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Abstract— TCP is the dominant transport protocol used in
the Internet and its performance fundamentally governs the
performance of Internet applications. It is well-known that
packet losses can adversely affect the connection duration of
TCP connections—however, what is not fully understood is
how well does the TCP design deal with losses. In this paper,
we systematically evaluate the impact of design parameters
associated with TCP’s loss detection/recovery mechanisms on the
performance of real-world TCP connections. For this, we rely
on an analysis tool that partially emulates the sender-side TCP
implementations of 5 prominent OSes for passively analyzing the
traces of TCP connections. Our study conducts passive analysis
of more than ��� � million real Internet TCP connections. We find
that the recommended as well as widely-implemented settings
of TCP parameters are not optimal for a significant fraction of
Internet connections.

I. INTRODUCTION

TCP is the dominant transport protocol used by Internet
applications—including the world-wide web, peer-to-peer file
sharing, and media streaming [1], [2], [3], [4]. The reason
for TCP’s popularity is that it offers several useful service
semantics—perhaps the most useful of these is that of reli-
able data transfer. TCP implements reliability by detecting
loss of data segments and retransmitting lost segments—
unfortunately, loss detection/recovery mechanisms can be
time-consuming. While it is generally known that segment
losses can adversely impact the duration1 of TCP connections,
the extent to which they do so in the Internet has never been
quantified. In this paper, we address this issue by evaluating
the impact of TCP loss detection/recovery mechanisms on the
performance of real-world TCP connections.2

TCP detects and recovers from losses using two basic types
of mechanisms: retransmission-timeouts (RTOs) and fast-
retransmit/recovery (FR/R). Two performance-related goals
guide the design of these detection mechanisms. First, TCP
should accurately identify segment losses. In particular, if
TCP erroneously inferred that a segment was lost, it would
unnecessarily invoke loss recovery and increase the connec-
tion duration. Second, TCP should quickly identify segment
losses. A longer detection period adversely impacts connection
duration as well. Unfortunately, these two goals conflict with
each other—a “quick” inference of segment loss would also

1Throughout this paper, we define the connection duration of a TCP
connection as the total duration of the connection (the time taken to complete
all data transfers). This includes service times and user think times for
applications that use persistent TCP connections.

2This research was supported in part by NSF CAREER award CNS-
0347814 and NSF RI grant EIA-0303590. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the NSF.

be erroneous when segments (or their ACKs) are not lost but
merely delayed or reordered in the network. To achieve high
loss-estimation accuracy, therefore, TCP would necessarily
have to wait longer for ACKs that may merely be delayed.

As detailed in Section II, this fundamental trade-off between
accuracy and timeliness is controlled by several design param-
eters associated with RTO and FR/R based loss detection—
these include the dupACK threshold, the minimum RTO, the
RTT-smoothing factor, the weight of RTT variability in the
RTO-estimator, and the RTO estimator algorithm itself. While
the proposed standards for TCP recommend values for each of
these design parameters, TCP implementations in prominent
operating systems (OSes) differ (sometimes significantly) in
the values used. Our objective in this paper is to systemat-
ically vary these parameters and: (i) study the accuracy and
timeliness of TCP loss detection/recovery in real-world TCP
connections originating from different sender OS stacks, and
(ii) study the impact of loss detection/recovery on overall
durations of these connections.

We rely on passive analysis of traces of more than ��� 	 mil-
lion real-world TCP connections originating from 5 prominent
sender-side OSes—including Linux, Windows XP, MacOS,
Solaris, and FreeBSD. Our study thus incorporates a large,
diverse, and realistic mix of applications, user behavior, net-
work paths, and traffic conditions. Our key findings are:

 Most of the current implementations of RTO estima-

tors are conservative in incorporating variability in TCP
RTT. Reducing the influence of RTT variability can help
significantly reduce the connection durations of TCP
connections.
 Timer granularity and the minimum RTO no longer
significantly limit TCP performance.
 The Linux RTO estimator converges fast and is the most
efficient. If properly configured, this estimator has the
greatest potential for improving connection durations.

The rest of this paper is organized as follows. We formulate
the problem of configuring TCP loss detection/recovery in
Section II. We present our data sources and methodology in
Sections III and IV, respectively. A detailed analysis of the loss
detection mechanism is presented in Section V. We summarize
related work in Section VI and our conclusions in Section VII.

II. PROBLEM FORMULATION

TCP senders assign sequence numbers to all data bytes
transmitted and receivers send cumulative acknowledgments
(ACKs) to confirm receiving data. Senders detect segment



losses using two types of mechanisms that rely on the re-
turned ACKs: retransmission timeouts (RTOs) and fast re-
transmit/recovery (FR/R):

RTOs: TCP sets a timer to expire after an RTO-amount
of time when a segment is transmitted; if an ACK
confirming that segment is not received before the
timer expires, the sender concludes that the segment
was lost. The value of RTO is determined using the
relation: �
������������������� �!�"������#%$%� , where: ������� is
a moving average of the connection round-trip time
(RTT), computed as: �������&�('*),+.-0/1�2�������3�4-5�&����� ;
������#%$%� is a moving average of the variability in
RTT, computed as: ������#6$7�8�9':);+8$�/<�=������#6$%� �
$<�<> �������3+?�����0> ; $A@B-C@:�.@B� , are positive constants and
$A@B-4DFE G"@0)0H . The value of RTO increases with �
and � , whereas $ and - determine the weight given
to history when RTT is quite variable. The actual
value of the RTO timer is set to a predetermined
value, �JILKM���
� , if the value computed above is
smaller than �NILKM�
��� . The above formulation is
intended to compute an RTO that is greater than the
current RTT, in order to avoid inferring loss of seg-
ments for which the ACK is merely delayed. Since
RTT variability can be high, the value of RTO can
be high, especially with the recommended settings
for the five parameters, $A@O-�@:�.@B�1@P�NILKM�
��� [5]—
RTO-based loss detection can, therefore, be time-
consuming by delaying the response to a loss.

