ret instead of using the conjunction. Thirdly, this attask i
able to interoperate with various different implementasi®f o4 to implement because it requires the worm to dynami-

peer/clients. Thus even for a server implementation with @lly change itself with synchronized actions. Fourthhere

buffer overflow vulnerability, in most cases the normalfiaf 5 0" some dynamic update problems for signature change and
should not trigger the buffer overflow. Here we assuifii®) is  signature regeneration. Since our signature generatidasts
no larger than 0.1%, and we conservatively set it to be 0.1%¢an alleviate the damage by this attack.

i.e, the server should be able to handle 1000 normal requestyoreover. there is another similar attack which can be

without crashing (buffer overflow triggered). This is eqalent yesigned specially for length-based signatures. We dathigth
to a server handling six requests per hour and not crashigig,hning attack Since the attackers have to inject an input
for a week. We believe this is reasonable for most populg{nger than the buffer length 5, they can inject a long input

implementations of a protocol. - L at the beginning and gradually decrease the lengti\tEy
Assumptions for theorems on attack resilieridgere are tWo i, each run of infection untilL 5. However, if there is a gap

general assumptions for all the theorems above. Firstett®er potweenZ, and Lz, in our design we choose the signature
little or no overlap for the input length of vulnerable fields R P

between the normal traffic and the worms. This is discussed!@ngth to bel; = —==—= so that thez;;_, is comparable
Section IV-B and also validated in our experiments. Seogndto L and thezl; is comparable tolL. In other words, we
the attacker cannot change the field length distribution wfill choose the median of. and L. Therefore, even when
normal traffic, which is also generally true. Compared witthis attack is launched, we only need to regenerate theHengt

the recent Hamsa system [14], we have fewer assumptions arghatureO(log(L;, — Lg)) times wherel; is the initial length

Theorem 5. If the noise in the suspicious pool is norma

allow crafted noises. that the attackers use.

B. Resilience Against the Evading Attacks Innocuous pool poisonings the poisoning of the normal
In this section, we discuss the resilience of our schemgaffic pool. However, in general, this is very hard. First,

against several recently proposed attacks [19]-[22]. the amount of normal traffic is huge, even to poison 1% is

Deliberate noise injection attackn [19], deliberate noise hard. Second, using the random selection policy of normal
injection is proposed to mislead the worm signature gendraffic [14], it is very hard for attackers to poison the traffi
ator. Most other existing signature generators suffer unda the right time to have an effective evasion during the worm
this attack. However, even with this attack, our approaah careakout.
perform reasonably well, especially in the case when thé besln [21], Simonet alpropose two types oéllergy attacks



The type | attack makes the IDS generate signatures which egent. The vulnerable buffer is 256 bytes long and stores the
deny current normal traffic. The type Il attack makes the ID&ata transferred in the field ObjectSyntax.

generate signatures which can deny future normal traffie Th SNMP Trap worm. The worm targets Mnet Soft Factory
type | allergy attack does not work for our approach becaublmdeManager Professional. When it processes SNMP Trap
we check the false positive against the normal traffic. Tlpety messages, it allocates a buffer of 512 bytes to store the data
Il attack may work in theory, but in practice it is very hard tdransferred in the field ObjectSyntax.

happen. The contents of future traffic may change a lot moreFTP worm I. It exploits a vulnerability in the Sami FTP
than that of the current normal traffic, but the length profife Server. The content of the USER command must be longer
fields in the protocol will still remain stable. Therefore,is than 228 bytes to overflow the buffer storing it.

hard to find such a case. Even if there is such a case, it is veryr TP worm Il. It targets a popular desktop FTP server, Serv-

hard for the attack to predict. U. The content of the SITE CHMOD command plus a path
The blending attacks[22] cannot work for our approach name is stored in a buffer which is 419 bytes long.
because the worm has to use a longer-than-normal input folFTP worm Ill. It targets the BulletProof FTP Client. The
the vulnerable field and they cannot mimic the normal trafficontent of the FTP reply code 220 must be longer than 4104
bytes.
VII. EVALUATION SMTP worm. This vulnerability resides in the RCPT TO

We implemented the protocol parsing using Perl scriptgymmand of the Ipswitch IMail Server.
with BINPAC and Bro, as mentioned in Section IlI-A, and HTTP worm. It exploits the 1IS vulnerability also attacked
implemented the LESG signature generatoMATLAB by the famous worm Codered. The difference is that we varied

