
Competitive Analysis of Buffer Policies
with SLA Commitments

Boaz Patt-Shamir
School of Electrical Engineering

Tel Aviv University
Ramat Aviv 69978, Israel
boaz@eng.tau.ac.il

Gabriel Scalosub
Department of Computer Science

University of Toronto
Toronto, ON, Canada

scalosub@cs.toronto.edu

Yuval Shavitt
School of Electrical Engineering

Tel Aviv University
Ramat Aviv 69978, Israel

shavitt@eng.tau.ac.il

Abstract—We consider an abstraction of the problem of man-
aging buffers where traffic is subject to service level agreements
(SLA). In our abstraction of SLAs, some packets are marked
as “committed” and the others are marked as “excess.” The
service provider must on one hand deliver all committed packets,
and on the other hand can get extra revenue for any excess
packet delivered. We study online algorithms managing a buffer
with limited space, whose task is to decide which packets should
be delivered and which should be dropped. Using competitive
analysis, we show how to utilize additional buffer space and link
bandwidth so that the number of excess packets delivered is
comparable to the best possible by any off-line algorithm, while
guaranteeing that no arriving committed packet is ever dropped.
Simulations of such traffic (alone and combined with additional
best-effort traffic) show that the performance of our algorithm
is in fact much better than our analytical guarantees.

I. INTRODUCTION

To support Quality of Service (QoS) in communication
networks, service providers and customers typically have a
Service Level Agreement (SLA) that specifies, on one hand,
which minimal services the customer gets (e.g., what is the
packet loss probability), and on the other hand, what is
the maximal traffic pattern the customer injects (typically
specified by a token-bucket descriptor). The provider reserves
sufficient resources to support the promised QoS, and the
customer should constrain its input to conform to the agreed
characteristics. In many cases, the customer is allowed to inject
“excess” traffic on top of the agreed (“committed”) traffic.
The provider may drop the excess traffic, or deliver some
of it for an additional (per-megabyte) fee. Typically, multiple
connections, some with two color marking, corresponding to
the two types of traffic, and some with only best effort marking
(corresponding to solely excess traffic), are handled together
in one aggregate.

To facilitate the distinction between committed and excess
traffic, many communication standards have provisions for a
“rate meter” whose task is to mark packet conformance with
the service level agreement (e.g., ATM [1], DiffServ [2], [3],
[4], [5], MPLS [6], and—more recently—Metro Ethernet [7],
[8]). In this paper we shall assume that the committed and
excess packets of a flow are marked as “green” and “yellow,”

respectively.1 Rate meters are deployed at the ingress of the
network, where transmission rates are typically slower than
the rates at the network core. Since color marking is in many
cases infeasible at the high rates of core routers and switches,
packets carry their color marks along, and routers differentiate
the packet handling accordingly. Namely, green (committed)
traffic should be assured a negligible drop probability, while
yellow (excess) packets can be dropped freely.

As mentioned above, delivering excess traffic usually en-
tails extra profit, and therefore, the service provider faces a
dilemma: if yellow packets are delivered, additional profit can
be made, but there is a risk of losing green packets, i.e.,
violating the SLA, potentially resulting in severe penalties.
In this paper, we study algorithms to balance these two
conflicting tendencies. Our approach is based on assuming that
the resources at hand suffice to carry all committed traffic, and
the goal is to maximize the amount of excess traffic delivered.

From the description above, it is clear that the provider
would like to forward all of the green packet and as many
yellow packets as possible. The simplest solution for this
would be to assign a queue for each color type and to serve
the queues with strict priority order. However, this solution
is invalid since both types of packets might belong to the
same flow and packets in a flow must be forwarded in order.
Thus, we seek an algorithm that will allow us to accept yellow
packets to the queue without dropping green packets, while
ensuring that packets are forwarded in FIFO order.

A. Model

Concretely, our model is as follows (see Figure 1). The
system we consider consists of a single queue denoted Q,
and a fixed-rate outgoing link. Packets arrive at the queue
arbitrarily. Each incoming packet is marked either as “green”
(committed) or “yellow” (excess). We assume that all packets
have equal size, and without loss of generality we let the size
of packets be one unit. Packet arrival is adversarial, but we
assume that the green packets can be served using a buffer of
size B and link rate r. Namely, the committed traffic adheres

1In fact, the standards [3] distinguish between committed, excess, and
violating packets, and mark them as green, yellow, and red, respectively. In
this paper we assume that all violating (red) packets were already dropped,
and focus only on committed (green) and excess (yellow) packets.

to a token bucket of size B, corresponding to a maximum
burst size, and rate r. This means that in every interval I
of length T , the number of green packets arriving during I
is at most rT + B. In particular, the above model captures
scenarios where incoming traffic comprises of a single flow,
or the more realistic case where the incoming traffic is an
aggregate of multiple flows each with its own rate and burst
parameters. In many real life scenarios some of the flows may
have r = B = 0, namely they will consist of only best effort
traffic.

The actual buffer size at the queue Q is BQ ≥ B, and the
outgoing link rate is rQ ≥ r, so that if all yellow packets are
dropped, the queue has sufficient resources in terms of buffer
size and link rate such that no green packet should be dropped.
(As we show later, even with a larger buffer size and a faster
link, careless scheduling may result in loss of green packets
due to overflow.)

We assume further that packets must be delivered in FIFO
order, i.e., the order of packet delivery respects the order of
their arrival (but some yellow packets may be missing from
the output). Our algorithm has the nice feature of being work-
conserving, i.e., the queue is never idle while its buffer is non-
empty. Furthermore, our algorithm drops packets only from the
tail of the queue, making it simple to implement.

An execution in our model proceeds in a sequence of
discrete steps called time slots. Each time slot is divided into
two substeps. The first substep is the delivery substep, where at
most rQ packets leave the queue from its head. In the second
substep, called the arrival substep, traffic arrives at the system;
then, at the discretion of the algorithm, some packets may be
dropped, and the surviving new packets enter the queue at its
tail. We note that the packets dropped may be from the set
of newly arrived packets and packets already residing at the
tail of the queue. In any case, the maximum number of packet
that may be in the buffer after the arrival substep (i.e., between
time slots) is at most BQ. In particular, if the number of green
packets residing in the queue after the delivery substep plus
the number of green packets that arrive in the arrival substep
is larger than BQ, then some green packets will necessarily
be lost due to overflow.