FR/R: FR/R is a faster means of detecting losses—if a seg-
ment is lost, delivered segments with higher sequence
numbers trigger duplicate (cumulative) ACKs for its
preceding segment. Hence, when a sender receives
duplicate ACKs for a segment, it can conclude that
the next higher segment was lost. However, reorder-
ing of segments in the network can also trigger the
generation of duplicate ACKs. In order to avoid
erroneously inferring loss in such cases, TCP senders
usually wait for QSRF) duplicate ACKs [6] before
concluding a segment was lost.

TCP receivers may also use selective acknowledgments
(SACKs) for informing the sender of missing segments—this
helps quickly detect subsequent losses when multiple segments
are lost.

When loss is detected, segments are immediately retrans-
mitted. Loss recovery is also accompanied by a reduction in
TCP sending rate as a means of congestion control [6]—the
reduction is quite significant for RTO-based loss detection.
The invoking of loss detection/recovery can thus be quite
costly in terms of connection duration. The exact cost de-
pends on the choice of values for each of the 6 parameters
associated with loss detection: Q?@B$A@B-�@P�T@O�1@:�JILKM���
� . Two
performance-related goals guide the optimal setting of these
parameters:

 High accuracy of loss detection: First, a TCP sender

should be accurate when it identifies segment losses.
If TCP erroneously infers that a segment was lost, it
would unnecessarily invoke loss recovery and increase

Parameter Linux Windows FreeBSD Solaris
Timer granularity 10ms 100ms 10ms 10ms

Initial RTO (s) 3 3 3 3.375UWVYX[Z]\]^ (ms) 200 200 1200 400_ 0.25 0.25 0.25 0.25`
0.125 0.125 0.125 0.125U 1 1 1 1.25a

4 4 4 4b
3 2 3 3

RTO srtt + srtt + srtt+ 1.25*srtt +
vartt 4*rttvar 4*rttvar 4*rttvar

TABLE I
VALUES OF KEY PARAMETERS IN DIFFERENT TCP STACKS

the connection duration. Accuracy of FR/R-based loss
detection can be improved by selecting a larger value of
Q , the duplicate ACK threshold—a larger Q would help
avoid spurious retransmissions when duplicate ACKs are
generated by segment reordering in the network.
Accuracy of RTO-based loss detection can be improved
by selecting a larger value of RTO, which is determined
by the parameters $A@O-�@:�.@B�1@P�NILKM�
��� —a larger RTO
would help avoid spurious retransmissions when seg-
ments or their ACKs are not lost, but merely delayed
in the network.
 Timeliness of loss detection: Second, a TCP sender should
quickly identify segment losses. The longer a sender takes
to detect a loss, the greater is the potential delay before
sending new data3—the longer, thus, is the connection
duration. This is especially true for RTOs, which have
long detection times—these can be reduced by selecting
a smaller value of RTO.
The loss detection times for FR/R can also be reduced
slightly by selecting a smaller value for Q —in this case,
the sender has to wait for a smaller number of duplicate
ACKs before it can infer a loss. However, much more
significantly, a smaller value of Q enables more losses
to be discovered using FR/R, rather than RTOs—this is
especially true for small connections that do not transmit
enough segments to generate Q duplicate ACKs. Given
that RTO-based loss recovery is more costly than FR/R-
based recovery, this further helps improve connection
durations.

It is apparent from the above that the goals of accuracy and
timeliness of loss detection impose conflicting requirements
on the values of the design parameters—accuracy requires the
RTO and Q to be large, while timeliness requires these to be
small.

The proposed standards for TCP recommend values for
each of these parameters [5], [6]—however, these recommen-
dations are based on empirical evidence collected more than
a decade ago. Furthermore, real-world TCP implementations
differ, sometimes significantly, in their default settings of
these parameters (see Table I).4 This naturally raises two
important questions regarding the efficacy of TCP loss de-

3Typically, such delays occur when the sender can not advance the send
window because the lost segment has not been ACKed.

4Linux adjusts c dynamically, depending on the rate of occurrence of
spurious FR/R-based retransmissions.
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Fig. 1. Distribution of Bytes Transmitted in Each Connection

tection/recovery: Are the parameter settings in different TCP
implementations working well in reducing connection dura-
tions? Are the decade-old recommended settings in the TCP
standards optimal for the current Internet? These questions
have been partially addressed in a couple of key studies [7],
[8]—however, as described in detail in Section VI, most
studies were conducted nearly a decade ago; consequently,
these do not incorporate contemporary properties of real-world
TCP implementations, Internet paths, and application behavior.
More importantly, to the best of our knowledge, no previous
study has modeled the impact of TCP parameters on the
overall durations of TCP connections.

Our Contribution: In this paper, we consider each of the
design parameters associated with TCP loss detection and: (i)
quantify the impact of these on accuracy and timeliness of
real-world TCP implementations, and (ii) model and quantify
the impact of these on overall TCP connection durations in
the current Internet. Our study incorporates the behavior of 5
prominent sender-side OSes and relies on passive analysis of
more than 2.8 million real-world TCP connections. To the best
of our knowledge, this is the largest and most comprehensive
study of these design parameters.

In the following sections, we elaborate on our analysis
methodology and results. We first describe the connection
traces used for our study.