A. Methodology . ) the length of our created worm, while Codered has a fixed
We constructed the traffic of eight worms based on re%ngth.

world exploits and collected more than 27GB of Intemetfitaf ) Normal Traffic Data: The traffic traces were collected

plus 123GB of email SPAM. To test LESG's effectivenessy the two gigabit links and another hundred-megabit link of
we used completely different datasets for LESG signatufige gateway routers at Tsinghua University campus network
generation (i.e. training dataset) and for signature u@sting iy China on June 21 - 30, 2006. All the traffic at Tsinghua
(i.e..evaluation dataset).. For the training dataset, wel wse University to/from DNS, SNMPv1 Trap, SNMPv1, HTTP and
portion of the worm traffic plus some samples from the normgirp control channel was collected without using any form of
traffic (as noise) to construct the suspicious pool, and ve Ussampling. We used another 123GB SPAM dataset from some
a portion of the normal traffic as the normal pool. For thgpen relay servers at a research organization in the U.S. for
evaluation dataset, we used the remaining normal traffiesd tyne SMTP. The datasets are summarized in Table IV. Since a
the false positives and worm traffic to test false negatives. gNMPpy1 Trap message is sent to port 162 and its format is
1) Polymorphic Worm Workload: To evaluate our gifferent from other types of messages, we treat SNMPv1 Trap
LESG system, we created eight polymorphic wormgs a protocol separate from SNMPv1 on port 161. Also note
based on real-world vulnerabiliies and exploits frongnat for evaluation purpose, in our prototype system, wey onl
securi tyfocus. com as shown in Table Ill, by modifying parsed the GET request for HTTP, which has the same effect
the real exploits to make them polymorphic. The eight wormgs 5 complete parsing because the worm is only related to the
use six different protocols, DNS, SNMPv1, SNMRM},  GET request. The traces are checked by the Bro IDS system
FTP, SMTP and HTTP. Since the original exploit code ig make sure that the traces are normal traffic.
not polymorphic and the field lengths are fixed, we modified 3) Experiment Settingsin the Step 1 algorithm, we set
them as follows: for the exploit unrelated fieldse."dont pp; — 0.1% and COV, = 1%. The score function in Step
care” fields, we randomly chose the lengths with the sameg Score(COV,FP) = (1/logFP + 1) « COV, which works
distribution as those in normal traffic; for the signatureated || in practice. The basic requirement of a score functien i
fields, the lengths in the original exploit codes are long@nt hat the score should be monotonically increasing v@taVv
the buffer lengths in most cases, so we used these values,ag decreasing withP. This function has another merit in that
the upper bound in the worms and used the hidden bufferargeFp (eg. FP [10-3,10~2)) affects the score greater
length or a larger value that we believed was necessary tfyn a much smallefP (eg.FP € [10-5,10~4]) does. In Step
exploit the vulnerability as the lower bound (specified bg ths e choosey’ = 1% andy = 5%, indicating that we focus
row “ground truth” in Table Ill); moreover, for some explsit o the worms that cover more than 1% of the suspicious pool.
that have rigid exploit conditions, we kept the fixed lengttB. Signature Generation for A Single Worm with Noise
In the Table Ill, the row titled “signature related field lehg We evaluated the accuracy of LESG with the presence of
specifies whether the overflowing field length is fixed or nohoise. The noise is the flows randomly sampled from normal
For the vulnerability for which we cannot find the groundraffic, and mixed with worm samples to compose the suspi-
truth by searching literature, we indicate such as “unkriown cious pool. We chose DNS, SNMP, SNMB,, SMTP and
The detailed descriptions of the worms we created are HI TP protocols to demonstrate the cases of a single worm
follows. with noise. For HTTP we also tested our algorithm against the
DNS worm. It's a variant of the lion worm that attacksCodered worm.
a vulnerability of BIND 8, the most popular DNS server. For each protocol, we tested the suspicious pool size of 50,
The exploit code constructs a UDP DNS message with 180, 200 and 500, and at each size we changed the noise ratio
QUESTION section whose length is 493 bytes and difficuftom O to 80%, increasing 10% in each test. After signature
to make variable. generation, we matched the signatures against another 2000
SNMP worm. It attacks a vulnerability in the NAI sniffer samples of worms and an evaluation set of normal traffic to



