
Identifying Suspicious Activities through DNS Failure
Graph Analysis

Nan Jiang∗, Jin Cao†, Yu Jin∗, Zhi-Li Zhang∗, Li Erran Li†
∗Computer Science Dept., University of Minnesota †Bell Laboratories, Alcatel-Lucent

ABSTRACT
As a key approach to securing large networks, existing anomaly
detection techniques focus primarily on network traffic data
– the sheer volume of such data often render detailed anal-
ysis very expensive and reduce the effectiveness of these
tools. In this paper, we propose a light-weight anomaly de-
tection approach based onunproductiveDNS traffic, namely,
the failed DNS queries, with a novel tool –DNS failure
graphs– which captures the interactions between hosts and
failed domain names. We apply a tri-nonnegative matrix
factorization technique to recursively extract coherent co-
clusters (dense subgraphs) from DNS failure graphs. By
analyzing the co-clusters in the daily DNS failure graphs
from a 3-month DNS trace captured at a large campus net-
work, we find these co-clusters represent a variety of anoma-
lous activities, e.g., spamming, Trojans, bots, etc., which of-
ten exhibit distinguishable subgraph structures. In addition,
by exploring the temporal properties of the co-clusters, we
have identified new anomalies that likely correspond to un-
reported domain-flux bots.

1. INTRODUCTION
The Internet Domain Name System (DNS) is a critical in-

frastructure service used by nearly every Internet applica-
tion for locating various resources (e.g., web servers, mail
servers, individual endhosts) specified by their (host) domain
names. Typically, one endpoint first issues a DNS query to
the DNS system to locate the other endpoint before any sub-
sequent data transfer between the two communicating end-
points can commence, be it web downloading, email trans-
fer, instant messaging, or a VoIP call placed on the Internet.
A DNS query failure often signifies that the requested re-
source does not exist in the system at the time of the query.
Such a failure may be caused by a mis-typed host name or
URL by a human user, and occasionally by DNS miscon-
figurations by human operators. However, as pointed out in
several recent studies [1, 2, 3], a large portion of DNS query
failures can be attributed to other causes, e.g., (see Section 2
for an analysis and classification of DNS query failures). In
particular, as shown in [2], many DNS query failures (termed
“unproductive” DNS traffic) are caused by “suspicious” and
malicious cyber activities, e.g., fast-flux web services, Tro-

jan malware and botnets [4, 5, 6, 7, 8].
Inspired by these studies, in this paper we advance the

notion ofDNS failure graphsas an effective means for an-
alyzing “unproductive” DNS traffic in asystematicmanner
and from anetwork-wideperspective, and for detecting and
identifying (large-scale) suspicious and malicious cyberac-
tivities. A DNS failure graphis a bipartite graph consist-
ing of DNS names of failed DNS queries and hosts issuing
such queries. Such a graph can be constructed using “unpro-
ductive” DNS traffic collected at one or multiple networks
(or from any host on the Internet, if such data can be col-
lected). The basic intuition behind this notion is that hosts
infected with the same malware (e.g., belonging to the same
botnet) usually query for the same, similar or otherwise cor-
related set of DNS names, for instance, to locate the Com-
mand&Control (C&C) servers, malware hosting sites, stolen
data storage servers, etc. To evade detection, the DNS names
used by these malicious activities often change frequently
(i.e., in domain-flux); those that do not flux frequently often
are blacklisted and blocked after detection. Hence queries
for these DNS names frequently result incorrelated fail-
ures, which manifest themselves as adensesubgraph in the
DNS failure graph. Such dense subgraphs therefore cap-
ture the stronginteraction patternsbetween a set of hosts
and a set of DNS names. This observation gives rise to a
key research question that we address in this paper:Can we
effectively identify, differentiate and separate “subgraphs”
that are likely corresponding to different types of anomalies
(e.g., malware activities) based on the interaction patterns
between hosts and DNS names in a DNS failure graph?

To answer this questions, we utilize the DNS query data
collected at several major DNS servers of a large campus
network over a three-month period. Through systematic anal-
ysis of the “unproductive”DNS traffic contained in this three-
month DNS query data, we find that while the DNS failure
graphs (e.g., constructed using failed DNS queries each day)
typically consist of a large number of isolated (connected)
components, there often exist one or several “giant” con-
nected components involving a large number of hosts and
DNS names. While these giant components are fully con-
nected, they themselves appear to be composed of a num-
ber of more densely connected subgraphs. In other words,

1

one cannot simply take each isolated component – especially
when such a component is large and involves a significant
number of hosts and DNS names – as representing and cor-
responding to a single type of anomaly. We therefore apply a
(statistical) graph decomposition technique based on thetri-
nonnegative matrix factorization (tNMF)[9] to recursively
decompose a DNS failure graph and extract dense (bipar-
tite) subgraphs, orco-clusters, containing strong and coher-
ent interaction patterns. By analyzing their structural prop-
erties, we classify the resulting co-clusters into three cate-
gories: 1) ahost-star, where a host dominates by sending a
large number of DNS queries; 2) aDNS-star, where a do-
main name attracts queries from many hosts; 3) abi-mesh,
where strong interaction patterns are observed between a
group of hosts and a group of domain names. Using ex-
ternal data sources such as domain name blacklists, we find
that most of the DNS-stars are caused by instances of Tro-
jan malware accessing blocked DNS names. In compari-
son, the host-stars are primarily the artifacts of spamming
activities involving queries for expired DNS names of cer-
tain email servers. Most interestingly, many bi-mesh struc-
tures are found to be associated with bot activities, where the
hosts infected by the same bots query a list of DNS names
that are likely those of C&C servers, malware hosting sites,
and other suspicious resources.