III. DATA SOURCES

Table II describes the traces used in our analysis. These
traces are bi-directional and are collected from links with
transmission capacity ranging from 155 Mbps to OC-48. The
jap trace [9] was collected off a trans-Pacific link connecting
Japan to the US by the MAWI working group; the unc trace
was collected at the campus-to-Internet link of the University
of North Carolina at Chapel Hill (UNC); the wls trace captures
wireless TCP connections from over 600 wireless access points
within the UNC campus; and the ibi trace captures traffic
served by a cluster of high-traffic web-servers (ibiblio.org).
All traces except the one from the link to Japan were collected
using Endace DAG cards [10]; the jap trace was collected
using tcpdump [11]. These traces are fairly diverse in their
geographic location, proximity to TCP senders, as well as
types of users represented. The traces also vary significantly in
the distribution of bytes transmitted per connection (see Fig 1).

IV. METHODOLOGY

Our objective is to study the impact of different design
parameters on the performance of TCP loss detection/recovery
mechanisms. Specifically, given a packet-header trace of a
TCP connection, our passive analysis would need to: (i) infer
the configuration of the 6 design parameters at the sender;
(ii) identify all instances of loss detection/recovery attempts
by the sender; (iii) determine the accuracy and timeliness of
each loss detection; and (iv) vary the 6 design parameters and
estimate the impact on the overall connection duration. We
address each of these steps as described below.

A. Identifying Loss Detection Attempts and Parameters:

We rely on our recently-developed passive analysis
tool [12], [13] that does two things relevant to our analysis.
First, it identifies all segment retransmissions for each TCP
connection in a packet trace, and classifies these based on
the corresponding loss-detection mechanism—including RTO,
FR/R, or SACK. Second, it identifies if the retransmission
was necessary or spurious (depending on whether the original
segment was actually lost or not). In order to do this analysis
for traces of real-world connections, the tool partially emulates
an enhanced version of the sender-side TCP state-machine
for 5 prominent OSes—including, Linux 2.4.x, Windows
XP/2000, Solaris 10, FreeBSD 5.2, and MacOS.5 It is capable
of identifying the sender-side OS for each connection—more
relevantly, it identifies the setting of the 6 design parameters
of interest to us.

We run this tool against all TCP connections traced and
select those for which the tool can unambiguously identify the
sender-side OS. We validated the OS-identification using p0f, a
passive fingerprinting tool [14], and find the OS-identification
accuracy to be more than 99.9%. Since our objective is
to study loss detection/recovery, we consider traces of only
those connections that experience at least one segment loss.6

Table III summarizes the impact of applying these filters to
our traces—a total of more than 2.8 million connections—as
well as the distribution of connections across the 4 OSes. Our
traces provided a large set of Windows and Linux connections,
but relatively few Solaris or FreeBSD connections.

B. Studying Accuracy and Timeliness of Loss Detection:

Note that the above tool helps compute the accuracy of loss
detection by identifying which retransmissions are spurious. In
order to compute the timeliness of loss detection/recovery, we
augment the tool as follows. For each loss detection event,
we determine the time spent in loss detection—defined as
the time difference between the original transmission and the
retransmission of a segment—as well as the the time spent
in recovery—defined as the time difference between the loss
detection and receiving of a ACK for the highest segment
transmitted before the detection (indicating that all losses have
been recovered).

5MacOS and FreeBSD have the same TCP implementation—henceforth,
we refer to connections from either of these OSes as “FreeBSD” connections.

6The tool can also analyze connections with no losses to measure the false-
positives rate of TCP loss detection (when TCP erroneously infers losses) in
these—due to space constraints we omit this analysis from this paper.



Trace Duration Avg TCP Load # Connections # Bytes # Packets
japan-155Mbps-2004 (jap) 4h 1.93 Mbps 0.3 M 3.5 G 3.7 M
UNC-1Gbps-2005 (unc) 4h 74 Mbps 14.5 M 133.3 G 151.0 M
ibiblio-1Gbps-2005 (ibi) 4h 90.64 Mbps 0.9 M 163.2 G 158.9 M

wireless-2006 (wls) 178h 0.61 Mbps 9.7 M 48.5 G 68.9 M

TABLE II
GENERAL CHARACTERISTICS OF PACKET TRACES

Lossy Connections Lossy Explained Connections Distribution across OSes
Trace % Conn % Bytes % Packets % Conn % Bytes % Packets % Windows % Linux % Solaris % FreeBSD

jap 51.34 84.0 85.42 39.83 26.0 31.25 23.70 28.40 2.23 45.67
unc 15.83 77.28 67.73 14.91 39.41 39.18 84.36 2.22 10.69 2.73
ibi 10.67 83.15 81.60 8.13 26.10 33.44 0 100 0 0
wls 4.23 77.50 72.36 4.19 21.32 27.34 99.63 0 0 0.37

TABLE III
CONNECTIONS USED IN OUR ANALYSIS

C. Studying Impact of Design Parameters:

For this, we create several different instances of the emu-
lated sender-side TCP state-machine—one instance for each of
several different configurations of the 6 design parameters. We
then re-process our traces using these modified state-machines
and estimate for each sender configuration: (i) whether a
segment loss would be detected by either FR/R or RTO, (ii)
whether a spurious retransmission would be avoided, and (iii)
whether a segment would be spuriously retransmitted due to
a premature RTO or spurious dupACKs. We use this data,
to compute the accuracy and timeliness of the corresponding
sender configuration.

It is important to note that this passive evaluation method-
ology does not let us incorporate the interaction between
the modified state machines, TCP congestion control, and
subsequent network feedback (RTTs and losses)—only active
experimentations with modified kernels could let us do that.
Instead, we assume that RTTs and losses are independent
of TCP loss detection/recovery behavior, and estimate how
efficient each parameter configuration is.