For simplicity we assume that arriving packets are handled
in batches where all green packets are processed before all
yellow packets. We further assume that in every time slot t,
the algorithm may arrange the packets arriving at time t in any
order. We note that our results, and specifically our algorithms,
may be equivalently defined to deal with the case where this
does not hold and packets are handled one by one.

We use competitive analysis in order to evaluate the perfor-
mance of our algorithms [9], [10]. Formally, a schedule (i.e.,
a sequence of delivery times produced by an algorithm) is
called feasible if it delivers all green packets. An algorithm
is said to be feasible if it generates only feasible schedules.
A feasible algorithm ALG is said to be c-competitive if for
all traffic arrival sequences σ, the number of yellow packets
delivered by ALG from σ is at least a c fraction of the best
possible number of yellow packets delivered from σ under any

BQ ≥ B

d
el

iv
er

y
su

b
st

ep

rQ ≥ r

ar
ri

va
l

su
b
st

ep

tail-
dropped
excess
packets
(yellow)

- committed packet

- excess packet

Fig. 1. Schematics of queue behavior in a single time slot: Queue Q uses
a buffer of size BQ ≥ B and has delivery rate rQ ≥ r on its outgoing link.
In the delivery substep of every time slot packets are delivered in the rate
available (3 in the above example) in FIFO order, and remaining packets are
advanced to the head of the queue. In the arrival substep packets arrive to the
tail of the queue. Yellow packets residing in the tail of the queue might be
dropped even if no overflow occurs. Newly arrived green packets are accepted
before newly arrived yellow packets.

feasible schedule (including schedules produced by off-line
algorithms that know the future in advance). c is referred to
as the competitive ratio or competitive factor of the algorithm.
Obviously, c ≤ 1 (1 means optimal). Our goal is to find a
feasible algorithm whose competitive factor c is as large as
possible.2

As customary in competitive analysis, we may view the on-
line algorithm as competing against an off-line adversary that
generates the input stream, and provides an optimal schedule
for that input.

It is important at this point to distinguish between the
competitive analysis used in this paper and other tools that are
commonly used in this line of research, such as queueing the-
ory [11] and fluid flow modeling [12]. While other tools study
long term statistics and averages of the system performance,
competitive analysis looks at the worst case analysis, thus
achieving a good competitive ratio (like we do in this paper)
enables us to guarantee good performance in any scenario, and
saves us from low probability surprises.

B. Our Results

To start off our theoretical investigation, we show that
without additional buffer space, no on-line algorithm that never
loses a green packet has a competitive factor bounded away
from zero. This result motivates our focus on the performance

2This definition usually corresponds to maximization problems, as is
the case in the problem we consider. An analogous definition exists for
minimization problems, where one aims to minimize the competitive factor.

of online algorithms that have more buffer space than the
one available to the adversary. Our results can be viewed as
an analysis of how to utilize the extra resources. Even when
considering such cases where the algorithm has more resources
than the ones available to the adversary, we show that for any
ε ∈ (0, 1), no algorithm using space less than (1 + ε)B can
have a competitive ratio better than ε (compared to the optimal
performance possible using a buffer of size merely B). On
the positive side, for any given ε > 0, we present an online
algorithm which uses a buffer of size (1 + ε)B, and outgoing
link whose speed is s for some s ≥ r. We prove that the
number of yellow packets delivered by our algorithm for any

packet arrival sequence is at least min
{

ε

1+ε− (s−r)
B

, 1
}

times

the maximum possible number of yellow packets delivered by
any algorithm using a buffer of size B, and link rate r. These
results are presented in Section II.

We further provide results of a simulation study, where we
compare the performance of our algorithm with the popular
“threshold” algorithm, which accepts yellow packets to the
buffer only when the buffer occupancy is below some fixed
threshold. Our simulations clearly show that our algorithm
outperforms feasible threshold algorithms in a multitude of
scenarios. Moreover, our results show that despite its “con-
servative” nature, our algorithm is robust, in the sense that it
performs well even under high load, where the traffic contains
intense excess traffic on top of the regulated committed traffic.
Such scenarios occur when an aggregate contains many best
effort flows. In all these cases, our algorithm throughput is
close to the best throughput possible (that can be obtained
only by a clairvoyant algorithm). These results are presented
in Section III. We present some extensions and summarize in
Section IV.

C. Previous Work

This paper extends the results of Cidon et al. [13] on
protective buffer management. In [13], the two-color model
is introduced, and a protective policy must deliver all green
packets delivered by some reference process. Under this con-
straint, the goal is to maximize the number of other packets
delivered.3 The results in [13] include a characterization of
protective policies, proofs that some natural policies are not
protective, and a few algorithms that are protective, along with
some numerical results comparing the performance of policies
discussed.

Let us point out some of the main differences between our
results and the ideas appearing in [13]. First, in this paper we
use the tool of competitive analysis to compare algorithms,
which allows us to quantify analytically the performance
of algorithms. This goes beyond the qualitative distinction
between protective and non-protective policies given by [13]

3Superficially, the model in [13] may seem more foreign (e.g., green packets
may be dropped if the reference process drops them), but essentially this is
the same model we use. Cidon et al. used the green-red coloring which was
common at the time, in this paper we chose to use the common terms of
three color marking (green-yellow-red) which are commonly used now [3],
[8]. Thus, our excess traffic is colored yellow and not red as in [13].

(which correspond mostly to our notion of feasibility), or the
numerical study they use to compare them. Another important
feature of our paper is extending the model to the case of
faster link: in [13], the reference process has smaller buffer
space but the same link speed. Our paper shows how to utilize
extra available bandwidth in addition to extra available space.

We note that the algorithm we propose in this paper enjoys
the important feature of dropping packets only from the
tail of the queue, while the algorithm in [13] requires a
push-out buffer (i.e., dropping packets from anywhere in the
buffer). Thus, our algorithm is much cheaper to implement in
practice than the algorithm in [13], since it merely requires an
additional pointer to the first (yellow) packet which might be
dropped.