Protocol DNS SNMP | SNMP;qyp FTP; FTP; FTP3 SMTP HTTP
Bugtraq 1D 2302 1901 12283 16370 9675 20497 19885 2880
ground truth (fieldID,BufLen)| (2,493) | (6,256) (7,512) (1, 228) | (11,419) | (33, 4104)| (3, unknown) | (6, 240)
signature related field length] fixed variable variable variable | variable variable variable variable
TABLE Il
THE SUMMARY OF WORMS
Number of Normal pool Evaluation dataset Signature Tr. FN | Tr. FP
Fields Bytes | Flows | Hours | Byies | Flows | Hours Step 1 {(1,62), (2,66), (3,2), (4,15), 0 0.32%
DNS: 14 120M | 320K 21 960M | 4.4M 120 (5,28), (6,47), (10,99),(11,2)
SNMP: 10 | 12M 13K 20 282M | 77K 120 Step 2| {(1,68), (2,296), (3,21), (4, 99), [0} 0.15%
SNMP;: 11 | 2IM 16K 72 67M 54K 218 (5,333), (6,543), (10,111), (11,p)
FTP: 60 2.7G 66K 14 10G | 373K 37 Step 3 {(2, 296} 0 0
SMTP: 12 | 840M | 210K 24 122G | 31M 744 TABLE VI
HTTP: 7 2G 77K 7 11G | 360K 40 RESULT OF EACH STEP FOR THDNSWORM
TABLE IV

DATASET SUMMARY FOR EVALUATION

- presented in Table V.
test the sensitivity and accuracy. . e did similar tests for the DNS worm using normal pool
T_abIeVshows the range of the signatures we generated_ hs of 5K, 10K, 20K, and 50K, and we found that our
their accuracy. Tr. FN/FP denotes the training false negati ,,,4ch is not sensitive to the size of the normal pool eithe
and false positives in the training data. Ev. FN/FP dendtes t )
evaluation false negatives and false positives in the evialn F Speed and Memory Consumption Results

data set. Under all the pool sizes and noise ratios, the sante Normal pool | Protocol Signature generation
signature fields are generated. Because the size of suspicio (Bytes/Flows) | - parsing (in different pool size)
N f . . . (Bytes/Flows) | (secs) (secs)
pool is limited, the signature length varies in differenstee 50T T00 1200 T 500
We checked these signatures against the evaluation dataset—TpNs T20MI320K 58 21 | 36 | 94 | 18
and they all have excellent false negative and false pesitiv| SNMP 12M713K 8 0.08 | 0.09 | 0.15 ] 0.32
ratio. It may be noticed that generated signature lengtes af SNMP: | 21M/16K 4 01210241037 0.88
ller than the true buffer length, because the lengthimab alld 276700 - RECEEL NI I
sma gth, g ) SMTP | 836M/2I0K 50 047 1.30 | 1.84 | 3.36
flows are usually much smaller than the buffer length, whic TABLE VI

is reasonable since the buffer length is designed to be tonge  SPEED OF PROTOCOL PARSING AND SIGNATURE GENERATION

than the longest possible normal requests.
We evaluated the parsing speed by using Bro and BINPAC

Worm Signatures T.FN [ Tr. FP [ Ev. FN [ Ev. FP and the speed of our signature generation algorithm. Since
(ID length) HTTP was not completely parsed, we only provide the results
DNS (2, 284-296) 0 0 0 0 :
SNMP (6, 133-239) 0 0 0 0 of the other five protocols. Table VII shows that the speed
SNMP; (7, 304-314) 0 0 0 0 of the signature generation algorithm is quite fast, thothgh
SMTP (3, 109-112) 0 0 0 107° speed is influenced by the sizes of the suspicious pool and the
FTP ((111"122&13%% 0 0 0 0 normal p_ool. The protocol parsing for the norma] pool can be
(33, 2109-2121) done offline. We can run the process every once in a while (e.g.
HTTP (6, 239-240) 0 0 0~1% | 101 several hours). These datasets were collected over a 28-hou
CodeRed (6, 339) 0 0 0 107" period. For the suspicious pool, since it is much smallentha
TABLE V the normal pool, the protocol parsing can be done very guickl

SIGNATURES AND ACCURACY UNDER DIFFERENT POOL SIZE AND NOISE . . .
Moreover, as mentioned in [39], the BINPAC compiler can be

C. Signature Generation for Multiple Worms with Noise built with parallel hardware platforms, which makes it much
We also evaluated the case of multiple worms with noiggster.
using the FTP protocol. We have three FTP worms in total.

