
A Hash-based Scalable IP lookup
using Bloom and Fingerprint Filters†

Heeyeol Yu
Computer Science and Engineering
University of California, Riverside

Email: hyyu@cs.ucr.edu

Rabi Mahapatra
Computer Science and Engineering

Texas A&M University
Email: rabi@cse.tamu.edu

Laxmi Bhuyan
Computer Science and Engineering
University of California, Riverside

Email: bhuyan@cs.ucr.edu

Abstract— Several challenges in the IP lookup architecture
must be addressed for a high-speed forwarding in a large scale
routing table: power, memory, and lookup complexity. Hash-
based architectures have lookup schemes that are recognized for
being both power and memory efficient due to their O(1) lookup,
in contrast to other contemporary architectures. In this paper, we
propose a novel hash architecture to address these issues by using
pipelined Bloom and fingerprint filters for a binary searching in
keys. The proposed hash scheme encodes keys’ indexes to an
on-chip fingerprint table, approximately returns a few indexes
in a key query without pointer overhead, and makes a perfect
match in an off-chip key table. Due to a memory banking system
in pipeline stages, we can achieve O(1) pipelined throughput
complexity of insertion, deletion, and query operations. For the
IP lookup, a Lulea bitmap with our hash scheme supports a prefix
lookup without inflating the numbers of prefixes and next-hops,
so that our scalable hash-based scheme can achieve the worst
case O(1) IP lookup. The simulation with large scale routing
tables shows that our IP lookup scheme offers 4.5 and 50.1 times
memory and power efficiencies than other contemporary hash
and TCAM schemes, respectively.

I. Introduction

The demand for high-speed and large-scale routers contin-
ues to surge in networking fields. It has been reported that the
traffic of the Internet is doubling every two years by Moore’s
law of data traffic [1] and the number of hosts is tripling every
two years [2]. To date, the number of prefixes in a core router’s
routing table for is about 290K [3]. These rapid increases in
traffic and hosts lead to two major IP lookup related problems
in core routers. 1) Speed: a high-speed router needs to look
up a routing table at the rate that corresponds to the router’s
bandwidth requirement. For example, at the rate of 160Gbps,
500M lookup requests must be processed in a second which
implies that a packet of minimum 40 bytes must be forwarded
to a next hop in 2ns in the worst case. 2) Scalability: a fast
IP lookup must be made in searching the longest prefix match
even with hundreds of thousands of prefixes.

Since a fast packet forwarding is a router’s critical data
path, literature on packet forwarding has developed schemes
involving three major techniques: Ternary Content Address-
able Memory (TCAM), trie-based, and hash-based schemes.
Although a TCAM provides a deterministic and high-speed
packet lookup [4, 5], due to its non-commodity nature and
brute-force search method, its cost and power dissipation tend
to become prohibitive for packets with a large number of

†This research was supported in part by NSF grant CNS 0832108

prefixes and high line rates. Unlike TCAM, trie-based scheme
uses a tree-like data structure to successively classify a packet
a few bits at a time [6, 7], its drawback, however, lies in its
inherent nature to space consumption when it holds pointers
from nodes to their children and sequential memory accesses
due to these pointers.

In contrast, since hash-based schemes do not perform brute-
force lookups like a TCAM does, they can potentially receive
an order-of-magnitude power saving. Furthermore, hash tables
(HTs) employ a flat data-structure, unlike tries, to achieve po-
tentially smaller memory sizes amenable to on-chip memory.

Traditionally, an HT is popularly used for a fast search due
to its O(1) average memory access per lookup under reason-
able assumptions. Unlike a TCAM with its high hardware cost
and power consumption, and a trie with imbalanced memory
access and pointer overhead, hash-based, especially a Bloom
filter (BF)-based, approaches have been widely documented in
networking literature [8–13]. A BF is essentially a compact set
representation for approximate membership testing. Although
the BF testing is approximate, HTs and binary search trees
which provide exact membership testing on a set are not
preferable due to memory overhead like pointers.

For IP lookup, authors [9] introduce the first algorithm to
employ BFs to work in parallel. Yet, their scheme does not
provide a deterministic lookup due to a BF’s approximate
match. Thus, it suffers time loss in another sequential perfect
match through a hash table in a slow off-chip memory. BF
literature [11, 12] focuses on a perfect match lookup running
at a very low collision rate, so that given a lookup only a few
memory accesses to an off-chip hash table are made.

These recently-proposed schemes [11, 12], however, have
the following design flaws not suitable for a high-speed and
large-scale router: 1) Song et al. [11] claimed that a fast
HT (FHT) with the help of a BF improves its perfect match
performance over a legacy HT [14]. Their FHT scheme is to
combine hashed linked lists with k hash functions to warrant
that only the shortest linked list is used in the search. Beyond
the generic linked-list implementation limitation, like pointer
overhead and sequential accesses along a linked list, an FHT
suffers from two drawbacks: 1.a) due to merging k linked lists,
there is a possibility that duplicate keys are saved in off-chip
memory with a depending factor on k. 1.b) Although a key
search is expedited by choosing the shortest linked list, the
insert and delete operations consume approximately k times.

978-1-4244-4634-6/09/$25.00 ©2009 IEEE 264

2) A Bloomier filter-based hash table (BFHT) [12] for IP
lookup utilizes a Bloomier filter [15], which is capable of per-
key information lookup, to ensure a collision-free lookup. In
addition to the prefix collapsing that a BFHT contributes to,
it also inherits two disadvantages of a Bloomier filter: 2.a)
there is a setup failure in saving n keys’ per-key information
in a Bloomier filter, consequently another lookup mechanism
is needed for the failed keys in the setup. 2.b) The setup
complexity of n keys is O(n log n), implying that a copy of
a BFHT works to update a new key in the rear while lookups
of other keys are performed seamlessly.

To address these flaws, like key duplicates in an FHT and
the complicated setup/update in a BFHT, we propose a scalable
hash-based IP lookup scheme using BFs and a fingerprint filter
(FF) in pipeline. Our scheme, a pipelined indexing hash tree
(PIHT) without pointers, encodes keys’ indexes to a fingerprint
(or key) table and approximately generates a few indexes in
a key query through a binary search in a prefix tree which
is built based on index bits of a key table. Pipelined BFs
play a role in searching for a key’s fingerprint in a b-ary tree,
b∈{2, 4, ...}, while an FF which is the most memory-efficient set
representation guarantees the less number of expensive false
indexes to an off-chip key table in the worst lookup case. Since
memory bank system in a pipeline stage supports multiple
bank accesses in one clock, we can achieve O(1) pipelined
throughput of insertion, deletion, and query operations.

This paper has the following contributions:

• A PIHT provides indexes to a fingerprint (or key) table
using pipelined BFs and an FF without pointer overhead.

• New algorithms on insert, query, delete operations are
proposed for the PIHT and their pipelined throughputs
per clock are O(1).

• By using a Lulea bitmap (LB) [16], we reduce the next-
hop duplicates as well as convert prefixes into a smaller
number of collapsed prefixes of shorter bits.

• One path through both PIHT and LB phases ensures a
perfect-match prefix lookup for IP lookup.