Other related work. Another interesting direction of re-
search that was pursued more recently is assuming that each
packet is assigned a real value, and the goal of the buffer
management algorithm is to maximize the sum of values of
delivered packets [14]. In the case of a single buffer, the best
known competitive ratio for algorithms under general values
is
√

3 ≈ 1.732, and the best lower bound is 1 + 1/
√

2 ≈
1.707 [15]. If packets may have only one of two values, 1 and
α > 1, then the competitive ratio is roughly 1.3 [15], and this
is optimal [16], [17].

Packet marking has also been used as means of providing
service differentiation to TCP flows [18], [19], by explicitly
exploiting TCP characteristics. Active queue management
(AQM) policies, such as random early drop (RED) have long
been proposed to provide feedback to the senders, aiming
at congestion avoidance in the network core [20]. Additional
active queue management (AQM) policies have been applied
to provide QoS guarantees such as delay and loss-ratio to
excess real-time traffic (see e.g. [12]).

II. ANALYTICAL STUDY

A. Lower Bounds

We first consider the case where the queue has no extra
buffer space or higher delivery rate, beyond the amount
necessary to support the committed traffic, as defined by the
rate and burst size to which the committed traffic adheres. We
further assume w.l.o.g. that the rate in which committed traffic
arrives is no greater than r = 1. The following theorem shows
that additional buffer space is of the essence if an algorithm
is to have a bounded competitive ratio.

Theorem 2.1: Let B denote the buffer space available to an
optimal algorithm. Any online algorithm using a buffer of size
B′ ≤ B is either infeasible, or has competitive ratio arbitrarily
close to zero.

Proof: First note that no algorithm using a buffer of size
strictly less than B can be feasible. To see this note that any
burst of B green packets arriving simultaneously cannot be
accepted by any such algorithm, thus rendering it infeasible.
We assume w.l.o.g. that the algorithm is work conserving.
Assume the algorithm uses a buffer of size B, which is initially
empty, and consider the arrival sequence consisting of one
green packet pg

0 and one yellow packet py
0 arriving at time 0,

arrival t = 0

pg
0py

0

delivery t = 1

pg
0 py

0

arrival t = 1

pg
0pg

1pg
2pg

3pg
4

. . .

pg
B

B

- committed packet - excess packet

Fig. 2. The behavior of the adversary in case where the yellow packet is
delivered at time t = 1, as depicted in the proof of Theorem 2.1.

and one green packet pg
1 arriving at time 1. If the algorithm

forwards the yellow packet py
0 , then by our above assumption

it must do so at time t ∈ {1, 2}. We distinguish between two
cases, according to the behavior of the online algorithm.

If the algorithm does not deliver the yellow packet by the
end of time t = 2, then the sequence ends at time 2, and
clearly the algorithm cannot be competitive, since an optimal
algorithm would have forwarded all packets.

Assume on the other hand that the algorithm does deliver
the yellow packet at time t ∈ {1, 2}. If t = 1, then consider the
case where additional B−1 green packets pg

2, . . . , p
g
B arrive at

time 1. We therefore have green packet pg
0 still residing in the

buffer of the algorithm at the end of the delivery substep of
time 1, and an overall of B green packets – pg

1 and pg
2, . . . , p

g
B

– arriving at the arrival substep of time 1, which implies
that the algorithm cannot store all these B + 1 green packets
in its buffer, thus violating feasibility. Note that there exists
a feasible schedule which can be obtained by rejecting the
yellow packet upon arrival. This case is depicted in Figure 2.

Similarly, if t = 2, then the traffic continues by an arrival
of B green packets at time 2. We therefore have green packet
pg
1 still residing in the buffer of the algorithm at the end of the

delivery substep of time 2, and an overall of B green packets
arriving at the arrival substep of time 2, which again implies
that the algorithm cannot be feasible. As before, rejecting the
yellow packet could have resulted in a feasible schedule. This
case is depicted in Figure 3.

Theorem 2.1 motivates considering the competitive ratio
attainable by an online algorithm which is equipped with a
larger buffer than the one available to the adversary. In what
follows we assume the algorithm has a buffer of size (1+ε)B,
for some ε > 0, and we compare its performance to any
optimal algorithm using a buffer of size B. The following
theorem show that even when equipped with additional buffer
space, it might not be possible for an online algorithm to
guarantee the optimal excess throughput possible with the
minimum amount of buffer space necessary to support the
committed traffic. As in the previous case, we assume w.l.o.g.
that the rate in which committed traffic arrives is no greater
than r = 1.

Theorem 2.2: For any 0 < ε < 1, any feasible deterministic
online algorithm using a buffer of size less than (1 + ε)B

arrival t = 0

pg
0py

0

delivery t = 1

py
0 pg

0

arrival t = 1

py
0pg

1

delivery t = 2

pg
1 py

0

arrival t = 2

pg
1pg

2pg
3pg

4pg
5

. . .

pg
B+1

B

- committed packet - excess packet

Fig. 3. The behavior of the adversary in case where the yellow packet is
delivered at time t = 2, as depicted in the proof of Theorem 2.1.

cannot have a competitive ratio better than ε.
Proof: Consider any deterministic online algorithm which

uses a buffer of size (1 + ε)B, and delivers all green packets.
Assume the following arrival sequence to an empty buffer: At
time 0 we have a burst of B yellow packets arriving, followed
by one green packet arriving in every time step starting at time
1, until time εB. Consider time t = εB + 1. We distinguish
between two cases, according to the behavior of the online
algorithm.

If by the end of time t the algorithm has already delivered
the first green packet, then by the fact that the algorithm uses a
FIFO discipline, it must have dropped at least (1−ε)B of the
yellow packets which arrived at time 0, and therefore cannot
deliver more than εB yellow packets. An optimal schedule
would have kept all yellow packets, and would have sent every
green packet exactly B time steps after its arrival, while using
a buffer size no greater than B. Such a policy would have
delivered all B yellow packets. It follows that the ratio between
the throughput of the algorithm and that of an optimal schedule
is at most ε in this case.

Assume on the other hand that the algorithm has not yet
delivered the first green packet by the end of time step t.
Consider at this time t an arrival of a burst consisting of B
green packets to the buffer. Since the algorithm still has all εB
green packets injected prior to t in its buffer, and since it uses
a buffer of size less than (1 + ε)B, it cannot store all newly
arrived B green packets in its buffer, and therefore cannot be
feasible. Note that feasibility could have been maintained by
a work conserving FIFO policy which would have rejected all
yellow packets upon arrival, while using a buffer of size B. It
follows that any online algorithm that is to maintain feasibility
must send the first green packet by time εB, and therefore the
ratio between its performance and that of an optimal algorithm
cannot be better than ε.