D. Studying Impact on Connection Durations:

Finally, we quantify the impact of changes in the accuracy
and timeliness of loss-detection, on the overall connection
durations. Note that a change in parameter settings can result
in one or more of the following events—for each such event,
we augment the tool to re-process the trace of each connection
and compute the reduction in connection duration:

 A spurious FR/R-based loss detection is avoided. In this

case, the sender would not unnecessarily retransmit a
segment. More significantly, the sender would not reduce
its sending rate after “recovering” from the perceived loss.
If the TCP flight size7 was �Cd before the segment was
retransmitted, it would take the sender de�f) RTTs to
recover the same flight size after exiting FR/R. However,
the sender also achieves some goodput in this duration.
For each such avoided spurious FR/R-based loss recovery,
we derive in [15] an estimate of the overall reduction in
connection duration (in units of RTT) to be:

g 'Yd1/h� dW�i),+�j dAkl+Tdm dW�i) (1)

7Flight size is the number of segments transmitted but not ACKed.


 A spurious RTO-based loss detection is avoided. When
a sender avoids a spurious RTO-based retransmission, it
saves time spent on recovering the flight size. Assume
that the flight size was ��d before the RTO expired; on
RTO-expiry, the flight size is reduced to 1. It would take
the sender npo�q1'rdA/6�Jd
+e) RTTs to recover the flight size.
However, the sender also achieves some goodput in this
duration. For each such avoided spurious RTO-based loss
recovery, we derived an estimate of the overall reduction
in connection duration (in units of RTT) to be [15]:

�;'YdA/s� dt�4uwv7xyd +z),+ j dAk]�{d|+T}m dW�4uwv7x&d~+z) (2)


 A loss is detected by FR/R, instead of an RTO. Assume
that the flight size was ��d when a loss occurred. If the
loss is detected by FR/R instead of an RTO, there are two
ways in which the connection duration reduces. The first
is in the time it takes to detect the loss, and is given by
the difference between the RTO and time at which the
Q~�r� dupACK is received (usually around 1 RTT). The
second reduction is due to the fact that the TCP sending
rate after exiting from FR/R (flight size is reduced to d )
is usually higher than after an RTO expiry (flight size is
reduced to 1). It would take the receiver nro�q�'YdA/�+J) RTTs
to gain a flight size of d after an RTO. However, the
sender would also achieve some goodput in this duration.
For each loss that is detected by FR/R, instead of an
RTO, we derived an estimate of the overall reduction in
connection duration in the post-loss-recovery period (in
units of RTT) to be [15]:

� g 'Yd1/h� u�v�x]d +�),+ �Cd|+T}
�Cd;�{u�v�x&d|+�) (3)


 An RTO-detected loss is detected after a different RTO.
For non-spurious RTO-based retransmissions, we com-
pute the change (increase or decrease) in loss-detection
time (difference between the original value of RTO and
the new estimated value)—this is also equal to the change
in connection duration for each such event.

Based on the above methodology, we next present our analysis
results for existing TCP implementations, as well as for
variants created by varying the 6 design parameters. For
space reasons, we present only the most significant results—a
detailed tabulation of all results can be found in [15].



Total Non-spurious Spurious
OS Retransmits RTO FR/R RTO FR/R

Windows 1074097 638969 117040 279358 38730
(59.5%) (10.9%) (26%) (3.6%)

Linux 310418 175922 115295 10759 8442
(56.7%) (37.1%) (3.5%) (2.7%)

Solaris 27105 19170 5399 1322 1214
(70.7%) (19.9%) (4.9%) (4.5%)

FreeBSD 2312 1308 166 733 105
(56.6%) (7.2%) (31.7%) (4.5%)

TABLE IV
CLASSIFICATION OF TCP RETRANSMISSIONS

V. ANALYSIS OF TCP LOSS DETECTION

A. Baseline Performance of Real-World TCP Implementations

Before assessing whether the performance of TCP loss
detection can be improved by reconfiguring its parameters,
we first evaluate if it is even worthwhile to do so by asking:
how much scope do we really have for improving TCP loss-
detection performance in current TCP implementations?

In order to answer this, we ask three specific questions for
each connection in our data-set: (i) how often are segments
retransmitted spuriously (the original transmission had reached
the receiver)? (ii) how much time is spent in detecting and
recovering from losses (both actual and perceived)? and (iii)
by how much (upper bound) can the connection duration be
improved by doing loss detection/recovery in a more accurate
and timely manner? We also study whether the answer to any
of the above depends on the sender-side OS of a connection.
We address each of these questions below.

1) Accuracy: Table IV summarizes the total number of
spurious retransmissions that were triggered by RTOs as well
as FR/Rs, across connection traces originating from each of
the 4 sender-side OSes. We observe that:

 A significant number of TCP retransmissions are spu-

rious. In all of these cases, TCP inaccurately inferred
that a segment was lost and retransmitted it. Most of the
spurious retransmissions are triggered due to the expiry
of an RTO (as against due to FR/R).
 The frequency of spurious RTOs varies significantly
across OSes. This is somewhat to be expected, since the
implementations and parameters of RTO estimators differ
across current OSes—the Linux RTO estimator differs
most significantly from the rest. We find that among
Windows connections, nearly 26% of all retransmissions
are due to spurious RTOs, while for Linux, less than 4%
of retransmissions are due to spurious RTOs.
 The fraction of all retransmissions that are caused by
spurious FR/R events is much smaller (3 - 5%), and does
not differ much across OSes. It is important to note that
the spurious FR/Rs occur only when network reordering
events result in the generation of Q or more duplicate
ACKs—the occurrence of such events is independent of
the sender-side OS. All OSes (other than Windows that
uses a value of 2) use 3 as the value of Q —see Table I.
We find that this value does not result in a large number
of inaccurate loss inferences.

