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Abstract— We propose a routing and load-balancing approach
with the primary goal of being robust to sudden topological
changes and significant traffic matrix variations. The proposed
method load-balances traffic over several routes in an adaptive
way based on its local view of the load in the network. The focus
is on robustness and simplicity, rather than optimality, and so it
does not rely on a given traffic matrix, nor it is tuned to a specific
topology. Instead, we aim to achieve a satisfactory routing under
a wide range of traffic and topology scenarios based on each
node’s independent operation. The scheme avoids the instability
risks of previous load-responsive routing schemes, it does not load
the control plane with congestion-related signaling, and it can be
implemented on top of existing routing protocols. In this paper,
we present the proposed scheme, discuss how it aims to meet the
objectives of robustness and load-responsiveness, and evaluate its
performance under diverse traffic loads and topological changes
with flow-level simulations.

I. INTRODUCTION

New applications, such as VoIP, IPTV and distributed gam-
ing, as well as demanding Service Level Agreements between
ISPs and commercial or government enterprise networks,
impose new requirements on Internet routing. Instead of just
providing good performance over long timescales (say hours),
it is now important that an ISP can also deal effectively with
short-term overload conditions that last from few seconds to
several minutes. For such timescales, it is not possible to
rely on mechanisms that require human intervention. Instead,
an automated load-responsive routing or online Traffic En-
gineering (TE) mechanism is needed [6], [12]. Further, it is
important that these routing/TE mechanisms do not only avoid
congestion, but also that they result in routes with low delay
(an issue that is often overlooked in the traffic engineering
literature).

Load-responsive routing has been the focus of intense
research since the early seventies and it was even deployed in
the early ARPAnet [14]. Unfortunately, many load-responsive
protocols either suffer from instability [25], or they solve the
stability problem through significant control overhead in terms
of load state updates [6], [7], [12]. On the other hand, TE
methods that require an estimate of the Traffic Matrix (TM)
can provide optimal routing, in terms of congestion-related
metrics [26], but they face the significant challenge that the
TM elements vary significantly with time, especially when we
are also interested in short timescales. Additionally, link/router
failures and management operations require us to also consider
robustness in terms of topological changes.

In this paper, we present Routing Homeostasis, or simply

“Homeostasis”.1 Homeostasis is a new approach to routing
and load balancing where the primary goal is robustness to
variations in traffic patterns and topology, while providing
good routes in terms of delay under light traffic loads. The
main components in Homeostasis are the use of multiple non-
equal cost routes to each destination, and adaptive assignment
of traffic to these routes based on the local view of the traffic
load.

Even though many advanced routing protocols promising
improved performance have been proposed and implemented
over the last decades, most networks still base their route se-
lection on shortest-path calculations using link-state protocols
like OSPF or IS-IS. The main reasons for this are the sim-
plicity and distributed nature of these protocols. An important
design goal in Homeostasis is to retain this simplicity. Home-
ostasis stays in the context of destination-based hop-by-hop
forwarding, and does not involve any complex configuration or
parameter optimizations. It is implementable on top of current
routing protocols, and does not create additional control traffic.
Network nodes make their forwarding decisions independently,
and adaptation to changes in the traffic is done based only on
local information. With the focus on low overhead and local
operation, Homeostasis prefers simplicity over optimality.

Multipath routing, together with the adaptive load balancing
scheme we describe next, are the key ingredients of robustness
in Homeostasis. Instead of using a single best path, or the set
of minimum equal-cost next-hops, traffic is spread on a limited
set of loop-free unequal-cost next hops. Multipath routing can
give rapid fault recovery upon topological changes, and it
can absorb short-term overloads by using additional next-hops
when needed.

As previously mentioned, load-adaptive routing schemes
either suffer from instability risks, or they introduce significant
signaling load in the routing plane. To avoid both problems,
Homeostasis does not change the set of available routes to
a destination based on the load. Routes are chosen based
on propagation delays (a static metric that does not vary
with load), while load balancing is performed on a local
basis without any signaling between different routers. Of
course, local load balancing is less effective than global load
balancing in rerouting traffic upon congestion. We believe
that the stability risks, or control overhead, of global load

1This name is inspired by biological homeostasis - the mechanism with
which organisms manage to maintain robust and stable function, despite large
and unpredictable changes in their environment.



balancing schemes (such as load-responsive routing or online
TE) are more important issues for network operators than the
advantage of such schemes in terms of capacity utilization.

Homeostasis can be implemented over existing intradomain
routing protocols, such as OSPF, IS-IS or EIGRP, because it
does not require additional communication between routers.
The multipath routing tables can be constructed using the
routing updates of any link-state or distance-vector protocol,
as long as propagation delay becomes the metric of each link.
The load balancing module can be implemented locally, as
part of the forwarding engine’s functionality, and it does not
require changes in the routing information propagated in the
routing protocol.

An important goal in Homeostasis is to avoid or minimize
queuing delays. Instead of reacting to increased queuing
delays or packet losses, Homeostasis attempts to proactively
avoid congestion. To do so, the load balancing module mon-
itors the utilization of each selected out-link that is currently
used to route traffic. When that utilization exceeds a certain
threshold, new flows are routed to the next available next-hop
in terms of propagation delay. In this manner, higher-delay
routes are used only when needed; in light-load conditions,
traffic is routed through the single minimum delay path.