• In IP lookup simulation with scalable routing tables,
an optimized PIHT in a 8-ary tree shows on average
4.5 and 50.1 times efficiencies of memory and power,
respectively, over contemporary schemes.

The rest of the paper is organized as follows. Sec. II presents
an overview on IP lookup schemes and their pros and cons.
Sec. III discusses about basics of a BF and an FF. Then, Sec.
IV shows the detailed PIHT build for a perfect IP lookup
match and the false index path incurred by false positives
of a series of BFs. Sec. V shows memory comparison of
hash lookup mechanisms, and it also has memory and power
comparisons of other IP lookup schemes for addressing a
scalability issue. Then, a conclusion in Sec. VI follows the
experiment in Sec. V.

II. Overview on IP Lookup Schemes

A. TCAM- and Trie-based IP Lookup Schemes

The TCAMs were developed with the ability to store an
additional “Don’t Care” state thereby enabling them to retain

single-clock-cycle lookups for arbitrary prefix lengths. This
high degree of parallelism comes with the cost of storage
density, access time, and power consumption. Although these
disadvantages are resolved in trie-based IP lookup schemes,
trie-based schemes still suffer from the worst case lookup
time which is bounded to O(W) where W is the IP address
length. The fundamental issue with trie-based schemes is that
its performance and scalability are mainly tied to address
length. As Tables I and II depict feature differences among
TCAM-, trie-, and hash-based IP lookup schemes, and they
further demonstrate the urgency and the need to develop an
efficient hash-based IP lookup scheme.

schemes
Trie O(W) †
Hash O(1)

TCAM 1

TABLE I

Lookup complexities

†
W: # of IP ad-

dress bits

TCAM SRAM(hash or trie)
clock† 266 400

Power ‡ ≈15 ≈0.1
Cell◦ 16 6

TABLE II

Hardware features from [17]

†
MHz unit

‡
Watts unit◦

of transistors per bit

B. Hash-based IP Lookup Schemes

1) An approximate-match BF hashing:
Authors in [9] first propose an IP lookup scheme by using a set
of counting Bloom filters to reduce off-chip memory accesses.
This scheme associates each counting BF with a unique prefix
length, and a set of off-chip hash tables are constructed for
each distinct prefix length.

Although on-chip BF preprocessing minimizes the number
of hash probes per lookup, there are two drawbacks: a BF’s
approximate match and its off-chip hash table. Since the BFs
provide only approximate matches, the matches’ confirmation
is necessarily made through corresponding hash tables stored
in slow off-chip memory. Thus, the lookup speed depends
on the off-chip memory speed, and if an off-chip DRAM is
used to reduce cost and power consumption, then the off-chip
memory access time is further increased. Suppose an off-chip
FHT [11] is used in place of a legacy hash table since an FHT
surpasses the legacy hash table in search time by a factor of
four or more. However, such an FHT inevitably suffers from a
pointer overhead, key duplicates, and complicated key update
as described in the following.

2) An fast hash table of a perfect match:
By birthday paradox [18], there is a possibility of a collision
even in a perfect hash function. To resolve this collision
among keys, a chaining method with a linked list has been
widely used. An FHT couples a linked-list HT [14] with a
memory efficient counting BF (CBF), so that a key searching
is expedited by choosing the shortest linked list and a smaller
number of memory accesses are achieved at the cost of
duplicate keys [11].

However, the higher the number of hash functions is, the
larger the number of duplicate keys is due to sharing linked
lists. In 100 runs of an FHT build with synthetic 215 keys, we
found that the number of duplicate keys is proportional to k

265

and its fitting curve noticeably becomes a super-linear to k as
illustrated in Fig. 1. Because a high-speed router needs a large
k value to choose a shortest linked list among k linked lists,
a 160Gbps router requires k=29 in order to achieve this. In
k=29 an FHT has at most 6 times duplicate keys. This FHT
is not scalable in terms of memory usage.

10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3
x 10

5

k, (or # of hash functions)

A
vg

. #
 o

f
of

f−
ch

ip
 s

av
ed

 k
ey

s

fitting curve

FHT

saved keys

Fig. 1. Duplicate keys in off-chip according to k when n=215.

In addition to the duplicate key overhead, an FHT suffers
from additional limitations that are described here. Firstly,
the insert and delete operations take approximately k times
to complete and these operations are not suitable for a dy-
namically changing set. Secondly, in order to catch up with
reduced collisions at a high speed, an FHT needs a plethora
of on-chip starting pointers to off-chip linked lists and it holds
a large wasted portion of on-chip pointers. Also, the off-chip
linked lists themselves incur additional pointer overhead while
our scheme does not have pointer problem and key replication.

3) A Bloomier filter and other hash schemes:
While a linked list needs sequential key accesses for off-chip
matching in [9, 11], a BFHT generates an index to a key table
and its corresponding next-hop table so that finding a key
is completed with a collision-free and perfect O(1) lookup.
However, a BFHT inherits two disadvantages of a Bloomier
filter: setup failure and the setup complexity O(n log n) of n
keys. A Bloomier filter suffers from a dynamic membership
change, because an index table stores a key’s k hash values
based on its neighborhood keys and this neighborhood is
collected by avoiding collision with other keys’ hash values.
Thus, a BFHT using a Bloomier filter needs the same time
complexity for updating prefixes. Also, although a BFHT
introduces prefix collapse to reduce the number of prefixes,
there is inflation of next-hops since a BFHT’s monolithic
bitmap does consider a tree relationship among prefixes.

There are other hash schemes for general packet processing
[19, 20] to reduce the maximum load of a hash table. Two
schemes use multi-leveled hash tables while a scheme in
[20] uses the open addressing for collision and a scheme in
[19] uses both the linked list chaining and open addressing.
However, if the open addressing is adopted there is a chance
of a crisis where a key cannot be inserted into any multi-
leveled hash tables. Thus, these schemes’ application to the
IP lookup causes a setup failure as in a BFHT, which can

cause a malfunction during the IP lookup operation. Even if
a linked list chaining can be used to resolve the crisis, Sec.
II-B.2 shows that a recently proposed FHT using the chaining
suffers from several overheads. However, unlike a BFHT and
schemes in [19, 20], our PIHT does not cause a setup failure.
Also, our PIHT uses key and rule tables for a perfect-match
O(1) lookup through pipeline.

4) Prefix conversion for hash-based IP lookup schemes:
Hash-based schemes, like a BFHT and an FHT, need a scheme
to support wildcard bits in prefixes since hash provides a sin-
gleton match. A controlled prefix expansion (CPE) in [21] is to
transform a set of prefixes by combining prefix expansion and
prefix capture to reduce any set of arbitrary length prefixes into
an expanded set of prefixes in optimized sequence of length.
However, a CPE causes inflating the numbers of prefixes and
next-hops. In contrast, a prefix collapsing (PC) converts a
prefix of length x into a single prefix of shorter length x-l
by replacing its l least significant bits with a wildcard [12].
Although a PC reduces the number of prefixes, there are still a
next-hop’s duplicates, depending on stride length l. Thus, we
adopt a Lulea scheme [16] to remove the next-hop duplicates
while retaining the benefit of the reduced number of prefixes.