2) Timeliness:
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a) Detection Durations: RTO-based loss detection has,
in general, a longer duration than that based on FR/R—
Figure 2 plots the distribution of loss detection durations in
units of the moving average of RTT,8 for all FR/R- and RTO-
based retransmissions.9 We find that:

 Most FR/R-based loss detection takes about 1-2 RTTs for

all OSes.10 For Solaris TCP connections, however, around
7% of FR/R detections take more than 5 RTTs.
 RTOs take much longer than FR/Rs to detect losses.
Also unlike FR/Rs, the RTO-based detection durations
differ significantly across OSes. While the median RTO
detection duration for Windows and Linux is around 4
RTTs, it is almost 10 RTTs for Solaris and FreeBSD.
The Solaris RTO-estimator uses a minimum RTO of
400 ms and an srtt multiplier of 1.25; FreeBSD uses a
minimum RTO of 1200 ms—these values are significantly
higher than for Windows or Linux. As a result, for
connections with relatively small and stable RTTs, the
RTOs computed by Solaris and FreeBSD tend to be
higher—TCP connections on these OSes, therefore, take
longer to detect a loss using RTOs.
 The tail of the distribution of RTO detection duration for
Windows differs significantly from that for Linux. For
instance, while only around 10% of RTOs are larger than
10 RTTs for Linux, nearly 25% of Windows RTOs are
larger than this amount. On close inspection of our traces,
we find that several of these larger RTOs in Windows
result from losses at the beginning of the respective
TCP connections, when the RTO is primarily governed
by the initial RTO and has not converged to a value
representative of the network path. Linux updates its
estimates of RTT and RTO at a much higher frequency
(once per segment) than Windows (once per flight) and

8The exponential-weighted moving average is computed using a weight of
1/4 for the current RTT sample.

9The detection time is below 1 RTT in some cases since the values are
normalized due to the moving average of RTT, which can be larger than the
current RTT sample.

10We do not plot data for FR/R events in FreeBSD since our traces yield
a fairly small set of data points for this OS (only 271 FR/R events)—any
conclusion may not be statistically significant. The number of RTO events
in FreeBSD connections, however, exceeds 2000; hence, the distribution of
RTO-based detection times is statistically more significant and is plotted.
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converges faster.
Table IV summarizes the relative frequency of occurrence

of RTO-based vs. FR/R-based loss detection. We find that
60-88% of TCP retransmissions are triggered by RTOs. Our
observation above shows that all such RTO durations can
be quite long. The prime reason for the high frequency of
RTOs rather than FR/Rs is that there are often not enough
segments in flight to trigger duplicate ACKs for a connection
that experiences a loss. Thus, reducing the value of Q should
increase the likelihood of FR/R-based detection when losses
occur. Reducing the value of RTO should reduce the loss-
detection times when RTOs are unavoidable.

b) Recovery Durations: The time spent by a TCP con-
nection in recovering from segment losses is independent of
the loss-detection mechanism, and depends primarily on the
number of segments lost within a flight. We analyze our
traces to study recovery durations and find that these are also
relatively independent of the sender-side OS. We also find that
that use of selective acknowledgments (SACKs) helps reduce
recovery times, but only when 3 or more segments are lost in
a TCP flight. Due to space considerations, we emit the details
here and refer the reader to [15]. Most relevantly, note that
none of the six design parameters considered in this paper
impact loss recovery; TCP immediately retransmits segments
on inferring a loss—a TCP-like protocol can not do better than
that. Thus, in this paper, what we are really studying is the
design of loss detection mechanisms.

3) Scope for Improving Connection Durations: The ob-
servations made above on accuracy and timeliness suggest
that real-world TCP implementations can deal more effectively
with segment loss detection. A natural question to ask, though,
is: by how much does TCP’s design really impact connection
performance? Or more importantly, what is the maximum
amount by which one can hope to improve connection du-
rations by new settings for parameters related to TCP loss
detection?

In order to address these questions, we attempt to charac-
terize the Best-Case reduction (an upper-bound) in connection
durations that can be achieved by an ideal set of loss detection
mechanisms. Our analysis is optimistic and assumes that in
an ideal setting, (i) all spurious retransmissions (based on
either FR/R or RTOs) are avoided, and (ii) all RTO-based
loss detections take no more than the maximum RTT of the

corresponding connection.11 Specifically, for each connection
in our traces: (i) we identify all instances of spurious FR/R-
based loss detection and use Equation (1) to compute the
savings in connection duration if the inaccurate loss inference
is avoided; (ii) we identify all instance of spurious RTO-based
loss detection and use Equation (2) to compute the savings in
connection duration if the inaccurate loss inference is avoided;
and (iii) we identify all needed RTO-based loss detection and
compute the savings in connection duration if the RTO was
instead equal to the maximum RTT of the connection (as
described in Section IV-D). For each connection, we compute
the total savings in connection duration as the sum of each of
the above.

Figure 3 plots the distribution of the Best-Case reduction, as
a percent of the original connection duration, for connections
belonging to each of the 4 OSes. We observe that:

 45-75% connections have little potential (less than 1%)

for improving their connection duration by improving the
configuration of loss detection.
However, a significant fraction (15-40%) of connections
can see greater than 10% reduction in their connection
durations by improving loss detection.
 The potential for improving connection durations in
Linux differs from that in other OSes. While more than
40% of Linux connections can see greater than 10%
improvement in connection durations, less than 15%
of Windows, FreeBSD, and Solaris connections have a
similar opportunity.