B. Upper Bounds

1) Algorithm Description: In this section we present an
algorithm for our problem, and explore the effect of additional

buffer space and higher delivery rate on its performance. We
assume discrete arrival times, and that in every time step t
the adversary may deliver some r ∈ N packets while using
a buffer of size B, whereas our algorithm can deliver some
s ≥ r packets, s ∈ N, while using a buffer of size (1 + ε)B.
As in the previous sections, here B and r are the maximal
burst size and the maximum arrival rate of committed traffic.

Our algorithm is close in spirit to the Extended SPP
algorithm appearing in [13]. We begin by defining a simulator,
SIM, which is a buffer management algorithm that only
performs admission control. SIM accepts only green packets,
is work-conserving, and uses the minimum amount of buffer
space and rate so as to be able to support the entire committed
traffic. The simulator therefore works with a buffer of size B,
and delivery rate r.

To allow us to discuss the execution of an algorithm, we
define the following notation. Given an algorithm ALG and
time t, BALG(t) denotes the state of the buffer (position of
each packet) managed by ALG at the end of time t, i.e., after
the arrival substep. We sometimes abuse notation slightly and
use BALG(t) also to denote the set of packets residing in
ALG’s buffer at this time. Given any algorithm ALG, any
time t such that BALG(t) 6= ∅ at the end of time t, and every
green packet p that has arrived by t, we let dALG

t (p) be its
head-of-buffer distance, i.e., the number of packets stored in
the ALG’s buffer before p, at time t (the exact meaning of
whether this refers to the end of the delivery substep, or the
end of the arrival substep, will be made clear from the context).
If p has already been delivered by ALG, we let dALG

t (p) = 0.
For every such packet p, we define its lag at the end of time
t by

lagALG
t (p) = max

{
dALG

t (p)− dSIM
t (p), 0

}
,

i.e., how far ahead is a green packet in SIM’s buffer compared
to its position in ALG’s buffer. Note that for any algorithm
with a delivery rate of s ≥ r, it might be the case that at
some time t there are green packets yet undelivered by the
simulator that have already been delivered by the algorithm.
Furthermore, the fact that s ≥ r also implies that the lag of
any green packet in the queue can never increase in subsequent
time steps. Given ε > 0, we say an algorithm maintains the
ε-lag property, if at any time t, and for any green packet p
that has arrived by time t, lagALG

t (p) ≤ εB. At any time
t, let AG

t denote the set of green packets arriving at t, and
let AY

t denote the set of yellow packets arriving at t. We
further let GALG

t ⊆ BALG(t) denote the set of green packets
residing in the buffer of ALG at the end of the delivery
substep of time t. In what follows we sometimes omit the
superscript/subscript ALG when the algorithm in question is
clear from the context. Our algorithm is work conserving,
and follows a FIFO discipline. It follows that we need only
specify the behavior of our algorithm in the arrival substep
of every time slot. Algorithm 1 gives the description of our
online algorithm, ON.

The following lemma proves the correctness of ON by
showing that it never uses a buffer of size greater than (1+ε)B,

Algorithm 1 ON(ε, s): at the end of the delivery substep of
any time t,

1: Let AG
t and AY

t be the set of green packets and set of
yellow packets arriving at t, respectively.

2: Let Gt be the set of green packets in ON’s buffer.
3: Let m = max {lagt(p) | p ∈ Gt} if Gt 6= ∅, and m = 0

otherwise.
4: if AG

t 6= ∅ then
5: if the last packet in the buffer is yellow then
6: Let ` be the length of the maximal continuous

block of yellow packets in the tail of the buffer.
7: Tail drop d = max {`− (εB −m), 0} yellow

packets.
8: end if
9: Accept AG

t .
10: end if
11: Accept as many packets from AY

t as long as buffer
occupancy is at most (1 + ε)B.

and it accepts all green packets. We initially assume ON has
an unbounded buffer. Furthermore, w.l.o.g., ON accepts the
packets in AG

t in the same order in which they are accepted
by SIM.

Lemma 2.3 (Correctness): At any time t, ON maintains the
ε-lag property, accepts all green packets, and never holds more
than (1 + ε)B packets in its buffer.

Proof: Proof is by induction on t. For t = 0 the claim
clearly holds since ON accepts AG

0 (since
∣∣AG

0

∣∣ ≤ B by the
assumption that traffic is regulated by a token bucket with burst
size B), and places any additional packets in AY

0 at the tail
of the buffer, i.e., after the packets in AG

0 . It follows that all
green packets in AG

0 have zero lag at time t. By the definition
of ON it accepts additional yellow packets to the extent that
its occupancy does not exceed (1 + ε)B.

Assume the claim holds for t− 1, and consider time t. By
the induction hypothesis, every green packet p in the buffer
at time t− 1 satisfies lagt−1(p) ≤ εB. This specifically holds
for the last green packet p in ON’s buffer at time t− 1. If we
drop at time t the entire block of yellow packets residing in
the tail of the buffer at time t−1, then by the definition of lag,
all packets in AG

t will have lag at most lagt−1(p), which by
the induction hypothesis is at most εB. It follows that d is the
minimal number of yellow packets residing in the tail of the
buffer at time t− 1, such that preempting this amount would
ensure all packets in AG

t still satisfy the ε-lag property after
being admitted to the buffer. By the definition of ON, this
is exactly the amount of yellow packets preempted at time
t, hence, the algorithm maintains the ε-lag property at time
t. Note that by the ε-lag property, any green packet in ON’s
buffer is at most εB packets behind its position in SIM. Since
ON uses a buffer of size (1 + ε)B whereas SIM uses a buffer
of size B, it follows that no green packet is ever positioned in
a place greater than (1 + ε)B (since by the feasibility of SIM,
it accepts all green packets). Since ON only places yellow

packets at the tail of the buffer as long as buffer occupancy
does not exceed (1 + ε)B, it follows that ON never uses a
buffer of size greater than (1 + ε)B, and is able to accept all
green packets.