Homeostasis is not designed to achieve optimality under
an expected traffic load, but seeks to give satisfactory perfor-
mance under a wide range of operating conditions. This is in
clear contrast to much of the TE literature [8], [9], [21], [26],
[27], [28], which seeks to optimize some objective function
assuming knowledge of the traffic matrix. For example, in the
most recent work in this tradition [28], the authors show that
an optimal traffic distribution can be achieved without explicit
routing and in a distributed manner by a joint optimization
of the link weights and (static) traffic split ratios with time
complexity O(N4). The performance of this method is highly
dependent on the quality of the TM estimate; when the
experienced traffic deviates from the expected, or the topology
changes due to failures or maintenance operations, the routing
can be far from optimal. In contrast, Homeostasis makes
no assumptions about the traffic input, and does not involve
any optimization. Optimizing routing for a particular TM is
problematic, since in general, it is difficult to make accurate
predictions about the future traffic demands in a network.
While historical measurements can give an indication about
the expected long-term traffic pattern, it is well known that
Internet traffic exhibits significant variation over a wide range
of timescales. Recent developments such as overlay networks,
peer-to-peer applications and Intelligent Route Control make
it even harder to get accurate TM estimates. Homeostasis is a
“nonparametric” routing mechanism, in the sense that it does
not require a TM estimate.

In the rest of this paper, we introduce Homeostasis Routing,
present its route selection and load balancing algorithms, and
evaluate its robustness and performance (in terms of delay and
network cost) with flow-level simulations. The main focus of
this paper is on the objectives, key ideas and algorithms of
Homeostasis Routing. We defer a more detailed evaluation

study, with packet-level simulations or testbed experiments,
TCP traffic, routing protocol transients, etc, in a next paper.
Sec. II describes how multipath routes are selected. Sec. III
describes the load balancing method. We evaluate the robust-
ness and performance of Homeostasis in Sec. IV. We review
the most related work in Sec. V, and we conclude in Sec. VI.
The details about our simulation setup are explained in the
Appendix.

II. MULTIPATH ROUTING

The ability to use more than one path to reach a destination
is central for achieving robustness. In this section, we explain
how multiple routes are selected, discuss issues that affects
the number of routes achieved by Homeostasis, and evaluate
the impact of multipath routing on delay.

We want to exploit the underlying path diversity beyond the
Equal-Cost Multi-Path (ECMP) commonly employed today,
by not restricting traffic forwarding to only shortest paths.
Instead we install up to K loop-free next-hops towards a des-
tination in the forwarding table (FIB) at each router. Achieving
several next-hops to a destination is critical, since we rely on
the ability to load-balance between them to absorb sudden
changes in the traffic input. Keeping multiple entries per will
increase the memory needed for FIB/RIB. The increase will
depend on the vendor-specific implementation. In networks
where large routing tables makes this a constraint, it may be
necessary to limit the memory consumption by setting K to a
low value.

Note that we do not propose a new routing protocol - we
are agnostic to the choice of routing protocol for conveying
reachability information. Homeostasis can be used on top of
any existing link state protocol such as OSPF or IS-IS, or
distance vector protocol such as RIP or DASM. We only
require changes in the way the routing tables are calculated and
populated. Properties like convergence time, inconsistencies
during the convergence period etc. will be determined by the
routing protocol.

A. Selecting next-hops

We base our route selection on the propagation delays
through each neighbor. Note that our method can also work
with other metrics for calculating the set of available routes
to a destination. Propagation delay is selected here because
we want to minimize the latency experienced by traffic, and
because it is a stable property of the network that does not
change with input load. The routes used to reach a destina-
tion are selected based on the announced propagation delays
through each neighbor in the following way. Each router i
advertises a minimum delay di(t) to reach a destination t.
This delay is calculated as

di(t) =

{

0, if i = t
min∀j(dj(t) + d(i, j)), otherwise

(1)

where j is a neighbor of i, and d(i, j) is the propagation
delay of link (i, j). Traffic can never be sent to a neighbor with



a higher distance to t. We say that a neighbor j is a feasible
next-hop for node i with respect to destination t if node i can
send traffic bound for t through j without creating a loop. We
denote this relationship (i → j)t. Node j is always a feasible
next-hop if it has a lower distance to t: dj(t) < di(t) ⇒ (i →
j)t.

A router installs up to K next-hops towards each destination
in its forwarding table, corresponding to the K feasible next-
hops giving the shortest distance in terms of propagation
delay. The motivation for limiting the number of next-hops
to K is two-fold. First, we want to limit the amount of state
information stored in the (expensive) memory used in FIBs.
Second, we want to avoid using routes with very long delays.
The strategy of communicating the minimum delay to the
destination is similar to the approaches used by multipath
distance vector protocols like DASM [29] and MDVA [23],
but we differ by not installing all feasible next-hops in the
forwarding table.

A node will not always achieve K feasible next-hops to
all destinations, even if K physical paths exist. In particular,
this will always be the case for the closest neighbor to the
destination/egress node in the network. Since all other nodes
(except the destination itself) have a longer distance to the
destination, the closest neighbor can never have more than
one feasible next-hop.