We tested the suspicious pool sizes of 50, 100, 200 and 500, Normal pool size Suspicious pool size
gnd at .each siz.e we changed the noi_se ratio from_O to 70%, DNS 50K 5;2&8 5.6232&8 5.32&8
increasing 10% in each test.The result is also shown in Tdble (14 fields) [T00K | 11.26MB | 11.28MB | 11.33MB
D. Evaluation of Different Stages of the LESG Algorithm FTP SOK | 8.43MB | 8.45MB | 8.53MB

The LESG algorithm has three steps, and we evaluated the | (60 fields) [ TOOK | 16.83MB | 16.85MB | 16.93MB
effectiveness of each step. Table VI illustrates the resoft TABLE VIII

each step for the DNS worm with a suspicious pool of size MEMORY USAGE OF THE ALGORITHM

100 and a noise ratio 50%. Table VI shows that the false ) ] )
positive rate is largely decreased by refining each sigeatyr 1€ memory usage of the signature generation algorithm
length in Step 2. And comparing with the ground truth shown iiPlemented inMatlab was evaluated under different pool
Table 111, we can see that in Step 3, the best and most accurgl#s: shown in Table VIIl. The memory usage is proportional
signature is selected, further decreasing the false pesiti  t© the normal pool size and the number of fields.
E. Pool Size Requirement VIIl. DISCUSSIONS OFPRACTICAL ISSUES

We tested the accuracy of our algorithm when only a small a) Speed of Length Based Signature Matchimbe oper-
suspicious pool is available. We chose suspicious pool&ef sation of length-based signature matching has two stepso{ro
10 with a noise ratio of 20% and of size 20 with a noise raticol parsing of packets and field length comparison with the
of 50%. All the tests generated signatures within the rangegnatures. The latter is trivial. The major overhead is for



protocol parsing. Currently, the Bro and BINPAC based paysi [5]
can achieve 56- 200 Mbps. As mentioned in [39], with parallel
hardware platform support, BINPAC may achieve 1.0 Ghps.
On the commercial products side, Radware’s security svatch
an ASIC-based network processor can operate at 3 Gbps lihR
with protocol parsing capability [40]. Therefore, with davare [g]
support, the whole length-based signature matching caobe d
very fast, which is comparable to the current speed of patter (o
based (string) signature matching techniques widely uged |
IDSs. (10]
b) Relationship Between Fields and Vulnerable Buffersj;q;

The main assumption of length based signatures is that there
a direct mapping between variable length fields and vulrera
buffers. In addition to the vulnerabilities shown in the leva|13]
uation section, we further checked 11 more buffer overflow
vulnerabilities fromsecurit yf ocus. com We found that 14]
the assumption holds for all cases except one. Therefore, we
know in most situations that LESG should work. Next, we w
first examine the normal cases and then check the special

In Section IV-A we show that the consecutive fields can be
combined together to form eompound fieldFor the variable [16
length fields which cannot be further decomposed, we cafhthe17
simple fieldsWe found in 13 cases (out of the total of 18 cases
that we examined) that the field mapped to the vulnerablebuft; g
is a simple field while in 3 cases it is a compound field. There
is one case we found in which two simple fields, which cannﬂgl
be combined to form a compound field, are mapped to ohé
vulnerable buffer. Therefore, either of the two fields cansea [20]
the buffer overflow to happen. In all these cases, we can %t]
the accurate length-based signatures. However, we did fied 0
case (again, 1 out of 18 cases) which does not have lendé#
based signatures. It is a buffer overflow vulnerability prets ,5
in versions of wu-ftpd 2.5 and below. The vulnerable buffer
corresponds to the path of the directory, so if a very deep pd#4l
is created by continuously making new directories receigiv |5
the buffer will eventually be overflowed. From the protocol
messages of the FTP, only a set of MKD (mkdir) command&
can be seen, and the length of each directory could be normg
Therefore, no length-based signatures exist.

(6]

[28]
IX. CONCLUSIONS

In this paper, we proposed a novel network-based automati

worm signature generation method that generates lengtbeba
signatures for buffer overflow worms. Our approach has go&¥!
attack resilience guarantees even under deliberate ngjse-i 31
tion attacks. We further show that our approach is fast and
accurate through experiments and evaluation based on ré3
world vulnerabilities and network traffic. [33]
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