2) Performance Analysis of ON: In this section we analyze
the performance of our proposed algorithm, and give explicit
guarantees on its competitive ratio. Let ε be the percentage
of additional buffer space available to ON, compared to the
minimal buffer space necessary to deliver all committed traffic,
and let s be its delivery rate, which is at least as high as the
minimum rate r necessary to deliver all committed traffic. Let

c(ε, r, s) =
ε

1 + ε− (s−r)
B

.

We prove the following theorem:
Theorem 2.4: Algorithm ON is min {c(ε, r, s), 1}-

competitive.
We first present some definitions which will be used

throughout the performance analysis of ON.
Definition 2.5: Given any yellow packet p accepted by ON

at time t, we say p is safe if there exists some minimal time
t′ > t such that AG

t′ 6= ∅, and p ∈ BON(t′). In such a case we
further say that p turns safe at time t′ + 1.
The above definition implies that a yellow packet residing in
the buffer turns safe, the moment a later-arriving green packet
is accepted to the buffer. Note that by specification, ON only
drops yellow packets residing in its tail. It therefore follows
that no safe packet is ever preempted by ON, which implies
that all safe packets are eventually delivered by ON.

We denote by St the set of yellow packets which turn safe at
time t. Given any time interval I , Let S(I) = ∪t∈ISt denote
the set of yellow packets turning safe at some point during I .

Similarly to the definition of lag in the previous section, we
define the half-step lag, H-lag, of any green packet p in the
buffer of ON after the delivery substep of time t by

H-lagt(p) = max
{
dALG

t (p)− dSIM
t (p), 0

}
.

Note that for every time t and packet p for which the half-
step lag is defined satisfies H-lagt(p) = lagt(p). However, the
half-step lag is only defined for green packets which are not
sent at the time step after their arrival.

For every time t, we define

φ(t) =
{

maxp∈Gt {H-lagt(p)} Gt 6= ∅
0 otherwise.

Clearly for any time t, and any two green packets p, p′ for
which the half-step lag is defined, if p is ahead of p′ in terms
of buffer position, then H-lagt(p) ≤ H-lagt(p′). It therefore
follows that at any time t, the value of φ is determined by the
half-step lag of the last green packet in ON’s buffer at time
t, if such a packet exists. We say ON is reset at (the delivery
substep of) time t if φ(t) = 0.

Let us first present a high-level description of the analysis;
we consider overloaded time intervals during which yellow
packets are dropped from the buffer, and during which no
reset occurs. We show that during any such time interval,

the number of safe packets in ON’s buffer is sufficiently
large, compared to the maximum number of yellow packets
an optimal policy could have accepted. We show this by
giving a lower bound on the committed traffic that must
be handled by any algorithm during any such interval. This
particularly implies that any optimal policy must dedicate
sufficient resources (in terms of delivery rate and buffer size) in
order to satisfy feasibility, thus leaving relatively few resources
to deliver excess traffic. We further note that during the periods
between overloaded time intervals, ON performs as well as any
optimal policy.

As the starting point of our analysis, the following lemma
gives some characterization of a reset event.

Lemma 2.6: If at any time t ON delivers less than s packets,
then ON is reset at t.

Proof: Since ON is work conserving, and sends less than
s packets in time t, it must follow that by the end of the
delivery substep of time t, ON’s buffer is empty. Therefore,
by the definition of φ, we are guaranteed to have φ(t) = 0,
which implies that ON is reset at t.

We now turn to formally define overloaded time intervals.
Consider any time t for which φ(t) = 0. Starting from any
such t, clearly as long as no yellow packets are preempted by
ON then ON accepts at least as many yellow packets as the
adversary does, since ON uses at least as much buffer space
as the adversary does, and they both must accept all green
packets. Consider any time t0 in which a preemption occurs
in ON. It follows that φ(t0) = εB, since preemption only
occurs in order to maintain the ε-lag property.

Let t1 < t0 be the latest time prior to t0 where ON is
reset. Note that such a time exists since ON is reset before
the packets begin arriving. Furthermore, let t2 > t0 be the
earliest time after t0 where ON is reset. Note that such a time
exists since if we denote by t′ the time of the last arrival in
the input sequence, then we are guaranteed to have a reset
by time t′ + (1 + ε)B. Let It0 = (t1, t2]. We refer to any
such interval as an overloaded interval. By contrast, we refer
to any interval not contained in any overloaded interval as a
regular interval. By the discussion presented above, during a
regular interval ON accepts at least as many excess packets as
the optimal schedule does. We therefore focus our attention
on overloaded intervals. Note that the above definitions imply
that for any two preemption events occurring at times t0 and
t′0, either It0 = It′0 , or It0 ∩ It′0 = ∅. We will therefore refer
to any such interval according to the first preemption event to
which it corresponds, i.e., in an overloaded interval It0 , the
first preemption event occurs at time t0. Figure 4 gives an
intuition as to the values of φ(t), and the decomposition of
time into regular intervals, and overloaded intervals.

In order to simplify the remaining parts of our analysis, we
assume that in every time slot t during an overloaded interval,
either ON delivers exactly s packets in t, or it is idle in t.
Our guarantees hold for the case where this does not hold,
but the proof is much more involved, where every delivery
substep should be divided into several slots, and each such
slot must be evaluated independently. It should be noted that

time

φ(t)

εB

. . .

t0t1 t2

overflow overflow

overload interval

Fig. 4. Schematics of the value of φ(t). Note that there may be more than one overflow (i.e., a drop of yellow packets from the tail of the buffer) associated
with a single overloaded interval. Furthermore, note that the marked interval on the right is not an overloaded interval, although φ does take strictly positive
values in that interval. This is because there is no overflow associated with any time point in this interval.

by Lemma 2.6 the only difference involves the behavior of the
algorithm at the very last time step of an overloaded interval,
since at any other time step in an overloaded interval we are
guaranteed that exactly s packets are delivered by ON. In any
case, the key elements of the proof for the unrestricted case,
and the case satisfying the above assumptions, are the same.

The following lemma characterizes the events which deter-
mine changes in the value of φ(t) during some overloaded
interval It0 , and its dependance on the number of packets
delivered by the simulator and the number of safe packets. In
what follows, recall that St denotes the set of packets turning
safe at time t.