III. Preliminary ofMemory-Efficient Hashing

A. A Bloom Filter

A BF for representing set S={e0, e1, ..., en-1} of n keys is
described by an m-bit array and is initialized to 0. A BF
uses k independent hash functions h0, h1, ..., hk-1 which map
the keys uniformly within the range of [0:m-1], and this k-
parallel hashing implies that a BF memory module needs to
support k randomly-addressed memory reads in parallel when
performing an one-clock lookup. For each key e j′∈S , the bits
indexed by hk′ (e j′) are encoded to 1 for 0≤k′≤ k-1, 0≤ j′≤ n-1.
To query that key y is in S , we check whether all bits in the
BF indicated by hk′ (y) are set to 1. If so, a BF returns ’yes’
for the query. If not, then clearly y is not a member of S .
Even if all of the indexes by hk′ (y) are set to 1, there exists
a probability that key y does not belong to set S due to the
random gathering of k bits set to 1 for independent e j′s.

The probability calculation is the following: After all n keys
of S are hashed k times into the BF, the probability that a
specific bit is still 0 is asymptotically p=(1-1/m)kn≈e-kn/m,
given our assumption that hash functions are perfectly random.
Thus, the probability of an f -positive by randomly choosing
k bits of 1 in an m-bit array is bounded as follows

f ≥
(
1- (1-1/m)kn

)k ≈ (1-p)k ≥ (1/2)m ln 2/n (1)

according to the result of Broder and Mitzenmacher [22].
After some algebraic manipulation, they claim that f≤ε=2-w,
where w is termed the query precision, requires

m ≥ (
n(log2(1/ε)

)
/ ln 2 ≈ 1.44n log2(1/ε)=1.44nw. (2)

Also, k becomes w in an optimal configuration. Based on Eq.
(2), we can conclude the linear property between m and n:

Lemma 1 (Linear Property) Linear property between m and n
exists in Eq. (2) because given f requires that variable n is
linearly proportionate to variable m.

266

We have linked the theoretical relationships between k, m,
n for the required f -positive, ε, in a query. If a BF is to
be used for the IP lookup despite producing an approximate
query result, a lookup precision w should be at least 29
(≈ - log2 1/500M) for the 160Gbps routers because a collision
in 500M lookups in a second is not tolerable when meeting
bandwidth requirement satisfaction. The implementation of
such a BF memory requires 29 read ports for the same number
of hash functions, but this is not feasible since memory cost
and power are superlinearly proportional to the number of
read ports. To lessen these overheads, we use a segmented
BF (SBF) with a memory banking. Using this scheme is far
more practical with a commodity memory, such as IDT’s
product [23] of high-speed bank-switchable memory which
is organized into a 64-bank memory array.

In an SBF, an m-bit vector is divided into k m′(=m/k)-
bit subvectors, each put in an independent memory bank. k
hash functions with the range [0:m’-1] are assigned to their
corresponding subvectors, and an one-clock query in an SBF
is based on k indexed values in k subvectors (or banks)
together. Although a SBF’s memory banking scheme removes
the multiport overhead, the SBF’s false positive probability,
f ′, becomes the same BF’s f as follows:

f =
(
1- (1-1/m)kn

)k
=

(
1- (1-1/km′)kn

)k

=
(
1- (1-k/km′+o(1))n)k ≈ (

1- (1-1/m′)n)k
= f ′ (3)

where a small o function is negligible at a large m′ value.
We use an SBF memory banking implementation scheme for
a BF application to the IP lookup with the ‘BF’ notation.

B. A Memory- and Power-Efficient Fingerprint Filter

An FF is regarded the most memory-efficient set representa-
tion scheme [22]. Authors in the paper find that m needs to be
essentially n log2(1/ε) for any data structure scheme with an f -
positive rate bounded by ε=2−w. Thus, an FF can be considered
as a table of n keys’ fingerprints (FPs), each with w bits. Also,
since an FF needs a read port of w-bit width compared to a
BF with w read ports of 1-bit width, an FF is more memory-,
power-, and die-area-efficient than a BF. However, although the
FF memory size for required ε is 1.44 times smaller than a BF
compared to Eq. (2), an FF does not have an efficient indexing
mechanism to find a key’s fingerprint as a BF does use k
hash functions. Thus, if network applications use a power- and
memory-efficient FF, designing an efficient indexing scheme
with an FF is necessary. In the following section, we propose
such an indexing scheme, i.e., an PIHT with BFs, for an FF
in IP lookup application.

IV. Our IP Lookup Architecture with a PIHT

Hash-based IP lookup schemes have received favorable
attention because of power and memory efficiency [11, 12].
Recall that the existing hash schemes themselves [11, 12, 19,
20] suffer from setup failures, more complicated update than
O(1), and pointer overhead as shown in Sec. II-B. To overcome
these problems, we describe a hash-based scheme with a PIHT
and a Lulea bitmap for a scalable IP lookup.

HLE

?=

table
NH

engine
(PIHT)

hash

HLE

bitmap

bitmap table

prefix)

key
(collapsed

table

parse
bitmap

dst. IP

idx.

perfect match?

c

on−chip

base ptr.

collapsed pref.

stride of t bits

Fig. 2. IP lookup architecture with parallel Hash Lookup Engines (HLEs)
for a wildcard support. Each HLE has different collapsed-prefix length c.

Fig. 2 illustrates our PIHT-based IP lookup architecture.
We divide each prefix into a collapsed prefix and a stride.
The strides under the same collapsed prefix are encoded in a
bitmap. For example, 2-bit strides ‘0*’ and ‘1*’ from prefixes
A(‘0100*’) and B(‘0101*’) in c=3 are expanded into a string
‘AABB’. The brute-force bitmap would be ‘1111’. However,
we know that a string with repetitions (e.g., AABB) can be
compressed using a bitmap denoting repetition points (e.g.,
1010) with a compressed sequence (i.e., AB). Among bitmap
schemes [16, 24], for simplicity we choose the Lulea scheme
[16] compressing repeated information without paying a high
penalty in search time. After the prefix division and bitmap
encoding as in Fig. 3, each HLE saves collapsed prefixes of
the same length c in a key table for a perfect match and their
corresponding bitmaps in a bitmap table in order to index into
the next-hop table.

pointer

bitmap

P1
P3

??

P1

P3: 010 101

P2: 010 00*

P1: 010 1*

stride 3

100 : P1
101 : P3
110 : P1
111 : P1

001 : P2
010 : −
011 : −

000 : P2

1
1
1
0

1
0

1
0

in bitmap
count 1’s

P2
010 010

collapsed
prefix

1) prefix division 2) bitmap encoding

NH

Fig. 3. The prefix division and bitmap encoding for prefixes P1, P2, and P3
in order to support a singleton hash match. c=3, t=3.

For an IP lookup operation, initially each HLE strips the
first c bits and their following t bits from a destination IP,
does hash based on c bits, and accesses a next-hop table by
parsing a PIHT-indexed Lulea bitmap, if the hash is perfectly
matched. A match with the longest collapsed prefix is the final
match for a given IP lookup among all its perfect matches. The
following sections show the details of our hash lookup engine.