We denote by ki(t) the number of loop-free next-hops for
destination t that a node i is actually able to install in its
FIB under a given routing. ki(t) is limited either by K, or
by the number of feasible next-hops i can achieve for t in the
topology. In order to increase robustness, we want to minimize
the number of instances where ki(t) = 1.

B. Increasing path diversity

One way to decrease the number of situations where ki(t) =
1 is to include neighbor j in the set of feasible next-hops for
node i when di(t) = dj(t) in some situations. To avoid loops,
we then need a tie-breaker that gives a strict total order of
the nodes with respect to t, so that (i → j)t ⇒ (j 9 i)t

and (i → j)t ∧ (j → k)t ⇒ (i → k)t. As we shall see,
the choice of tie-breaker is important for avoiding situations
where ki(t) = 1.

We make two observations with respect to the use of tie-
breakers. First, there is a connection between the granularity
with which we measure the delay of a link, and the frequency
with which the tie-breaker is applied. A coarser granularity
gives more situations where two neighbors have the exact same
distance to a destination, and must rely on the tie-breaker
to determine which node can send traffic through the other.
Second, increased use of the tie-breaker normally decreases
the number of situations where ki(t) = 1. This is because
an increasing number of ties can only be positive for nodes
with ki(t) = 1, since they can end up with additional feasible
next-hops.

We test the performance of three different tie-breaking
strategies that are used in situations where di(t) = dj(t).
In the node-ID strategy, we break ties in favor of the node
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Fig. 1. Number of next hops achieved for all source-destination pairs in
different networks.

with the higher ID. In the destination-based strategy, we break
ties in favor of the node with the higher node ID for some
(even numbered) destinations, and the opposite for other (odd
numbered) destinations. In the degree-based strategy, we break
ties in favor of the node with the lowest node degree.2

The three tie-breaking strategies were tested in the POP-
level Tiscali, Sprint and Level3 networks3 with different link
delay granularities. By a granularity of x seconds, we mean
an approach where all links with a delay from 0 to x seconds
get a weight of 1, links with delay x to 2x get a weight 2 etc.
These tests show that the degree-based tie breaking strategy
consistently gives a lower number of instances where ki(t) =
1. This is not unexpected, since high-degree nodes will often
have a higher number of feasible next-hops for a destination,
and are not dependent on “luck” with the tie-breaker to achieve
route diversity. Our tests also show that a coarser granularity
gives an improved path diversity. Setting the delay granularity
to 3-ms seems to be a good trade off which gives a low fraction
of instances where ki(t) = 1, while it is low enough to clearly
prefer short links over long ones. In the rest of this paper, we
use the degree-based tie-breaker, and measure link delays with
a 3-ms granularity.

Figure 1 shows a CDF for the number of feasible next-
hops achieved for all source-destination pairs for the POP-level
Tiscali, Level3 and Sprint networks. We see that there is a clear
connection between the connectivity of the networks and the
path diversity achieved at each node. In the well-connected
Level3 network, some nodes potentially have a large number
of loop-free next-hops for some destinations. Depending on
the value of the parameter K, many of these potential next-
hops will not be installed in the FIB. Next, we observe that
in the Tiscali and Level3 networks, we achieve ki(t) > 1 for
about 95% of node pairs. In the Sprint network, which has
a significantly sparser topology, we see that ki(t) = 1 for a
somewhat higher fraction of node pairs. This is not surprising,
since the connectivity of the network topology is important for
the degree of multipath routing achieved in any destination-

2The information needed to calculate this is readily available if a link
state protocol is used to convey topology information. With a distance-vector
protocol, each node must inform its direct neighbors about its node degree.

3More information about the network topologies is given in the appendix.
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Fig. 2. Maximum possible path stretch given by the routing, averaged over
all source-destination pairs, for the Sprint network.

based routing.4

Note that even if there are some cases where ki(t) = 1,
so that a node can only use a single next-hop to reach a
destination t, there are usually few links for which no traffic
can be diverted to another link in case of congestion. Consider
a situation where a node can only reach a destination t through
link l. However, another destination t′ that is reached through
l can also be reached through an alternative link l′. Hence, we
are still able to avoid congestion on link l by diverting some
of the traffic destined for t′ to l′. The method used to assign
traffic to different next-hops is the subject of the next section.

C. Propagation delays

We look at the propagation delay when we allow routing
over K loop-free paths as described in this section. We
look at the delays when link weights are equal to the raw
propagation delays, and when they are equal to propagation
delays measured with a 3-ms granularity. For reference, we
also include results when all links have unit weights, and when
links have weights equal to the inverse of their capacity (we
explain how link capacities are determined in the appendix).5

Figure 2 shows the upper bound on the path stretch in
the Sprint network with the different routing schemes, as
a function of K. The path stretch is the ratio between the
propagation delay of a given path, and the propagation delay
of the shortest path between the two endpoints. We calculate
the path stretch of the longest valid route that can be taken
for each source-destination pair in the network, and show the
average value over all source-destination pairs. The vertical
bars indicate the 95% confidence interval for the average.