Based on the above, we expect to be able to significantly
reduce connection durations by changing the configuration
of loss detection parameters. In the rest of this section, we
carefully compare the impact of each of these parameters to
the upper-bound computed above.

B. Impact of The RTO Estimator

The value of RTO is controlled by each of the 4 parameters:
�1@P�NILKM�
���W@P$A@O- .12 If the RTO value is large, the number
of spurious RTO-based retransmissions is reduced and helps
improve connection durations. Furthermore, there is an in-
creased likelihood of detecting losses by FR/R (rather than
RTO). On the other hand, if the value of RTO is small,
the time spent on detecting the loss (given by the RTO) is
reduced and helps improve the connection duration. We vary
the above 4 parameters— � in � 2, 4, 6, 8 � , minRTO in � 100ms,
200ms, 400ms, 800ms, 1000ms � , $ in � 1, 1/2, 1/4, 1/8, 1/16,
1/32 � , and - in � 1, 1/2, 1/4, 1/8, 1/16, 1/32 � —and for each
combination of their values, estimate the RTOs that would
be computed within each connection. We then estimate what

11Our analysis assumes that an oracle informs the configuration of both
FR/R and RTOs. Specifically, the oracle helps the sender achieve 100%
accuracy in FR/R-based loss detection by informing it when dupACKs are
generated by events other than segment loss. The oracle also helps achieve
ideal accuracy and timeliness of RTO-based loss detection by informing the
sender of the maximum RTT that can be witnessed by the connection—the
sender can then use this value as the RTO and: (i) avoid spurious RTO-based
retransmissions, and (ii) quickly invoke non-spurious retransmissions.

12The current default setting for parameter �F��� was observed to be
optimal in our evaluations; we do not include evaluation results for varying� in this paper.
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Fig. 4. Linux: Impact of � on Connection Durations

segments would be retransmitted spuriously due to premature
RTOs, which RTO-detected losses would instead be detected
by FR/R, and which RTO-detected losses would incur different
detection durations.

We then study how each of these different phenomena
interplay to impact the overall duration of each connection, by
asking three questions: (i) What is the reduction in connection
duration when a spurious RTO is avoided? (ii) What is the
reduction in connection duration when a loss is detected by
FR/R (instead of an RTO)? (iii) What is the reduction in
connection duration when the value of RTO is small? All of
these questions have already been addressed in Section IV-
D. For each combination of RTO-related parameters, and for
each connection, we then list all instances of any of the above
phenomena, and use the analysis presented in Section IV-D to
compute the total reduction in connection duration.13

Recall from Figure 3 that the scope for reduction in connec-
tion duration can differ by several orders of magnitude across
different connections. To put our observations in perspective,
therefore, throughout this section we plot the total reduction in
duration for each connection (y-axis) as a function of the Best-
Case reduction for that connection (x-axis), both computed in
units of the average RTT for the connection. For improved
readability of these plots, we first divide the x-axis (Best-
Case reduction in connection duration) into logarithmically-
sized bins. We then consider all connections that fall within
each bin, and compute the average and the 95-percentile values
of the actual reduction in duration for these connections.
We then plot these per-bin average and 95-percentile values
(plotted as error-bars) against the average Best-Case reduction
in connection duration for that bin. Achieving the upper-bound
of Best-Case reduction is represented by the dashed line with
slope of 1.

We present our results for each of the 4 parameters below.
For space reasons, we include graphs only for the Linux OS;
graphs for other OSes are plotted only when the trend is
different from that of Linux.

1) Impact of � : Figures 4(a), 4(b), and 4(c) plot the
reductions in durations of connections as a function of their
upper-bound, for � equal to 2, 3, and 6, respectively. We find
that:

 The value of � significantly impacts the connection

durations. We find that a small value of � (2 or 3) can

13A negative value of the reduction implies an increase in connection
duration.

help significantly reduce the connection durations of most
connections. A value of 2, in fact, achieves an average
reduction in connection duration that is within a factor of
5 of the Best-Case reduction. This suggests that perhaps
� is the single-most influential parameter related to TCP
loss detection and that setting it to a small value of 2
(rather than the in-use and recommended value of 4)
can help significantly reduce connection durations. k =
6 consistently increases the connection durations.
A small fraction of connections do seem to experience a
slight increase ( 1 RTT) in their connection durations
even with a small value of � —this is especially true
for connections with a small potential for Best-Case
improvement ( � 10 RTTs).
 The impact of � on other OSes is similar in trend, but
not as pronounced as for Linux. It is important to note
that Linux tracks RTT on a finer time-scale and hence its
RTO estimate is robust even with a small value of � .

2) Impact of �NILKM�
��� : Figure 5(a) plots the reductions
in connection durations for Solaris with �NILKM�
��� equal to
100ms and Linux with �NILKM�
��� equal to 400ms, respectively.
We find that a larger value of �JI�KM�
��� adversely impacts
the connection durations of almost all connections. This sug-
gests that the overall performance of TCP loss detection is
significantly adversely impacted by a large value of �NILKM�
��� .
This observation was also made in [7], although the �NILKM�
���
evaluated was a very large value of 1 second. Fortunately,
both Linux and Windows use a minRTO of ��G�G���� ; FreeBSD
and Solaris, however, use larger values. We find that reducing
the Solaris �JILKM���
� from 400ms to 100ms improves the
connection durations of the Solaris connections—the improve-
ment, however, is not as significant as that observed using
small values of � . Reducing the Linux �JI�KM�
��� to 100ms
had negligible impact on the connection durations of most
connections.