A. Basic Principles of a Pipelined Indexing Hash Tree

A node in a binary search tree [14] has two explicit pointers
to its children and a key to compare in a query. Basic
operations on a n-key binary search take O(log n) time on
average and O(n) in the worst case. In a query of a key k,
we compare a node key with the key k based on <, ==, and
> operators and make a left sub-query, a match, and a right
sub-query, respectively, after the key comparison.

267

h (e) h (e)

h (e) h (e)

{e }1 {e }2{e }0 {e }3

{e e }0 1 {e e }2 3

1e 2e 3e0e
00 01 10 11

0 3 0 3

1 3 1 3

M1

stage1

No Yes

M0

query result query result
stage0

off−chip
key table

partition
index

memory

memory
: imaginary

boundary

Fig. 4. Two partitioned memories in pipeline and indexing for key e3

In contrast to the comparison operators, we use BF query
results in order to make such sub-query directions in a PIHT.
Fig. 4 shows the basic principle of our PIHT scheme with
4 keys. Suppose that there are two bit-vector memories M0

and M1 with hash functions h0 and h1. Next, we virtually
separate M0 and M1 into two and four memory partitions and
four memory partitions, respectively. Let each partition have
its corresponding BF-encoded subset of 4 keys as in Fig. 4.
For a query of key e3, we look up bits indexed by h0(e3) in
two memory partitions in stage 0. Suppose the second partition
returns a true positive in a BF query while the first partition
yields a negative. According to these query results in stage
0, we only look up the third and fourth memory partitions in
stage 1. As long as the BF query result in the third memory
partition is not a false positive, we can use an index 112 of the
fourth memory partition in order to access a key table for the
key’s confirmation. Note that if there were no false positive,
this query traversal would be similar to a binary search, and
that there is no explicit pointer in the quasi binary search.

Specifically, in a PIHT we use a group of BFs to design
an indexing scheme to index into a fingerprint table and
consequently a key table. Such an index scheme works in the
same way as a binary key search in pipeline. For the pipelining,
we conceptually embed a binary prefix tree with a set of BFs
into multiple memory modules. A PIHT node consists of two
BFs, 0-BF and 1-BF, which cover different subsets and direct
a key query into the left child and the right child, respectively.
A key query in such a node returns ‘x’, x∈{0, 1}, in one clock
cycle if an x-BF returns a query positive, either false or true.
For instance, if a 0-BF in a node returns a query positive, the
next key query proceeds to the left child of the node. A key
query starts from a PIHT’s root node, and this query proceeds
to its corresponding children nodes in the next pipeline stage
based on the query results in a current node. In the last pipeline
stage, for a given key query the PIHT generates indexes to a
fingerprint table with the query results of PIHT nodes.

B. Building a BF-embedded PIHT

A PIHT is a memory efficient hash mechanism to index a
fingerprint table because it never uses pointers in implementing
a tree for accessing a fingerprint table. In addition, if each
stage’s memory banking can process queries on nodes in one
clock, then there is no memory stall in the pipeline; thereby
we can achieve a one-clock lookup to a fingerprint table at the
last stage. Since researchers have produced successful results

: {e , e }

a2

1a

0a

4 5
10 B1key table :BF :fingerprint

a) Prefix tree on index bits b) BF−embedded PIHT

0 1
1B2

0 1
2B2

0 1
3B2

0 1
1B1

0 1
0B0

0 1
0B2s

1 B i
jBj

i
0 B j

ihas and

0 1
0
1B

F7F3F21F F60F F5F42F 3F 4F 5F 6F 7FF1F0

1 2e 3e 4
e 5e

6e0e e e
71 2e 3e 4

e 5e
6e0e e e

7

11 110 0 0 0

1

1010

0

Fig. 5. A conceptual tree construction of a PIHT for 8 fingerprints (F0,· · · ,F7)
and keys (e0, · · · , e7)

on memory banking [25, 26] and pipeline [26, 27] for network
memory, our PIHT scheme in memory banking becomes
feasible. Also, our PIHT-based IP lookup fits in embedded
SRAM since the current ASICs support can be as large as
10Mb SRAM. These facts are beneficial to a modern IP lookup
scheme that demands high-speed lookups with a large number
of prefixes. The details of how to build a PIHT is as follows.

In a macro view, a PIHT for n keys (i.e., collapsed prefixes)
in power of 2 is composed of s=log2 n layers (or pipeline
memory stages interchangeably) and a key-table index space
is partitioned rectangularly of n×s 0/1 bits to create a binary
prefix tree. Fig. 5 shows the PIHT partition where 8 finger-
prints (keys) are stored in an FF (a key table) consecutively
and a binary prefix tree is built in the key-table index space.

In a micro view, a PIHT node is designed to act as a binary
predicate for a key query on dual 0-BF and 1-BF. Let PIHT
node Bi

j denote the j-th binary predicate in layer (or stage) i,
hereinafter 0≤i≤s-1. Then, if key e∈S is to be inserted at index
address A=a0...as-1, where at∈{0, 1}, 0≤t≤s-1, a BF, denoted as
ai-Bi

a0···ai
at each layer i, is involved in encoding key e just

like a legacy BF does. In this hierarchical partitioning and
encoding, Bi

j covers ni=n/2i keys whose indexes in a key table
range from j·2s-i to (j+1)·2s-i-1. For instance, B1

1 covers set
{e4, · · · , e7} while 1-B1

0 considers set {e2, e3} as in Fig. 5 b).

C. Node-to-memory Mapping

Although the nodes are conceptually partitioned in a layer
according to their key sets, they concatenate each other in
a memory bank module and are separated by their base
addresses. That is, as Eq. (2) specifies the required BF memory
size for a bounded f -positive, Bi

j has base address j·1.44niwi in
memory Mi

on, where wi is a query precision of a BF on layer i.
Also, as the equation states that m is linearly proportional to n
for a given f , given fi=2-wi for a BF on layer i, the total memory
of Mi

on for BFs on layer i is of size 2i(1.44niwi)=1.44nwi. Since
the Bi

j size specifies the next Bi
j+1’s base address on the same

stage in order to maintain a tree structure, a PIHT does not
use explicit pointers, but an implicit base index for each BF
sub-block in Mi

on. That is, Bi
j’s memory starts at j·1.44niwi in

Mi
on. Thus, a large memory size reserved for pointers is saved.
Fig. 6 illustrates our PIHT architecture for an HLE where a

set of memory modules is in pipeline and key and bitmap
tables are accessible by indexes generated from a PIHT

268

for a perfect lookup match. In each pipeline stage, a logic
module records a set of nodes Bi

js to be probed by accessing
their corresponding banks in memory module. If a node of
partial index a0...ai-1 has a query positive in 0-Bi

j (1-Bi
j), an

augmented partial index a0...ai-10 (a0...ai-11) for the left (right)
child node of the node is saved for the next logic module. As
long as the number of memory banks in a pipeline stage is
larger than the number of nodes to be probed in the stage,
there is no pipeline stall because the parallel access to memory
banks in one clock cycle is designed in the memory bank
system. Thus, the PIHT pipeline system with memory banking
system is designed to provide one-clock throughput during
insertion, query, and deletion operations. The details of these
operations are the following.