As one could expect, routing based on link delays has a
significantly smaller worst-case path stretch than the hop-count
or inverse capacity weight settings. This difference increases
when we move from single-path (K = 1) to multi-path
(K > 1) routing, motivating our use of delay as the main

4For the Sprint network, the high number is caused mainly by the fact that
there are only two trans-atlantic links. Some nodes can reach a significant
fraction of the network through only one of these.

5Note that we do not look at any link weight settings produced by heuristics
like the one presented in [8] for two reasons - they are not designed to work
with multipath routing, and they are tuned to work with a particular expected
input TM. Here we focus on multipath routing, and methods where the routing
is based on physical properties rather than an expected traffic pattern.

metric for calculating next-hops. We also observe that there
is a large variance between different source-destination pairs,
as indicated by the wide confidence intervals. The use of 3-
ms delay granularities does not significantly increase the max
path stretch compared to using raw delays. Note that the path
stretch plotted in Fig. 2 will only be experienced if the worst
possible choice with respect to propagation delay is made at
each single router on the path from a source to a destination,
which is unlikely to occur in practice.

III. LOAD ADAPTATION

The selection of next-hops described above does not depend
on the load in the network, and only changes in response to
topology changes. In our approach, all load adaptation takes
place by adjusting the amount of traffic a router sends to each
feasible next-hop. Here, we describe how this load balancing is
performed. The load balancing method is designed to minimize
delays under normal load, react to congestion based on local
information only, and avoid reordering of packets belonging
to the same (TCP) flow.

The assignment of traffic is done solely based on a router’s
local view of the load situation in the network. Routers do
not distribute any information about their load to other routers
in the network. Hence, our approach requires no additional
signaling, and can work directly with any existing routing
protocol.

A. Load balancing objective

Importantly, the feasible next-hops towards a destination
t are not treated equally by our load balancing mechanism.
Instead, they are ranked according to their propagation delays.
The basic idea is that we want to use the shortest path next-
hop as long as the utilization of this link stays below a certain
threshold, which we call the spilloverThreshold θ. Only when
the utilization of the shortest path next-hop exceeds θ, will
traffic bound for t be sent on the second shortest path. When
the secondary next-hop also exceeds this threshold, we will
start using the third shortest path, and so on until the utilization
of all available paths reach θ. If two or more routes have
the same delay, we adopt a min-max load balancing strategy
to choose among them, where new flows are assigned to the
out-link with the least utilization. We also use the min-max
strategy if all feasible next-hops are above θ.

The reasoning behind this strategy is that up to a certain
utilization threshold, the queuing delay of a link is negligible.
When utilization exceeds this threshold, queues might start to
build up. We aim to avoid the unpredictability of queuing and
congestion, and thus we prefer congestion-free feasible next
hops, even if that means increased propagation delays.

Note that θ can be set differently for each link, depending
on the link capacity. The selection of θ will depend on the
capacity of the link. In a low capacity link, a sudden burst of
traffic can cause queuing delays even if the averaged utilization
stays well below 70-80%. In a high capacity link on the other
hand, statistical multiplexing allows us to run a link at a higher
utilization before queuing delays start to accumulate.



B. TCP awareness

Splitting traffic belonging to a single TCP flow over several
paths can lead to packet reordering, which can trigger TCP
slow-start with its adverse impact on performance. To avoid
this, we need a mechanism that makes sure that packets
belonging to the same TCP flow is forwarded along the same
path.

The most straightforward way of preventing reordering is
to hash the packet header directly to the correct out-link.
This way, traffic within the same TCP flow will always select
the same next-hop. Such an approach works fine as long
as the splitting ratio between the available next-hops stays
(relatively) constant. In our routing scheme, we want to be
able to dynamically adjust the splitting ratio between the
selected next-hops on short timescales, based on the current
load situation. The direct hashing approach is therefore not
suitable.

In our approach, traffic is assigned to a next-hop on the
granularity of flows defined by the <srcIP, destIP,
srcPort, destPort, protocol> 5-tuple in the IP
header. We maintain a cache where the hash value of a packet
header is mapped to the correct out-link. Once a flow is
mapped to a next-hop, all packets belonging to that flow will
be sent over the given link. The load balancing is performed
by assigning new TCP flows (previously unseen hash values)
to the currently preferred out-link as determined by the load
balancing objective. This extra level of indirection gives us a
more fine-grained control of the next-hop selection, at the cost
of maintaining some soft-state in the routers. Modern routers
have extensive support for performing per-flow operations,
and maintaining the necessary state to maintain consistent
forwarding for a flow is not prohibitive in most cases [4]. Note
that since the goal is to avoid reordering, an entry in the flow
cache can be deleted after a very short period of inactivity.

C. Stability considerations

Stability is a major issue in any load-adaptive routing
protocol. However, the phrase has different meanings in dif-
ferent contexts. Network operators often speak of stability in
the context of routing oscillations in the control plane. An
instability event would typically mean a situation where a
route flaps between two different links. In the TE literature,
stability is often defined as a situation where the amount of
traffic on each link converges asymptotically to a steady value
under constant traffic input. This puts the focus on data plane
stability. In the context of Intelligent Route Control, the focus
has been on the “self load effect”, meaning that a flow can
oscillate between paths because the system does not consider
the effect of that flow on the underlying path [10]. This is an
example of control plane instability, coupled with data plane
instability.