Lemma 2.7: Let It0 be any overloaded interval. Given any
time t ∈ It0 for which φ(t) > 0, if rt is the number of packets
sent by SIM at time t, then

φ(t) = φ(t− 1) + |St| − (s− rt).

Proof: Recall that we consider the case where ON deliv-
ers exactly s packets in every time slot during an overloaded
interval.

If AG
t−1 = ∅, then |St| = 0, since yellow packets can turn

safe only upon the arrival of green packets. Since φ(t) > 0,
then it must hold that the last green packet in BON(t− 1) is
still in the buffer at the end of the delivery substep of time t,
and it has advanced exactly s places in ON’s buffer during
this substep. On the other hand, this packet has advanced
exactly rt places in SIM’s buffer.4 Since φ is determined by
the position of the last green packet in ON’s buffer at the end
of the delivery substep, it follows that

φ(t) = φ(t− 1) + 0− (s− rt) = φ(t− 1) + |St| − (s− rt).

4Note that the last green packet at a certain point is defined by the arrival
sequence, and not by the algorithm managing the buffer. It follows that the
last green packet in ON’s buffer is also the last (possibly already sent) green
packet in SIM’s buffer. In case this packet has already been sent by SIM, then
we simply have rt = 0.

Assume that AG
t−1 6= ∅ and consider the last green packet p

in ON’s buffer at the end of time step t−1. When considering
ON’s buffer at the end of time t−1, compared to the position
of the last green packet after the delivery substep of t−1, the
position of p has increased by exactly |St|.5 Since φ(t) > 0 we
are guaranteed that p is still in ON’s buffer after the delivery
substep of time t. As in the previous case, during this substep,
it has advanced s positions in ON’s buffer, and rt positions in
SIM’s buffer. Since φ is determined by the position of the last
green packet in ON’s buffer at the end of the delivery substep,
it follows that

φ(t) = φ(t− 1) + |St| − (s− rt),

as required.
Lemma 2.8: Let It0 be any overloaded interval, and let Rt0

denote the number of green packets delivered by SIM during
It0 . Then

Rt0 = s |It0 | − S(It0).

Proof: Given any time t during It0 , let ∆(t) = φ(t) −
φ(t − 1) denote the change in the value of φ between time
t− 1 and time t. By Lemma 2.7 we have

∆(t) = |St| − (s− rt),

where rt is the number of packets delivered by SIM at time
t. Since by the definition of It0 = (t1, t2], φ(t1) = φ(t2) = 0,
we are guaranteed to have

∑
t∈It0

∆(t) = 0. Since∑
t∈It0

∆(t) =
∑

t∈It0

(|St| − (s− rt))

=
∑

t∈It0

|St| −
∑

t∈It0

s−
∑

t∈It0

rt

= S(It0)− s |It0 |+Rt0

5Note that if there is no green packet in ON’s buffer after the delivery
substep of t− 1, then ON is reset at t− 1, in which case φ(t− 1) = 0.

we can conclude that Rt0 = s |It0 | − S(It0).
The following lemma concludes the proof of Theorem 2.4.
Lemma 2.9: Let It0 be any overloaded interval. Then, the

ratio between the number of yellow packets admitted to
the buffer by an optimal schedule during It0 and the num-
ber of packets turning safe during this interval, is at least
min {c(ε, r, s), 1}.

Proof: First note that by the fact that an optimal delivery
strategy must correspond with token-bucket parameters of r
(for the rate) and B (for the burst size), the overall number
of packets, of any type, that can be accepted by an optimal
solution during It0 is at most r |It0 | + B. Furthermore,
by Lemma 2.8 we are guaranteed that SIM has delivered
s |It0 | − S(It0) green packet during It0 . By the fact that
any optimal solution never delivers a green packet before its
delivery time by SIM (since they both work at the same rate,
and SIM never accepts yellow packets) we are guaranteed that
at least this amount of green packets are handled by every
optimal solution during It0 . It therefore follows that the overall
number of yellow packets handled by any optimal solution
during It0 is at most

r |It0 |+B −Rt0 = r |It0 |+B − s |It0 |+ |S(It0)|
= |S(It0)| − (s− r) |It0 |+B. (1)

Since at any time t, |St| ≤ εB (otherwise, we would have
violated the ε-lag property), we are guaranteed to have |It0 | ≥|S(It0)|

εB . By equation (1) we are guaranteed that the number
of yellow packets handled by any optimal solution during It0
is at most

|S(It0)| − s− r
εB

|S(It0)|+B =
(

1− s− r
εB

)
|S(It0)|+B.

By the definition of It0 , we must have |S(It0)| ≥ εB. This
follows from the fact that any unit increase in a packet’s lag
is only due to ON having turned safe an additional yellow
packet.

The above implies that the ratio between the number of
safe yellow packets accumulated during It0 and the number
of yellow packets accepted by any optimal solution during It0 ,
is at least

|S(It0)|(
1− s−r

εB

)
|S(It0)|+B

≥ εB(
1− s−r

εB

)
εB +B

=
ε

1 + ε− (s−r)
B

as required.
Combining Lemma 2.9 with the fact that during regu-

lar intervals, ON does not drop any yellow packets, and
therefore delivers at least as many yellow packets as any
optimal solution, we obtain that the competitive ratio of ON
is min{c(ε, r, s), 1}.

3) Implementation Issues of ON: Our analysis implies that
the maximum lag of a green packet in the system is exactly
the lag of the last green packet stored in the buffer. Upon
the arrival of a new green packet, its lag can be calculated in

O(1) time from the lag of the previous green packet and the
number of yellow packets stored between them. This makes
the calculation of m in line 3 trivial.

To be able to implement the algorithm we need to maintain
a pointer to the first yellow packet that will cause the violation
of the ε-lag property if a green packet arrives.

III. SIMULATION STUDY

In this section, we examine the effect of extra buffer space
and higher delivery rates on the ability to obtain a higher
throughput of excess traffic. We consider two algorithms,
and conduct extensive simulations in order to evaluate their
performance. Following the notation of the previous sections,
we consider traffic consisting of both committed and excess
packets, where the committed traffic conforms with token-
bucket parameters of r (rate) and B (burst size). The first
algorithm we consider is algorithm ON described in Sec-
tion II. The second algorithm we consider is the Threshold
algorithm which accepts yellow packets into the queue as long
as buffer occupancy is below some threshold level T (see,
e.g., [13]). We provide both algorithms with additional buffer
space (corresponding to the quantity εB that was used in the
previous sections), and higher delivery rates (corresponding to
the quantity s ≥ r that was used in the previous sections).