==?

M 0
on

s−1

s−1

match
perfect

key table

yes
key

match

HLE pipeline stages of on−chip banking

generated
idxs

approx.

bitmap tbl.

0logic logic

0SRAM SRAM
for FPs

M s
on

−1

slogic

SRAM

Fig. 6. A pipelined PIHT architecture with s+1 stages for an HLE

D. Insert Operation in a PIHT

When we insert a key with an arbitrary designated address
onto a PIHT, there is a corresponding node to the address on
each PIHT layer. Thus, while traversing the nodes from a PIHT
root based on the address, we do a basic BF key insertion onto
each node. The insertion of key e4 at index 1002, for example,
means that 1-B0

0 of layer 0, 0-B1
1 of layer 1, and 0-B2

2 of layer
2 are involved in BF insertions.

Algorithm 1: insert-i()
Input: key e, and partial index A′=a0a1· · · ai

in binary bits
Output: Encoded PIHT node about e on stage i
mi=1.44ni; j=a0 · · · ai;1
for t=0 to k-1 do2

// ht(e) ∈{0,· · · ,mi-1}, Mi
on of 2i+1mi×1 bits

idx= j · mi · t; // Find bank’s base index in Bi
j3

Mi
on[idx+ht(e)]=1; // Mi

on: BFs on layer i4
end5

Algorithm insert-i shows the detailed insert operation on
stage i as simple as that for a BF, except a lined for loop is
for parallel memory banks. After the last stage s-1, key e, its
fingerprint (FP), and its associated bitmap are saved in Mkey[A],
MFP[A], and Mbitmap[A], where A is the designated address for
key e. Thus, the per-clock throughput of a pipelined insertion
operation to key and bitmap tables is 1 despite the fact that the
memory access complexity during the pipelining is O(log2 n).
In contrast, schemes in [11, 12] claim throughput and memory
access complexities of O(nk2/m+k) and O(n log n), respectively.

E. Query Operation Making Indexes in a PIHT

Once all keys are saved in a key table and the keys’ indexes
are encoded in a set of the corresponding BF memory modules,
the ultimate remaining PIHT goal is to search a key’s index by
performing a fast key query operation. Once we find the key’s
index, we can easily access to an on-chip fingerprint table with
the index for an approximate match and then to an off-chip
key table with the same index for a perfect match. There are
two kinds of search patterns, an unsuccessful search (US) in
which a key is relentlessly searched even though it does not
exist in a PIHT, and a successful but time-consuming search
(SS) in which a key is to be searched in a PIHT. Before we
discuss these two kinds of searches, let us introduce definitions
of an index path and a false index path here.

Definition 1 (Index Path)
In a PIHT, an index path, or i-path, is defined as a series
of x-Bi

js, x ∈ {0, 1}, used in insert operation and is hierar-
chically connected to each other from layer 0 to layer s-1 in
order to produce a sequence of index bits. The sequence of
index bits from x-Bi

js, or a series of x-bits, is also matched
with an assigned index of a key saved in a fingerprint (key)
table and the bit sequence size of the series is to be s.

As a corollary, we can conclude that in query for key e which
is previously encoded by insert, an i-path for the key e
should show up as BFs return ’yes’ for their true membership,
i.e. no false-negative.

Suppose there is no f -positive in a key query on a BF. Then,
there is no other index path in a PIHT for this key query. This
assumption ensures to locate the exact corresponding i-path
to a key table. However, a false index to a fingerprint table,
other than a dedicated i-path to a key, is made possible due to
the f -positives derived from irrelevant x-BFs in a PIHT. For
example, suppose key e4 is inserted with i-path 1002 in Fig. 5
and a query of e4 has progressed along true positives of 1-B0

0
and 0-B1

1. Then, a query on B2
2 may return two positives from

0-B2
2 and 1-B2

2. Since we do not know which positive is true,
this query result with these positives give ambiguous indexes
1002 and 1012. Thus, this ambiguity needs to be resolved by
two accesses to a fingerprint table, and a memory banking
system can process such multiple bank accesses in one clock
if the ambiguous indexes head for different banks. Given a
query for an s-bit i-path, there are totally 2s-1 false index paths
because each Bi

j is independent and identically distributed.
Even if it is possible that there is a set of BFs (or nodes)

giving f -positives in a query, nodes that are only hierarchically
and mutually connected to their parents and children nodes of
positives, true or false, can be a part of an f -path. Thus, f -
positives from the rest BFs can be ignored. In the previous
example of e4 with i-path 1002 in Fig. 5, although 1-B1

1 can
randomly make an f -positive in query, this f -positive can not
be a part of an f -path if there is no f -positive in B2

3. By
the definition of an f -path, the probability of an f -path is
cumulatively calculated as the product of f -positives from all
the nodes along the f -path. Thus, the number of f -paths is
expected to be extremely small so that each stage has a few

269

nodes to be probed and the number of f -paths in the last
stage is bounded to a small value. We formalize the bounded
number of nodes on stage and f -paths for US and SS cases
in the following.

1) The false indexing to a key table in a US:
Besides the design issue of producing a low probability of f -
paths to a fingerprint table in an SS, it is equally important
that the probability of f -paths in a US is also lower. Unlike an
SS, there is no i-path for a given key in a US, meaning that
all BFs in a query return positives as f -positives. However,
there is a chance that nodes, those that are connected to each
another in a hierarchical path, make one or more f -paths. In
contrast to an f -positive in an FHT [11] leading to expensive
off-chip memory accesses, an f -path caused by a series of
f -positives with hierarchically connected Bi

js in each layer i
requires one index access to an on-chip fingerprint table.

There are 2i nodes on PIHT layer i and it is possible that
any of them become a part of an f -path. To become such a
node, an i-length path from a root to the node should be made
by i f -positives from x-Bi

js. Thus, the average number of stage
i’ nodes to be probed is the following:

Ni
U =

2i∑

j=1

f i · 1 = f i · 2i. (4)

Eq. (4) has maximum value, 1, at stage 0, and the larger i is,
the smaller the value of Eq. (4) is. Finally, on the last stage
this value is small enough to converge to zero as follows:

lim
i→∞Ni

U = lim
i→∞ f i · 2i = lim

i→∞ 2−wii · 2i = lim
i→∞ 2(1−wi)i = 0, (5)

where f=2−wi , wi≥2, for a BF on layer i.
2) The false indexing to a key table in an SS:

The situation in an SS is very different from that of a US,
because there must exist one i-path with a number of possible
f -paths in a highly low probability while there is no i-path
in a US. Fig. 7 shows an example of 8 keys where along an
i-path a0a1a2 of key e4 there are 3 dangling trees contributing
to f -paths, if any. All dangling trees are attached to the e4’s
i-path and they can contribute to a number of f -paths and
all are with different probabilities related to Eq. (4). Thus, the
average number of stage i’s nodes to probe is one for an i-path
plus the summation of N j

U/2, 1 ≤ j≤ i for f -paths as follows:

a1

a2

0a

e0 e7e4

dangling trees
PIHT node on i−path fingerprint

Fig. 7. A PIHT of 8 keys with i-path a0a1a2 and 3 dangling trees.