Our focus is on control plane stability. Different from
several previous methods, we do not adapt routes based on
load changes, which can result in instabilities both in the
control plane and the data plane [25]. Instead, we prefer load-
insensitive routing, and perform adaptation at the forwarding

plane, i.e., by load-balancing between a stable set of feasible
next-hops. This way we clearly avoid control plane instabili-
ties. Additionally, the pinning of flows to fixed routes avoids
flow-level oscillations.

Homeostasis does not, however, guarantee stability in the
data plane. It is possible to construct traffic scenarios where
cyclic dependencies between the links in the network will lead
to fluctuations in link loads even with a constant input TM.
Such data plane oscillations cannot be avoided with a local
load balancing scheme like ours. We argue, however, that this
type of instability is less important in practice, since the input
traffic changes on short timescales in anyway as a result of
variations in the TM, caused by variations in flow sizes, flow
arrival rates, and flow throughputs.

D. Performance of the load balancing

Unlike previous proposals [6], [7], [12] our load-balancing
is performed at each router based on local information only.
This has the advantage of avoiding a large signaling overhead,
but is limited by not knowing the load situation of the entire
path to the destination. For example, a node experiencing
congestion on one of its links has no way of signaling to
its upstream neighbors so that the incoming traffic can be
reduced. Hence, there is a risk of making decisions at one
node that can have adverse consequences at a downstream
node. However, in a well provisioned network where each
node individually selects from a set of feasible next-hops, the
chance that all or most nodes make a bad decisionat the same
time is small. As we shall see in the evaluations, Homeostasis
can successfully avoid congestion by spreading traffic on more
paths. This emphasizes the importance of achieving several
feasible next-hops at each router.

We compare the performance of our load balancing method
to that of four other load balancing strategies. With all load
balancing strategies, each router selects up to K = 4 next-hops
for each destination, using link delays measured with a 3-ms
granularity as the weight metric as explained in Sec. II. The
details of the evaluation setup is described in the appendix. The
following load balancing schemes are chosen because they are
local adaptation schemes that determine the amount of traffic
to be sent through each next-hop without communicating with
other nodes:
DEFT-LB. This scheme assigns flows to a next-hop with a
probability that decreases exponentially with the extra length
of the path compared to the shortest path, as described in
[27]. Here, the relative amount of traffic sent through feasible
next-hop j is e−x, where x > 0 is the difference in distance
through j and the shortest possible route. Note that we do not
compare with the complete DEFT scheme, which also involves
an optimized link weight setting based on a TM estimate. We
only compare the Homeostasis load balancer with their local
load-balancing rule.
EIGRP style. This scheme assigns flows to next-hops with
a probability that is inversely proportional to the distance
through each feasible next-hop, as described in the config-
uration documentation for the EIGRP routing protocol [5]. If
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Fig. 3. Average network cost in the Tiscali network for different load
balancing schemes.

di,max(t) denotes the distance to t through the feasible next-
hop representing the longest route, then each feasible next-hop
gets an integer relative weight di,max(t)/di,j(t).
Least Loaded. This scheme assigns a flow to the feasible
next-hop link that currently has the lowest utilization.

EqualSplit. This scheme splits the flows equally between the
feasible next-hops.

We use a cost function Φ to describe the cost associated
with routing a certain traffic demand through the network. Φ
is a convex cost function that associates a cost with each link
based on its utilization, so that heavily loaded links get a much
higher cost than lightly loaded links. We adopt the commonly
used cost function introduced in [8].

Figure 3 shows the average network cost Φ in the Tis-
cali network over two hours of simulated time for different
load balancing methods. For each routing scheme, we keep
increasing the input load as long as the input traffic can be
successfully routed, meaning that less than 1% of the flows
are dropped because of congestion (see appendix). We see that
the Homeostasis and Least Loaded schemes are able to route
a much higher traffic demand than the other load balancing
schemes. However, Homeostasis routes the same amount of
traffic at a lower cost, since it seeks to minimize delays and
hence normally uses fewer links. These two schemes also
performed the best in similar experiments in the Sprint and
Level3 networks. This shows that exploiting local information
about the current load situation when assigning flows to a
feasible next-hop can significantly increase the capacity of a
network with multi-path routing. The EqualSplit scheme gives
very poor performance, since it unnecessarily sends traffic over
potentially long paths even when these are congested. The
same is to a lesser extent true for the EIGRP-like scheme,
which gives lower performance than DEFT-LB.

Figure 4 shows the average path stretch experienced by the
flows in the same network. The Homeostasis scheme gives
a significantly smaller path stretch than the other schemes,
due to its ability to use the shortest path as long as this
is lightly loaded. This difference is consistent over all our
three networks, and becomes even more significant if we
consider the maximum path stretch experienced by any flow
in our simulations (not shown). The path stretch with the
Homeostasis scheme increases slightly for high input loads,
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Fig. 5. Average path stretch for all simulated flows in the Sprint network.

when more traffic is sent over non-shortest paths.
We also look at the impact of routing (i.e., the link weight

setting) on the experienced path stretch. Figure 5 shows the
average path stretch experienced by all simulated flows in the
Sprint network for different link weight settings, using K = 4.
For all weight settings, we use the Homeostasis load balancing
scheme, and we keep increasing the input load until 1% of the
flows cannot be routed. Note that link capacities are set so that
all weight setting strategies are able to route approximately the
same amount of traffic.