For both algorithms we consider the ratio between their
throughput and the one obtained by an upper bound on the best
obtainable throughput achieved by any (possibly clairvoyant)
algorithm. This value can be considered as the normalized
throughput of the algorithms. We note that this upper bound
might not be tight. The upper bound is obtained by an
algorithm that is allowed to maintain two separate queues,
one for the green traffic and one for the yellow traffic such
that the overall occupancy in both queues does not exceed
(1 + ε)B. The algorithm always places green packets in their
queue (possibly dropping previously queued yellow packets,
so as to maintain the occupancy constraint). In the delivery
substep, the algorithm gives the green queue strict priority
over the yellow queue. Namely, this algorithm is allowed to
violate the requirement to transmit packets in FIFO order. The
threshold for the threshold algorithm was set to be the amount
of additional buffer space available to the algorithm, namely,
T = εB. When the queue fills up with εB packets or more,
yellow packets are not admitted to the queue.

A. Traffic Generation and Setup

Although widely used in various queuing environments,
Poisson traffic is rather smooth and does not pose a challenge
for AQM. We consider two scenarios. In the first we use a
Markov modulated Poisson process (MMPP) with two states,
on and off, with symmetric transition rates, which is more
bursty than Poisson. During the on stage packets are generated
with a rate of λon, which results in an effective rate across
both on and off states of λon/2 (the effective rate is
half the on rate since the transition rates are chosen to be
symmetric). Traffic generated using the MMPP generator is
colored by a token-bucket coloring module, according to the

50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

buffer size increase (%)

ex
ce

ss
 th

ro
ug

hp
ut

threshold vs. opt
online vs. opt
competitive ratio

Fig. 5. The effect of buffer size increase for the case where no yellow packets
are added, and overall yellow packets are ∼30% of the traffic. The dashed
line represents the competitive ratio guarantee of our online algorithm.

committed token-bucket parameters. Note that although this
process indeed produces bursty traffic as required, excess
traffic only appears at the end of a bursty period. In addition,
even for high arrival rates (e.g., for λon > 2, which implies
an average arrival rate greater than 1), MMPP generated traffic
produces ≈30% yellow traffic.

The second scenario captures the case where the traffic is
an aggregate of flows, some of which are only best effort.
This is modeled by an additional stream of excess traffic,
whose arrival is governed by a Poisson process. This stream
represents SLAs with zero committed traffic. The overall
traffic in such cases consists of the interleaving of both the
MMPP generated stream, and the excess Poisson generated
stream. This enables us to both have excess traffic arrive not
only at the tail of a bursty period, as well as have yellow traffic
consist a larger fraction of the overall traffic. We note that it is
common to assume that providers do not commit themselves
to more than half their available bandwidth, thus the above
approach enables us to explore scenarios where yellow traffic
consists of roughly 50% of the traffic.

In all the results presented below, we conducted 10 rounds
of simulation for each case considered, where each round
consisted of simulating the arrival of 5000 packets, and using
the committed buffer size parameter of B = 20, and rate pa-
rameter of r = 1 (this can be viewed as a merely normalizing
factor). We further assume that there is no speedup, i.e., s = r.
The plots presenting our results depict the average normalized
throughput obtained in the simulations.

B. Simulation Results

Figures 5-7 depict the results comparing the throughput
of both our proposed online algorithm, and the threshold
algorithm, under 3 distinct yellow traffic intensities, as a
function of the amount of additional buffer space available
to the algorithm.

Figure 5 shows the normalized throughput of both al-
gorithms as a function of the amount of additional buffer
space, where traffic was generated by an MMPP without any
additional yellow traffic. Figure 5 also depicts the performance
guarantee of our online algorithm, as implied by Theorem 2.4,

50 100 150 200 250 300 350 400 450 500
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

buffer size increase (%)

ex
ce

ss
 th

ro
ug

hp
ut

online vs. opt
threshold vs. opt

Fig. 6. The effect of buffer size increase for the case where yellow packets
are added, and overall yellow packets are 40% of the traffic.

50 100 150 200 250 300 350 400 450 500
0.7

0.75

0.8

0.85

0.9

0.95

1

buffer size increase (%)

ex
ce

ss
 th

ro
ug

hp
ut

online vs. opt
threshold vs. opt

Fig. 7. The effect of buffer size increase for the case where yellow packets
are added, and overall yellow packets are 50% of the traffic.

which serves as a lower bound on the throughput of our
algorithm. We note that this lower bound is with comparison
to the actual implicit optimal throughput possible, and not
just compared to the upper bound on the optimal throughput.
Recall that throughput is in terms of yellow packets only,
since all algorithms must deliver all green packets. Our online
algorithm matches the upper bound throughput for all levels
of increased buffer size. The threshold algorithm fails to use
the extra buffer at all for buffer increase of 100% and less.
This is due to the fact that yellow packets always come at
the end of a burst, where the buffer already contains B green
packets and thus the buffer fills up above the threshold, causing
all yellow packets to be rejected upon arrival. The threshold
algorithm reaches 80% throughput only for a buffer increase of
300% and grows up to 90% for an increase of 500%. We note
that for the case where traffic consists merely of the MMPP
generated stream, our online algorithm does not drop yellow
packets due to violation of the lag property. This is due to the
fact that yellow packets only arrive at the end of a burst. As
is apparent from the simulation results, our algorithm actually
performs better than the minimum guarantee implied by the
competitive ratio proved in Theorem 2.4.

Figure 5 also shows a plot of the guarantee provided by
Theorem 2.4. Note that this plot is normalized by the actual
value of OPT and not the upper bound on OPT used in
normalizing our simulation results. For the traffic pattern we

simulated, our algorithm achieves much better throughput than
this guarantee.