Ni
S = 1 +

i∑

j=1

N j
U/2, i > 0. (6)

In i=0, there is only a starting root node. Since the Eq. (4)
value exponentially gets decreased as i, on the last stage Ni

S
is small enough to converge to 2 as follows

lim
i→∞Ni

S = lim
i→∞ 1+

i∑

j=1

f j · 2 j−1 = lim
i→∞ 1+(1-2−i)/2 < 2 (7)

where f=2-wi and wi≥2 is a BF lookup precision on layer i.
Note that each PIHT node has two BFs 0-Bi

j and 1-Bi
j, each

with wi memory banks. Based on Eqs. (7) and (5), we can
say that if each stage’s memory module has 2×Ni

S×log2 1/ f ,
i.e. 2×2×wi, memory banks, the whole number of nodes to
probe can be processed in one clock cycle without pipeline
stall in a stage. Thus, as long as access time in the memory
bank system satisfies the worst case lookup limit, like 2ns for
160Gbps, we can say that a PIHT can process the worst-case
number of lookups on average.

3) The detailed algorithm for the query operation:
A complete query operation consists of query-i shown in
Algorithm query-i working for layer i≤s-1. Note that given
the number of the partial indexes in L, the number of BFs to be
probed doubles since each binary tree node has two children.
Also, this alrogrithm’s throughput per clock is 1 under the
condition that 2wi|L| is bounded by the number of memory
banks that are supported by the memory hardware without any
overhead. Now, in terms of a key query, the time complexity to
finish the key query from a PIHT root is O(log2 n). However, the
insertion or query operations can be back-to-back each another
in pipeline. For instance, the query-i operation is not affected
by either of the insertion or query operation on the previous
stage i-1 or the next stage i+1 since all these operations are
independent memory access and do not constitute computer
architectural hazard. Thus, we can claim that a pipelined query
operation throughput per clock is 1.

Algorithm 2: query-i()

Input: Mi
on for layer i≤s-1, list L of partial indexes (or nodes)

found up to layer i-1, including i-path, and key e
Output: A set of partial A = a0 · · · ai of i+1 bits, including

segments of f -paths
// S : Set of partial paths. L={A0, · · · A|L|-1}

S = ∅; mi=1.44 · ni · 1; At = L[t];1
for t = 0 to | L |-1 do2

cnt 0=cnt 1=0;3
for t=0 to ki-1 do // Note that ki=wi4

// idx0 (idx1) is base idx. of 0-Bi
j (1-B

i
j)

idx0=2At · mi · t; idx1=(2At + 1) · mi · t;5

if Mi
on[idx0+ht(e)]==1 then cnt 0++;6

if Mi
on[idx1+ht(e)]==1 then cnt 1++;7

end8
// concatenate 0 or 1 bit at the end of At

if cnt 0==ki then S=S∪ At · 0;9
else if cnt 1==ki then S=S∪ At · 1;10

end11
return S ;12

F. The Delete Operation in Dual PIHTs to Update Prefixes

Delete operation is not as easy as the insert because a
basic BF does not support the deletion of a key that is inserted

270

in the BF. However, we couple PIHTs, an l-PIHT and a r-
PIHT, to rotate a target PIHT for the insert operation and
another target PIHT for the delete operation. Once one PIHT
is full of previous n keys, the query operation stays with the
PIHT. But if set S is dynamic but limited in size n, a new
PIHT takes care of new key insertions by working on BFs in
the new PIHT as well as a bit in a valid bit array (VBA).
A new key’s index is given from the head of a free address
queue (FAQ) where every delete puts the deleted-key’s index
at the FAQ. Also, the old PIHT handles delete operation
by simply setting off a bit in a corresponding VBA of the
PIHT. Checking two VBAs with the indexes given by two
PIHTs ensures that an unnecessary fingerprint-table access is
blocked. Also, when all n keys are encoded in one PIHT, i.e.
the moment that an FAQ is empty, the other PIHT needs to
be initialized to 0 for the next set of insert operations with
the BFs initialized in the PIHT. By using two rotated PIHTs,
we do not need counting BFs, which otherwise would cost
4 times additional in memory size. Thus, using two PIHTs
without CBFs saves 2 times the memory space. Algorithm
delete shows the detailed algorithm.

Algorithm 3: delete()
Input: l-PIHT, r-PIHT, key e, and its fingerprint Fe

Output: Updated valid bit array Vl or Vr for l- and r-PIHT
S l=query-s-1(l-PIHT,e); S r=query-s-1(r-PIHT,e);1
if ‖S l ∪ S r‖ ≥ 1 then2

foreach A ∈ S t, t ∈ x{l, r} do // FP == fingerprint3
if Vt[A]==1 and MFP[A]==Fe and Mkey[A]==e then4

Vt[A] = 0; MFP[A]=0; Mkey[A]=0;5
Save A in FAQ;6

end7
end8

end9

G. The optimization of a PIHT Memory in a b-ary Tree

In general, the height of a binary prefix tree on the index
space of n keys is s=log2 n which is the PIHT height. However,
when a b-ary prefix tree, b∈{4, 8, · · · }, is adopted in a PIHT, the
new PIHT’s height becomes logb n while the index notation is
based on the b-base number system. Thus, using a b-ary prefix
tree shortens a PIHT height, thereby the memory reduction.
However, this change does not create any index addressing
disturbance. That is, index 01002 for e4 in 2-base is simply
transformed to 104 in 4-base with no key-table change.

In a b-ary tree adoption, a node Bi
j covers ni=n/bi keys

while one of b BFs in the Bi
j covers a b-th of ni. Due to

Lemma 1 of Linear Property between m and n, it is the number
of layers, s=logb n, not the size of Mi

on, that is affected by the
new b-ary tree adoption. In using the b-ary prefix tree, the
average number of f -positives, b f , among b BFs in a PIHT
node is increased due to the BFs’ binomial distribution. Once
this factor is considered by increasing lookup precision wi, the
PIHT memory size in b-base number becomes

Mb = 1.44n
logb n-1∑

i=0

(wi+ log2 b-1)+nw, (8)

where w is the worst case lookup precision for a router’s
bandwidth requirement. Fig. 8 shows the reduced memory size
in using a b-ary tree rather than a binary tree in a PIHT for
222 keys. As b is larger in a b-ary tree of b-base, the reduction
becomes significant so that the PIHT of wi=6 in 32-base saves
2.4 times memory than that in 2-base. Also, the number of
pipeline stages is reduced.

2 4 8 16 32
2

4

6

8

10
x 10

8

b−ary tree in b−base number system

M
em

or
y

si
ze

 (
bi

ts
)

w
i
=2

w
i
=4

w
i
=6

Fig. 8. Total PIHT memory in a b-ary tree. n=222. w=29.