We observe that the actual path stretch in the network is
well below the upper bounds reported in Fig. 2. Using delay
as a link weight metric results in much lower delays than the
Inverse Capacity link weight setting, which focuses mainly on
minimizing link utilization.6

IV. ROBUSTNESS EVALUATION

In this section, we evaluate the robustness of Homeostasis,
focusing mainly on the performance of the load balancing
method. We develop a novel way of evaluating robustness, by
calculating the fraction of TMs of different classes that can be
successfully routed in a network, and by showing results for
both network cost and path stretch.

6For the Inverse Capacity link weight setting, we see a decrease in path
stretch at high input load. This happens when the high-capacity links exceed
θ, and traffic is diverted to (shorter) low-capacity routes.



A. Deviations from expected operating conditions

We look at four different challenges to network perfor-
mance. Three of them are related to variations in the input
traffic, while the fourth relates to topological variations. First,
we look at Gaussian variations in the TM. In these scenarios,
we draw each element in the TM from a normal distribution
N(µ, σ2), where µ is the corresponding value from the base
TM, and the variance σ2 = αµ. α is known as the peakedness
of the traffic, and is set to 1 in our experiments [20]. Second,
we look at hot-source scenarios, where all TM elements from
a single source s are doubled, while all other elements are
left unchanged. Such situations could for example be caused
by a failure in a neighboring AS, which causes traffic to be
rerouted and enter the network at an unusual ingress node, or
by a sudden increase in the popularity of some content. Third,
we look at corresponding hot-sink scenarios, where all TM
entries with a given destination t are doubled. This situation
might also be triggered by external failures, or by a sudden
increase in demand at a certain location. Finally, we look at
performance (after rerouting) in single link failure scenarios. In
each class of deviations, we measure the fraction of scenarios
that can be successfully routed, and the cost Φ and the average
path stretch for each of these scenarios.

B. Operating range

We first look at the diversity in the traffic input that each
load balancing method can successfully route. Table I shows
the fraction of TMs where more than 99% of flows could be
routed for the Tiscali (T), Sprint (S) and Level3 (L) networks
and 4 different classes of TM variations. We also indicate
the 95% confidence intervals for the fractions. We look at 50
random TMs with Gaussian variations. For the other classes of
variations, we run one simulation for each possible hot-source,
hot-sink and single-link failure scenario. The input load with
the base TM is the same for all load balancing schemes, and
is set high enough that the differences become clear. At this
input load, only the Homeostasis (H) and the Least Loaded
(LL) load balancing strategies are able to route any of the input
TMs, with the Homeostasis scheme having the highest success
rate in two of the three networks. These results emphasize the
benefits of adaptive load balancing for handling a much wider
range of traffic inputs.

Figure 6 shows the fraction of routable TMs with Gaussian
variations in the Sprint network, as a function of increasing
input load. We observe that the fraction of routable TMs drops
rapidly from 100% to 0 when the load exceeds a certain
critical point. That critical load is signifcantly higher with
Homeostasis (and Least Loaded) than with the other schemes.

C. Robust performance

Next, we assess the quality of routing for TMs that can
be successfully routed, using network cost and propagation
delay as metrics. Figure 7 shows the performance of different
load balancing schemes with Gaussian variations in the TM
(top) and single-link failures (bottom). Results are shown for
the Tiscali, Sprint and Level3 networks. Each mark represents

Gaussian Hot-src Hot-sink Link fail

T
is

ca
li

H 27%±12% 67%±17% 60%±18% 75%±10%
LL 73%±12% 83%±14% 70%±17% 83%±9%
D 0% 0% 0% 0%
EI 0% 0% 0% 0%
ES 0% 0% 0% 0%

Sp
ri

nt

H 100% 97%±6% 97%±6% 91%±7%
LL 96%±5% 88%±11% 79%±14% 66%±12%
D 0% 0% 0% 0%
EI 0% 0% 0% 0%
ES 0% 0% 0% 0%

L
ev

el
3

H 100% 100% 98%±4% 100%
LL 63%±13% 83%±11% 64%±14% 77%±5%
D 0% 0% 0% 0%
EI 0% 0% 0% 0%
ES 0% 0% 0% 0%

TABLE I

FRACTION OF ROUTABLE TMS

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Relative input load

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Fr
ac

tio
n 

of
 ro

ut
ab

le
 T

M
s Homeostasis

Least Loaded
DEFT-LB
EIGRP Style
Equal Split

Fig. 6. Fraction of routable TMs with Gaussian variations in the Sprint
network for increasing input load.

one TM (top) or topology (bottom). The input load is set
to the highest value that all load balancing schemes could
successfully route with the default TM. Marks in the lower
left corner indicate good performance (low delay and low
cost), while marks in the upper right corner indicate poor
performance (high delay and high cost).

We observe that Homeostasis consistently outperforms other
load balancing strategies. It has the lowest delay and the
lowest cost in all networks and for all types of TM variations.
The relative differences in cost and delay vary between the
three networks we look at. The difference between the load
balancing schemes is smaller in the sparse Sprint topology,
where the number of available paths is smaller. This indicates
that the advantage of the Homeostasis load balancing approach
is stronger when routing and the underlying topology allow
more path diversity.