3) Impact of Smoothing Factors, $ and - : The smoothing
factors $ and - have a less deterministic impact on the
connection durations of TCP connections of all OSes other
than Linux. Recall that the default values of smoothing factors
implemented in all OSes are: $S� )��C} , and -�� )���	 .
In general, a larger value of $ or - seems to help reduce
the connection durations of a larger fraction of connections;
however a significant fraction of connections also witness an
increase in connection durations.

Figure 5(b) plots the average and 95-percentile reduction in
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Fig. 5. Linux: Impact of �������M��� , � , and c
connection durations of the Linux connections as a function
of their Best-Case reductions for $���)C��� . We find that a
larger value of $ helps reduce the durations for most Linux
connections, especially those that have a large Best-Case
potential for reduction. This correlates well with the fact that
the Linux RTO estimator updates at a higher frequency (once
per segment) than most other OSes (once per flight) and hence
is less sensitive to large fluctuations in the measured RTT.
This implies that in computing the RTT variation, the most
recent sample of ������#6$%� should be given a weight of at least
1/4. $���)�� j � (or anything smaller than )���} ) increases the
connection durations of most Linux connections. Changing the
value of - (to a larger or smaller value than )���	 ) has negligible
impact—less than 1 RTT–on the connection durations of most
Linux connections, independent of their Best-Case reductions.

C. Impact of The dupACK Threshold

Recall that the value of Q can impact the connection
durations in opposing ways. Table V—that lists the changes
in total number of RTOs, FR/Rs, and spurious FR/R-based
retransmissions, for Q �h��@ j @:} —highlights this fact. For
instance, we find that increasing Q to 4 avoids 1.2% of Linux
retransmissions due to spurious FR/R events, but at the same
time causes 7.2% of retransmissions due to FR/R events to
become RTO events. In order to see which of these factors
has a more pronounced effect on connection durations, we
use Equations (1) and (3) to evaluate all such events in each
connection. In this way, for each connection, we compute
the total reduction in connection duration when the dupACK
threshold is varied from 4 to 2.

Note that the likely impact of Q on a connection depends on
its average flight size. A larger flight is likely to benefit from
a large value of Q that helps avoid spurious retransmissions
due to dupACKs caused by network reordering. When the
flight is small, however, a large Q does avoid spurious FR/R
retransmissions, but also implies that a genuine segment loss
can not be detected by the faster FR/R mechanism and
has to suffer delay from an RTO-based detection. To put
this observation in perspective, Figure 5(c) plots separately
for small and large Linux connections, the total connection
duration reduction as a function of the Best-Case reduction,
when Q is changed from 3 to 2—we refer to connections
that transmit 15KB ( � 10 MSS-sized segments) or less as
“small” connections; such connections do not achieve a flight
size larger than 4. We find that:

# # c =2 ( c =3 for Win) c =4
OS FR/R RTO RTO to Spurious FR/R to Spurious

FR/R Caused RTO Avoided
Win 155770 918327 -35417 -30622 54016 37561

(-3.3%) (-2.9%) (5.0%) (3.5%)
Lin 123735 186680 19115 37673 22280 3709

(6.2%) (12.1%) (7.2%) (1.2%)
Sol 6613 20491 911 1122 2533 992

(3.4%) (4.1%) (9.4%) (3.7%)
BSD 271 2041 42 21 25 85

(1.8%) (0.9%) (1.1%) (3.7%)

TABLE V
IMPACT OF THE DUPACK THRESHOLD


 Reducing Q from 3 to 2 reduces the connection duration
of most (including the 95-percentile) of the small con-
nections. Generally speaking, as the Best-Case reduction
increases, so does the average reduction in connection
durations—however, the average reduction is always
more than an order-of-magnitude smaller than the Best-
Case. Thus, Q comes only after � in its ability to help
reduce connection durations.
Reducing Q to 2 helps reduce the connection duration
of only those large connections that have large values
of Best-Case potential reduction—other large connections
experience an increase in connection durations using Q �
� .
The impact of using Q¡�¢� is similar for connections
emanating from other sender-side OSes.
 Increasing the dupACK threshold to 4 consistently wors-
ens the performance of most connections (including the
95-percentile performance), irrespective of the connection
size, the potential Best-Case reduction, or the sender-side
OS.

The observations made above suggest that Q should be
adaptable—it should take a small value when flight sizes are
small and a larger value of 3 otherwise.

D. Impact of The Smart Configuration

In this section, we adopt the best-performing settings (the
Smart-Config) for each of the 5 parameters and quantify the
total improvement in connection durations. Specifically, we
set �£�¤� , �JI�KM�
�����¡)�G�G���� , $��¥)���} , and -{�¥)���	 .
The dupACK threshold is set according to the rule: Q¦�§ ¨C© �7)�@ §;ªw« � j @

g +{�6��� , where
g

is the current flight size
of a connection.

Fig 6 plots the percentage change in per-connection con-
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Fig. 7. Smart Config: Actual Connection Duration vs. Upper Bound in
Reduction

nection duration with this configuration. We find that with the
Smart-Config, the connection durations are reduced by more
than 10% for nearly 40% of Linux connections. A smaller
percentage of connections—7% for Windows, 20% for Solaris,
and 10% for BSD—experience a similar improvement in the
other OSes. The greater improvement for Linux connections
is mainly because the Linux RTO estimator is less adversely
affected by a reduction in the key parameter ¬ —while reduc-
ing ¬ to 2 causes only 2-6% additional spurious RTO events
in Linux connections, it causes 12-34% additional spurious
RTO events in Windows. The Smart-Config also results in
an increase in connection durations for some connections.
However, less than 3% of connections in each OS suffer an
increase of more than 10%.