V. The Experimental Results for IP Lookup Schemes

In this section, we evaluate a PIHT scheme among the latest
hash schemes: an FHT, a linked-list Peacock, and a BFHT in
terms of memory and operation complexity. Also, key update
comparison of these hash schemes is delivered. After these
comparisons for hash-based schemes are discussed, we com-
pare a PIHT-based IP lookup scheme against the representative
schemes from the trie and TCAM-based IP lookup schemes,
with regards to power, memory, and scalability.

To evaluate the implementation cost, power, and memory for
these IP lookup schemes, we utilize CACTI [17] and a tool
[28] for SRAM and TCAM measurements, respectively, and a
parameter of 90nm technology process is used in these tools.
In the evaluation, each scheme is considered with different
prefix distributions for addressing a scalability issue. Among
the four distributions, only one is a real recent routing table
[29] while the rest three distributions of the larger size are
synthesized according to the same prefix distribution pattern
as the real one. Also, we set the stride size s to 4 as in [12].

A. The Comparison among Hash-based schemes

Linked-list hash schemes reduce the probability of collisions
at the cost of a larger number of pointers to linked lists, and
the average length of a linked list determines the number of
memory access due to sequential link accesses. One memory
access is required to take 2ns(=40 bytes*8/160G) for the worst
case lookup in a 160Gbps router. In such a lookup case, the
collision probability of larger than a 1-in-500M(≈2−29) is not
tolerable in a linked-list-based hash since traveling the linked
list needs the same number of memory accesses as the linked
list length [12]. In contrast, the number of PIHT nodes to be
probed, which is concerned by our PIHT-based scheme, only
needs to be bounded within the number of memory banks in
each pipeline stage.

271

1) The memory comparison:
Since each component in a hash mechanism uses a different
memory size, we separately measured all components’ mem-
ory for a lookup precision w=29. Fig. 9 shows the memory

1) 2) 3) 4) 1) 2) 3) 4) 1) 2) 3) 4)
0

2

4

6

8

10

12

x 10
8

of keys, n

M
em

or
y

(b
its

)

Hash lookup
pointers/on key table
off key table

100K 500K 1M

Fig. 9. On- and off-chip memory size of four schemes: 1) CBF [9] +FHT
[11], 2) CBF+Peacock [19], 3) BFHT [12], and 4) PIHT of b=8

sizes of four schemes (CBF+FHT, CBF+Peacock, a BFHT,
and a PIHT) at various n. Schemes 1) and 2) use CBFs marked
as ‘hash lookup’ and an on-chip list of pointer buckets marked
as ‘pointers’ while they put off-chip linked lists with keys
marked as ‘off key table’. Similarly, a PIHT uses an on-chip
hash engine and a key table marked as ‘hash lookup’ and ‘off
key table’, respectively. From the figure, it is apparent that
our PIHT scheme records the least memory size at various n
and linked-list hash schemes 1) and 2) suffer from significant
on- and off-chip pointer overheads. It is observed that a PIHT
scheme saves 2.0 and 7.3 times on-chip memory on average
than the BFHT and CBF+FHT schemes, respectively.

2) The operation complexities:
It is identified that only a negligibly small fraction of prefix
updates actually require a new key to be inserted into a hash
scheme [12]. However, the update throughput can affect the
lookup throughput if it depends on several scalable variables.
The time complexities of insertion, deletion, and query opera-
tions in each hash scheme are different as shown in Table III.
If each operation with a different time complexity cannot be
processed in one clock, the operation throughput is less than
1 over the operation’s time complexity. The operations in an
FHT and a BFHT schemes are not designed for pipelining
while those of our PIHT are. That is, each pipeline stage
processes one of the operations independently and the last
stage completes an operation at every clock cycle. Thus, we
can assert that PIHT operations achieve a constant throughput
independent of the variables shown in Table III’s last row.

Operation insert query delete
FHT ◦O(nk2/m + k) ◦O(1) ◦O(nk2/m + k)
[15] ◦O(n log n) ◦O(1) ◦O(n log n)

PIHT ◦O(log2 n)/†O(1) ◦O(log2 n)/†O(1) ◦O(log2 n)/†O(1)

TABLE III

Operation complexities of in an FHT, [15] (a Bloomier filter), and a PIHT.

◦
Time complexity

†
Pipelined throughput complexity

B. Memory Comparison for All IP Lookup Schemes

For comparison among all IP lookup schemes, we need to
differentiate their number of transistors since a TCAM cell
uses 16 transistors while a SRAM cell requires 6 transistors
as shown in Table II. This consideration is illustrated in Fig.

1) 2) 3) 4) 5) 1) 2) 3) 4) 5) 1) 2) 3) 4) 5) 1) 2) 3) 4) 5)
0

0.5

1

1.5

2

2.5

3

3.5
x 10

9

of prefixes

of

 tr
an

si
st

or
s

lookup engine
next hop

233K 500K 750K 1M

Fig. 10. Memory comparison for 5 schemes: 1) CBF+Peacock+Tree bitmap,
2) BFHT+PC, 3) TCAM, 4) Tree trie [6], and 5) PIHT+LB of b=8

10 by showing the number of transistors used in these five IP
lookup schemes at various n. Although the inflated number of
the next-hops in a BFHT scheme is 1.5 times larger than that
of scheme 1) on average, the overall memory size of scheme
1) is 1.8 times larger than that of a BFHT scheme due to the
pointer overhead. Additionally, the memory used by our PIHT-
based IP lookup scheme scales well above other schemes, and
it saves 4.5 times smaller than others’ memory, at most.

C. The Power Comparison for All IP Lookup Schemes

This section details power measurement of all IP lookup
schemes. We measured the power consumption of two parts:
the longest prefix lookup marked as ‘lookup engine’ and a
next-hop lookup for the matched marked as ‘next hop’ as in
Sec. V-B. We understand that power is linearly proportional
to load capacitance and the wire is the major source of capac-
itance in VLSI system based on the submicron technology.
Thus, as the memory size is larger, the power consumed for
memory access is larger proportionally. Since both BFHT
bitmap and linked-list Peacock cause a next-hop inflation,
consequently the next-hop lookups for these schemes incur 3
and 7 times more power consumption in comparison to other
next-hop lookup schemes, respectively.

However, on average the overall power consumption of
these schemes 1) and 2) is 2.5 times smaller than that of a
TCAM. The main drawback of TCAMs is their prohibitive
power consumption. In addition, because of the larger number
of transistors required per bit TCAMs cannot be fabricated
with the same density as SRAMs. Thus, TCAM schemes
consume power 13.2 times more, on average, compared to a
PIHT scheme. For only ‘lookup engine’ comparison, TCAMs
use 50.1 times more power than a PIHT at n=1M. Also, Tree
trie scheme [6] suffers from power consumption shown in
Fig. 11, which is attributed by its need for sequential memory
accesses along a trie. Thus, Tree trie scheme uses 2.2 times
more power than a PIHT scheme on average.