The trends seen here are consistent also for the hot-source
and hot-sink TM variations. We have also run simulations
at the higher input load used in Tab. I, where only the
Homeostasis and Least Loaded schemes can successfully route
any TMs. Those simulations show similar differences in the
performance of these two schemes.
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Fig. 7. Cost vs path stretch with Gaussian variations in the TM (top) and single-link failures (bottom). Tiscali (left), Sprint (middle) and Level3 (right)

V. RELATED WORK

The related work in routing is vast, and we cannot give
an extensive overview here. We refer the reader to [3], which
gives a good overview of the TE and load-adaptive routing
efforts up to 2001, and [15] which gives an overview of the
entire routing “landscape”.

Several existing and proposed routing protocols are de-
signed to use unequal-cost paths to a destination. An approx-
imation to minimum-delay routing is presented in [22]. As in
our method, DASM [29] and MDVA [23] determine the set
of feasible next-hops based on the minimum distance through
each neighbor. They do not use a value K to restrict the num-
ber of next-hops, but instead install all neighbors announcing
a lower distance to the destination in the forwarding table.
EIGRP [1] selects as next-hops the neighbors with a distance
to the destination that is no longer than the shortest path times
a variance factor. None of these protocols consider the issue
of increased delays with multipath routing, and they do not
address how load should be split over the available next-hops.

Early routing protocols [13], [14] adapted to load variations
by dynamically changing the link weights used to compute
shortest paths. This approach was later shown to be unstable
and to give poor performance [25], and was mostly abandoned
in later protocols. In this work, we do not alter link weights
or select new paths, but adapt to traffic variations by assigning
new flows to the next-hop selected by our load-balancing
algorithm.

Much work has been done in the area of traffic engineering,
where the goal is to optimize the amount of traffic that can
be routed with the available resources. Popular approaches
include the use of MPLS tunnels [26], and various methods for
OSPF/IS-IS link weight tuning; [8], [9], [21], [27], [28] and

many others. Common for these methods is that they seek to
optimize performance based on a given expected traffic matrix.
They are static in their nature, and cannot deal with congestion
events that take place in a timescale from few seconds to few
hours.

The challenges in using estimated TMs for traffic engi-
neering was discussed in [20]. Because of such challenges,
work has been done to develop oblivious routing schemes
that perform well under any traffic input [2], or routing that
balances worst case and average performance for a set of
TMs [24], [30]. Similar to us, their goal is to be robust to
variations in the input traffic. However, these methods are quite
different in using optimization to find the best (static) routes
and traffic split ratios. These optimizations involve solving LP
formulations with a large number of constraints and variables,
and must be redone when the topology changes. The focus
on robustness to traffic variations involve a tradeoff where
performance (in terms of delay) under light traffic loads is
sacrificed. Also, these methods require explicit routing (e.g.,
MPLS) to give good performance, where a central entity
decides the split ratios in each router. In this work, we do
not base our routing on an estimate of the TM, and we adapt
to short-term traffic dynamics by adjusting the load balancing
between the available paths.

Similar to our approach, so-called on-line traffic engineering
methods [6], [7], [12] aim to dynamically split traffic between
several available paths. These methods are also dependent on
explicit path routing in order to set up unequal-cost paths to
each destination. While our method adjusts the load-balancing
based only on a local view of the load situation, these methods
use probes or feedback from routers to assess the quality of
the end-to-end path, incurring significant signalling overhead.



The strategy of load-balancing based on local load infor-
mationhas been studied (and implemented) in circuit-switched
networks [11], [16]. Both the circuit-switched context and the
selection of alternate routes makes this method different from
ours.

VI. CONCLUSIONS

We have presented Homeostasis Routing as a method
for robust, multi-path, load-responsive routing. The goal of
Homeostasis Routing is to provide low-delay, congestion-free,
load-responsive routes even under sudden topological changes
and significant traffic matrix variations. This is achieved by
installing multiple routes to each destination in the forwarding
tables, and intelligently assigning flows to these based on
the local view of the load situation. Routes with a shorter
propagation delay are preferred as long as the network is
lightly loaded, and more routes are gradually phased in as
the load increases.

The proposed method has been evaluated using flow-level
simulations in three POP-level ISP topologies. The evaluations
demonstrate the potential benefits of our method with respect
to handling a wider range of traffic and topology changes.
Homeostasis, as any other routing or TE scheme, cannot al-
ways avoid congestion because it cannot ”create capacity” and
it cannot do admission control. We have illustrated however
that Homeostasis can route larger traffic volumes before it
reaches the saturation point in which congestion appears in
some links.

Important steps in our future work will be to further
evaluate Homeostasis Routing using packet-level simulations
and a prototype implementation that can capture the effects of
transport layer congestion control. Plans for future work also
include methods that increase the number of routes available
at each router.

APPENDIX

In this appendix, we describe the evaluation setup used in
our simulations. The simulations are on the flow level. This
allows us to perform a large number of simulations in realistic
networks with many possible TMs and topological changes. It
does not, however, allow us to investigate the effects of trans-
port layer congestion control or different queuing methods.
Packet-level simulations and a prototype implementation are
important next steps that we plan to pursue in future work.