Figures 6 and 7 present the results for traffic which is an
interleaving of an MMPP generated stream, and a Poisson
generated stream consisting solely of yellow packets. Figure 6
presents the results where the overall number of yellow packets
is 40% of the entire traffic, whereas Figure 7 presents the
results where the overall number of yellow packets is 50% of
the entire traffic. In both cases, the resulting traffic serves as
a more challenging scenario for our algorithm, since in this
case yellow packets distribution is not as predictable.

One of the effects of adding the additional yellow traffic
is that our online algorithm no longer obtains the optimal
throughput. In addition, for these traffic patterns our algorithm
actively drops yellow packets from its queue in order to
preserve the lag property. The performance of the threshold
algorithm improves for these scenarios since now it can accept
yellow packets that arrive not as part of a burst and thus
have a chance to find the buffer below the threshold even for
less than 100% buffer increase. For buffer sizes of 200% and
below the difference between the online algorithm and the
threshold algorithm are still substantial, however for larger
buffer sizes the differences diminish. In general the higher
the additive yellow traffic and the higher the buffer increase
the difference between the algorithms’ throughput decreases.
However the 100-200% range is the one that seems the most
suitable in practice (namely doubling to tripling of the buffer
space required for committed traffic) and in this range the
advantage demonstrated by our algorithm is noticeable for all
the tested scenarios.

IV. EXTENSIONS AND CONCLUSION

In this paper we studied a simple variant of the oldest
question: what to do in the face of temptation. Specifically,
we considered the problem of buffer management in the
case of heterogeneous traffic, that contains both packets with
guaranteed delivery as well as packets that generate cash
reward for delivery. We adopted the conservative approach that
assigns much more value to the potential penalty for violating
a commitment, but, as we show, we could still enjoy much of
the maximal possible profit, at the expense of requiring a little
more resources. We show this analytically, by proving almost
tight upper bounds on the competitive ratio of our algorithms.
We further established that for traffic which is comprised of
a mixture of bursty committed flows and best effort flows
our algorithm performance is even better than our analytical
guarantees.

We believe that our algorithms are practical and may be
quite useful. Unlike the push-out algorithm of Cidon et al. [13]
which requires dropping packets from arbitrary positions in
the queue, we only need the ability to drop packets from the
tail of the queue, a task that requires just an extra pointer per
queue. The ease of implementation, as well as the analytical
guarantees of performance seem quite promising. However,
not all questions are solved. E.g., the upper and lower bounds

on the competitive ratio are tight only for small additional
buffer space. It seems interesting to close the gap for ε ≥ 1.

ACKNOWLEDGMENT

Research supported in part by the Next Generation Video
(NeGeV) consortium, Israel. This work was done while the
second author was with Tel Aviv University.

REFERENCES

[1] S. Sathaye, “ATM forum traffic management specification version 4.1,”
ATM Forum 95-0013, Dec. 1995.

[2] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An
architecture for differentiated services,” Internet RFC 2475, Nov. 1998.

[3] J. Heinanen and R. Guerin, “A two rate three color marker,” Internet
Engineering Task Force, Sep. 1999.

[4] K. Nichols and B. Carpenter, “Definition of differentiated services per
domain behaviors and rules for their specification,” Apr. 2001, internet
RFC 3086.

[5] D. Grossman, “New terminology and clarifications for diffserv,” Apr.
2002, internet RFC 3260.

[6] F. L. Faucheur, L. Wu, B. Davie, S. Davari, P. Vaananen, R. Krishnan,
P. Cheval, and J. Heinanen, “Multi-protocol label switching (mpls)
support of differentiated services,” Internet RFC 3270, May 2002.

[7] M. E. Forum, “Ethernet services attributes phase 1,” Metro Ethernet
Technical Specifications, Nov. 2004.

[8] R. Santitoro, “Bandwidth profiles for ethernet servicesf,” Metro Ethernet
Forum White Paper, Jan. 2004.

[9] D. Sleator and R. Tarjan, “Amortized efficiency of list update and paging
rules,” Communications of the ACM, vol. 28, no. 2, pp. 202–208, 1985.

[10] A. Borodin and R. El-Yaniv, Online Computation and Competitive
Analysis. Cambridge University Press, 1998.

[11] S. Bergida and Y. Shavitt, “Analysis of shared memory priority queues
with two discard levels,” IEEE Network, vol. 21, no. 4, pp. 46–50.

[12] Y. Huang, R. Guérin, and P. Gupta, “Supporting excess real-time
traffic with active drop queue,” IEEE/ACM Transactions on Networking,
vol. 14, no. 5, pp. 965–977, 2006.

[13] I. Cidon, R. Guérin, and A. Khamisy, “On protective buffer policies,”
IEEE/ACM Transactions on Networking, vol. 2, no. 3, pp. 240–246,
1994.

[14] A. Kesselman, Z. Lotker, Y. Mansour, B. Patt-Shamir, B. Schieber, and
M. Sviridenko, “Buffer overflow management in qos switches,” SIAM
Journal on Computing, vol. 33, no. 3, pp. 563–583, 2004.

[15] M. Englert and M. Westermann, “Lower and upper bounds on fifo
buffer management in qos switches,” in Proceedings of the 14th Annual
European Symposium on Algorithms (ESA), 2006, pp. 352–363.

[16] Y. Mansour, B. Patt-Shamir, and O. Lapid, “Optimal smoothing sched-
ules for real-time streams,” Distributed Computing, vol. 17, no. 1, pp.
77–89, 2004.

[17] N. Andelman, Y. Mansour, and A. Zhu, “Competitive queueing policies
for qos switches,” in Proceedings of the 14th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), 2003, pp. 761–770.

[18] S. Sahu, P. Nain, C. Diot, V. Firoiu, and D. F. Towsley, “On achievable
service differentiation with token bucket marking for tcp,” in Pro-
ceedings of the ACM SIGMETRICS 2000 International Conference on
Measurement and Modeling of Computer Systems, 2000, pp. 23–33.

[19] Y. Chait, C. V. Hollot, V. Misra, D. F. Towsley, H. Zhang, and Y. Cui,
“Throughput differentiation using coloring at the network edge and pref-
erential marking at the core,” IEEE/ACM Transactions on Networking,
vol. 13, no. 4, pp. 743–754, 2005.

[20] S. Floyd and V. Jacobson, “Random early detection gateways for
congestion avoidance,” IEEE/ACM Transactions on Networking, vol. 1,
no. 4, pp. 397–413, 1993.