Fig 7 plots the connection duration change (in units of
RTT), as a function of the best-achievable savings. We find
that the average observed reduction in connection duration
closely matches (within a factor of 2) the theoretical upper
bound computed in our estimate of the Best-Case reduction in
connection duration. There is a significant variability in the
actual reduction in connection duration among connections
with a similar estimate of the Best-Case upper bound. The
variability, however, is smaller for larger values of the Best-
Case estimate.

VI. RELATED WORK

The evaluation of TCP detection/recovery mechanisms has
been the focus of several key publications over the past two

decades [7], [8], [16]. We briefly describe some of this work
below.

In [8], Paxson investigated the effect of changing dupACK
threshold on the number of spurious retransmissions. The data
was collected by actively establishing approximately 20,000
connections that transferred 100KB of data between multiple
machines, and by capturing the corresponding packet flow
using tcpdump [11]. Paxson found that increasing dupACK
threshold to 4 improves the ratio of needed FR/R to spurious
FR/R by a factor of 2.5. However, it also reduces the chance
of detecting a loss using FR/R by 30%. Reducing the dupack
threshold to 2 increases the number of FR/R by 65-70% but
the ratio of non-spurious to spurious FR/R reduces by a factor
of 3.

While the above study presented novel insights into the
trade-off in selecting the dupACK threshold, it is not very
useful in configuring current TCP implementations for two
reasons: (i) [8] does not evaluate how this trade-off impacts
the overall performance of a TCP connection. For instance, it
is not clear whether QS�­} is a better choice than QS� j ,without first analyzing the impact on connection duration of a
reduction in spurious FR/Rs as well as the impact of increase
in frequency of RTOs. In Section IV-D of this paper, we
develop models to estimate this impact and use these to make
design decisions regarding the configuring of Q and other TCP
parameters. (ii) The TCP connections analyzed in [8] were
generated by instantiating fixed-size bulk transfers between
a set of 35 experimental sites. The resultant connection-set
is limited in its sampling of diversity in network properties
(RTTs, loss rates, bandwidth), connection properties (size
of connection), and application properties (data generation
behavior and user think times). It is not clear if the conclusions
drawn using such a data-set are representative of the connec-
tions in the general Internet. For instance, most of current
TCP connections are small (see Section III), and our analysis
shows that small connections are more likely to benefit from
a small value of Q . If, on the other hand, a study analyzes
mostly large connections, the results are biased against such
observations. Also the Internet has grown tremendously over
the past decade—it is not clear if contemporary networks and
TCP implementations interact in a manner similar to a decade
ago. In this paper, we passively analyzed recent traces of
millions of real-world TCP connections.

More recently [16] suggested changes similar to those
proposed in [8]. [16] recommends waiting for a certain time® before reacting to duplicate ACKs. The recommended value
of ® is 1 RTT. However, there is no substantial evaluation of
the impact of this recommendation on TCP performance.

In [7], the authors investigate the impact of changing several
parameters related to RTO-estimation on the accuracy and
timeliness of RTO detection. The data used for this study
is same as that used for [8] and hence suffers from the
same lack of diversity/representativeness. Furthermore, at the
time this study was conducted, the most popular �NILKM�
���
value was 1 second and the timer granularity was 500ms.
The study found that these two parameters have a significant
impact on the accuracy and timeliness of RTO, while the other
parameters—including, � , $ , and - —have negligible impact.



Eight years after that study, we find that timer granularity no
longer impacts the performance of TCP loss detection (indeed,
several current OSes use a 10ms timer). While the �NILKM�
���
does limit performance in some OSes (Solaris and BSD), it
is not a dominant factor for most connections. Instead, we
find that the multiplicative factor, � , is quite significant and
a low value of � can help many connections achieve close
to their Best-Case reduction in connection durations. Finally,
we explicitly model and evaluate the impact of timeliness and
accuracy of RTO-based loss detection on overall connection
durations.

The design and evaluation of new detection/recovery mech-
anisms for TCP has also received considerable attention over
the past few years. Several techniques have been designed to
(i) detect and rectify the adverse impact of spurious retrans-
missions in an ongoing TCP transfer [17], [18], [19], [20],
[21], and (ii) detect losses using alternate mechanisms [22],
[23], [24], [25], [26], [27]. Unfortunately, due to deployment
hurdles, most of these techniques have not been widely de-
ployed in TCP implementations. Furthermore, the impact of
these techniques on the overall connection duration of TCP
connections has not been studied—we hope to study this
impact in a manner similar to this paper as part of future
work.

VII. CONCLUDING REMARKS

In this paper, we evaluate the impact of the configuration
of TCP loss detection parameters on the performance of TCP
connections. Our study relies on passive analysis of traces of
more than 2.8 million real-world TCP connections. We analyze
the impact of parameters on the trade-off between accuracy
and timeliness of loss detection. We also explicitly model and
evaluate the impact of this trade-off on the connection duration
of TCP connections—to the best of our knowledge, this has
not been done before.

We find that current RTO estimators are typically too
conservative in incorporating RTT variability—we find that
when the weight given to RTT variability is reduced by a factor
of 2, TCP connections can achieve close to the best-achievable
efficiency in loss detection. Also, unlike observations made in
past work, the �JI�KM�
��� and timer granularity are no longer
the most influential parameters. Our study also reveals that
the Linux RTO estimator is considerably more efficient than
the proposed standard for an RTO estimator (which is also
adopted by FreeBSD, Solaris, and Windows).

Our analysis suggests that by re-tuning the configuration of
TCP parameters, up to 40% of Linux connections can witness
a significant reduction (more than 10%) in their connection
durations. For a majority of connections, this is close to
the best-achievable reduction. Our findings should help guide
the default configuration of TCP loss-detection parameters in
prominent OS stacks.
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