A. Topologies and traffic matrix

We perform our tests on three selected topologies based
on existing (inferred) ISP networks. These are the POP-level
Tiscali Europe, Sprint and Level3 networks as of 2001, taken
from the Rocketfuel project website [18]. This source gives
us the connectivity of the topology, and an estimate of the
propagation delays of the links. For our purposes, we are only
interested in bi-connected network graphs, since we expect
that all ISP networks are bi-connected for reliability reasons.
The Rocketfuel topologies also contain some single-connected
nodes, probably due to difficulties in detecting backup links.

POPs Links Link delays Avg path
length (hops)

Tiscali 29 73 0.1 - 8.9 ms 1.87
Sprint 32 64 0.1 - 42.0 ms 3.04
Level3 46 268 0.3 - 38.5 ms 1.93

TABLE II
ROCKETFUEL TOPOLOGIES.

In our work, we prune all nodes with degree one from the
topologies. The resulting topologies are listed in Tab. II. The
average path lengths refer to shortest path routing with unit
link weights. We note that the Level 3 network is much more
densely connected than the other networks. Sprint has the most
sparse topology, and in particular has only two trans-atlantic
links connecting the two halves of the network.

For each topology, we create a base TM describing the long-
term expected traffic from each source to each destination
in the network. The TM is generated by using a simplified
gravity model as described in [19]. Each node in the network
is given a weight corresponding to the population of the urban
region that it represents.7 The relative traffic demand between
two nodes is then determined by the product of the weight of
the two nodes. Each traffic matrix element is then multiplied
by a load scaling factor to determine the absolute amount
of traffic between the two nodes. While this model does not
necessarily give the same traffic pattern that is observed in the
real networks (it does not consider that some nodes function
as gateways to other networks, giving a higher weight than
the population alone would indicate), it gives a traffic pattern
that can intuitively be related to real-world metrics.

The real-world capacities of the links in our networks are
not publicly available. In our model, a link can have three
distinct capacities; 100 Mbps, 400 Mbps or 1600 Mbps.
These numbers capture how bandwidth is typically available in
distinct quantities, and they are large enough compared to the
intensity of individual flows to allow for a significant degree of
multiplexing. To assign link capacities, we start by assigning
the lowest link capacity to all links. We then calculate the
utilization of all links with our base TM, using shortest path
routing with three different link weights: the inverse of the
link capacity, the propagation delay, and unit link weights (hop
count routing). We identify the link with the highest utilization,
and increase the capacity of this link, if it does not already
have the maximum capacity. We repeat this process until we
achieve a realistic mix of high- medium- and low capacities.

B. Dynamic input traffic

We model flow arrivals as a global Poisson process, and
we control the input load in our simulation by varying the
inter-arrival time of this Poisson process.

The size of a flow is drawn from a truncated Pareto
distribution with a scaling parameter 1.3. The minimum flow

7Population numbers are taken from
http://www.citypopulation.de/



size is 8 MB, while the max flow size is 8 GB. The rate
of the flow can take three distinct values - 0.5 Mbps with a
probability of 30%, 1 Mbps with a probability of 60%, and
10 Mbps with a probability of 10%. These values give flow
durations ranging from a minimum of 6.4s to a theoretical
maximum of more than 35 hours. Our parameter settings are
based on the analysis of a packet trace presented in [17]. By
focusing on these flow sizes and intensities, we capture most of
the traffic observed in the Internet, while disregarding a large
number of small, short-lived flows that do not contribute much
to the total traffic. Finally, each flow is randomly assigned to
a source-destination pair based on the probabilities given by
the TM.

C. Performing an experiment

For each scenario defined by a topology, a routing and load
balancing method, a TM and a load scale factor, we simulate
two hours worth of traffic in the network. Because heavy-tailed
flow size distributions have difficult convergence properties,
we describe in detail how we perform our measurements.

For a given scenario, we first let the simulation run for a
time period until the initial transient is over, i.e., at the end
of the initial increasing trend in the number of active flows.
After every interval of 1s, we calculate the current cost Φt

in the network. We also maintain a smoothed version of the
cost Φ

′

t = 0.999 ∗ Φ
′

t−1 + 0.001 ∗ Φt. We define t0, the time
when the initial transient period ends, as the time when |Φ

′

t −
Φ

′

t−1000 < ε|. In our experiments, we use ε = 0.001. The
spilloverThreshold θ is set to 0.7.

After time t0, we run the simulation for a fixed duration
of 2 hours. This period is more than long enough for the
average cost Φavg to stabilize, at least for all simulations we
have run. In every sampling interval of 1 second, we measure
the utilization of each link in the network, and calculate the
network cost Φt. For every flow that is routed, we measure
the path stretch experienced by the flow.

With this kind of simulation, we are not able to model
what happens when the offered load exceeds the capacity of
the network. If routing a flow through the network results in
higher load than the capacity on a link, we completely remove
this flow from the simulation, and continue to route the next
flow. We count such ”flow removals” as failures of a given
routing/load balancing scheme to handle the offered load. We
say that a given scenario can be successfully routed if less
than 1% of flows are removed in this manner. The fraction
of successfully routed scenarios under different challenges to
normal operations is one of our performance metrics.
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