272

1)2)3)4)5) 1)2)3)4)5) 1)2)3)4)5) 1)2)3)4)5)
0

10

20

30

40

of prefixes

Po
w

er
 (

W
)

lookup engine
next hop

Fig. 11. Power comparison for 5 schemes: 1) CBF+Peacock+Tree bitmap,
2) BFHT+PC, 3) TCAM, 4) Tree trie [6], and 5) PIHT+LB of b=8

VI. Conclusion

The hash-based schemes have more attractive features such
as lower power consumption, smaller memory and latency,
compared to TCAM and trie-based schemes. However, there
are three key obstacles that hinder their practical deployment.
1) The HTs incur collisions and use the chaining method to re-
solve them, and consequently this creates unpredictable lookup
rates and introduces memory wastes [11, 19]. 2) A setup failure
happens in an open-addressing collision resolution [19, 20] and
a Bloomier filter [15], and this failure is not tolerable in IP
lookup. 3) A hash cannot provide a prefix lookup and the
current solutions generate an inflation of either prefixes or
next-hops [12, 21].

We proposed a novel hash architecture to address these
problems for IP lookup. The proposed scalable hash-based IP
lookup scheme uses both a PIHT to do a b-nary key search,
b∈{2, 4, · · · }, in pipeline and a Lulea bitmap to make a smaller
number of collapsed prefixes and next-hops. A PIHT in a
prefix tree encodes keys’ indexes and returns an i-index plus
f -indexes, if any, in a key query as BFs’ query results are
used for a b-nary key search. In hardware implementation, a
stage in a pipelined PIHT utilizes a memory banking system
in order to remove multiport memory overhead and to provide
an O(1) pipelined throughput complexity.

We have successfully demonstrated that the IP lookup com-
bination of existing hash schemes (a CBF, an FHT, a linked-list
Peacock, and a Bloomier filter) and prefix conversions (PC and
Tree bitmaps) are not scalable in terms of a routing table size
and a forwarding speed. In contrast to other hash schemes,
a PIHT reduces on average 7.3 and 9.8 times memory and
die area, respectively. For IP lookup, a PIHT-based IP lookup
scheme saves up to 4.5 and 50.1 times memory and power,
respectively. Since we chose b=8 in a PIHT, we could get
better efficiencies if b=16.

As a future plan, a PIHT can be used a basic building
block for packet classification, intrusion detection as well as
for generic content searches.

References

[1] K. G. Coffman and A. M. Odlyzko, Internet growth: Is there a ”Moore’s
Law” for data traffic?, Handbook of Massive Data Sets. New York,
New York: Kluwer, 2002.

[2] Mathew Gray, Internet Groth Summary. [Online]. Available:
http://www.mit.edu/people/mkgray/net/internet-growth-summary.html

[3] BGP Routing Tables Analysis Report. [Online]. Available:
http://bgp.potaroo.net

[4] V. Ravikumar and R. Mahapatra, “TCAM Architecture for IP Lookup
using Prefix Properties,” MICRO, IEEE, vol. 24, no. 2, pp. 60–69, 2004.

[5] V. C. Ravikumar, R. N. Mahapatra, and L. N. Bhuyan, “EaseCAM: An
Energy and Storage Efficient TCAM-Based Router Architecture for IP
Lookup,” IEEE Trans. Comput., vol. 54, no. 5, pp. 521–533, 2005.

[6] W. Eatherton, G. Varghese, and Z. Dittia, “Tree Bitmap: Hard-
ware/Software IP Lookups with Incremental Updates,” SIGCOMM Com-
put. Commun. Rev., vol. 34, no. 2, pp. 97–122, 2004.

[7] A. Basu and G. Narlikar, “Fast Incremental Updates for Pipelined
Forwarding Engines,” IEEE/ACM Trans. Netw., vol. 13, 2005.

[8] A. C. Snoeren, “Hash-based IP Traceback,” in SIGCOMM ’01.
[9] S. Dharmapurikar, P. Krishnamurthy, and D. E. Taylor, “Longest Prefix

Matching using Bloom Filters,” in SIGCOMM ’03.
[10] T. S. Sarang Dharmapurikar, Praveen Krishnamurthy and J. Lockwood,

“Deep Packet Inspection using Parallel Bloom Filters,” in MICRO 37.
[11] H. Song, S. Dharmapurikar, J. Turner, and J. Lockwood, “Fast Hash

Table Lookup using Extended Bloom Filter: An Aid to Network Pro-
cessing,” in SIGCOMM ’05.

[12] J. Hasan, S. Cadambi, V. Jakkula, and S. Chakradhar, “Chisel: A
Storage-Efficient, Collision-free Hash-based Network Processing Archi-
tecture,” in ISCA ’06.

[13] F. Bonomi, M. Mitzenmacher, R. Panigrah, S. Singh, and G. Varghese,
“Beyond Bloom Filters: From Approximate Membership Checks to
Approximate State Machines,” in SIGCOMM ’06.

[14] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to
Algorithms. New York: McGraw-Hill, 1990.

[15] B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal, “The Bloomier Filter:
an Efficient Data Structure for Static Support Lookup Tables,” in SODA
’04.

[16] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink, “Small Forwarding
Tables for Fast Routing Lookups,” SIGCOMM Comput. Commun. Rev.,
vol. 27, no. 4, pp. 3–14, 1997.

[17] CACTI. [Online]. Available: http://www.hpl.hp.co.uk/personal/ Nor-
man Jouppi/cacti5.html

[18] D. E. Knuth, The Art of Computer Programming. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1978.

[19] J. T. Sailesh Kumar and P. Crowley, “Peacock Hashing: Deterministic
and Updatable Hashing for High Performance Networking,” in INFO-
COM ’08, 2008.

[20] A. Kirsch and M. Mitzenmacher, “Simple summaries for hashing with
choices,” IEEE/ACM Trans. Netw., vol. 16, no. 1, pp. 218–231, 2008.

[21] V. Srinivasan and G. Varghese, “Fast Address Lookups using Controlled
Prefix Expansion,” ACM Trans. Comput. Syst., vol. 17, no. 1, 1999.

[22] A. Broder and M. Mitzenmacher, “Network Applications of Bloom
Filters: A Survey,” Internet Mathematics, vol. 1, no. 4, pp. 485–509,
2002.

[23] Integrated Device Technology Inc. [Online]. Available:
http://www.idt.com/products

[24] H. Song, J. Turner, and S. Dharmapurikar, “Packet Classification Using
Coarse-grained Tuple Spaces,” in ANCS ’06.

[25] B. Agrawal and T. Sherwood, “Virtually Pipelined Network Memory,”
in MICRO 39, 2006.

[26] T. Sherwood, G. Varghese, and B. Calder, “A Pipelined Memory
Architecture for High Throughput Network Processors,” in ISCA ’03.

[27] F. Baboescu, D. M. Tullsen, G. Rosu, and S. Singh, “A Tree Based
Router Search Engine Architecture with Single Port Memories,” in ISCA
’05.

[28] B. Agrawal and T. Sherwood, “Modeling TCAM Power for Next
Generation Network Devices,” in ISPASS ’06, 2006.

[29] RIPE Network Coordination Centre. [Online]. Available:
http://www.ripe.net/projects/ris/rawdata.html

273

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