We further characterize and distinguish the suspicious ac-
tivities associated with these co-clusters by analyzing their
temporal properties and tracking their evolution over time.
We find that a majority of the co-clusters are associated with
a stable set of domain names, suggesting that the infected
hosts in each co-cluster are likely bots or Trojan instances
with a list of hard-coded DNS names for querying C&C
and other servers. In contrast, we also find that several co-
clusters are associated with a set of DNS names that flux over
time. Analyzing the patterns of DNS names involved, the
rate they are generated, and corroborating them with existing
studies, we identify four of them belonging to several known
domain-flux bots. The remaining ones have similar random-
looking, but yet distinct DNS name patterns; further, their
domain name flux rates differ considerably from those of
the known domain-flux bots. These observations lead us to
believe that they are plausibly associated with domain-flux
bots that are yet to be reported, and hence require further
scrutiny.
Summary and Related Work. The main contributions of
the paper are three-fold: i) we advance the notion of DNS
failure graphs for network-wide analysis of “unproductive”
DNS traffic; ii) we demonstrate how the tNMF graph decom-
position method can be applied to extract dense subgraphs
or co-clusters of hosts and DNS names that exhibit strong
and coherent interaction patterns; and iii) we develop novel
methods to systematically analyze, classify and track the
structural and other properties of the extracted co-clusters
and their evolution over time, and by corroborating with
other data sources, deduce that the extracted co-clusters cap-

ture correlated DNS failures that are generally associated
with same or similar types of anomalies such as malware
or botnet activities. As mentioned earlier, our work is moti-
vated by earlier works such as [1] which first points out using
DNS queries for detecting bots, [2] which employs a super-
vised machine learning method to classify different attacks
using a combination of DNS query failures and network traf-
fic data collected for individual hosts, and [3] which pro-
vides a systematic analysis and classification of DNS traffic.
Building upon these earlier studies, our work puts forth a
novel and effective methodology fornetwork-wide analysis
of unproductive DNS traffic via DNS failure graph decom-
position, and demonstrate how it can be used to identify and
differentiate suspicious activities usingcorrelation of hosts
and the failed DNS queries. For instance, our analysis un-
covers groups of hosts with correlated DNS query failures
that differ from known domain-flux bots and are plausibly
part of domain-flux or similar botnets that are yet to be re-
ported. In carrying out this study, we have also freely lever-
aged the results and insights from studies of domain-flux,
spam, p2p and other botnets (say, e.g., [8, 10, 11, 4, 5, 6, 7]).

Unlike many existing anomaly detection techniques which
focus primarily on network traffic data – the sheer volume of
such data often renders detailed analysis very expensive and
reduces the effectiveness of these tools (e.g., too many false
positives or negatives), our work provides an effective means
to identify and detect large-scale exploits by analyzing and
decomposingunproductiveDNS traffic – much of which are
“footprints” left by these exploits – from a network-wide
perspective. Clearly, analyzing DNS failure queries alone
is insufficient in detecting large-scale exploits; nonetheless,
our DNS failure graph analysis can help winnow down and
zero in on likely suspicious activities. Advanced anomaly
detection and malware analysis techniques using network
traffic data can then be effectively applied to these suspected
malicious activities. In summary, our work adds a useful and
complementary tool to the existing arsenal of techniques for
detecting and combating large-scale exploits. We believe
that it can be used as a “first-line” defense in identifying
emerging threats that are constantly changing and evolving.

The remainder of the paper is organized as follows. In
Section 2, we analyze the failed DNS queries and intro-
duce the notion of DNS failure graphs. We then propose a
tNMF based algorithm for decomposing DNS failure graphs
into strongly connected subgraphs in Section 3. Section 4
presents the classification and interpretation of these dense
subgraphs and their temporal properties are studied in Sec-
tion 5. Finally, Section 6 concludes the paper.

2. DNS TRAFFIC AND FAILURE GRAPHS
Datasets. Our study utilizes the DNS data collected at a
large university campus network over a 3-month period (from
Jan. 2009 to Mar. 2009). The network contains around 20K
hosts, with IP addresses assigned either statically (e.g.,lab
machines, web or mail servers) or dynamically (e.g., hosts
on residential dormitory networks or wireless LANs). The

2

2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

Day (01/05/2009 − 01/18/2009)

H
os

t P
er

ce
nt

ag
e

Daily size
Cummulated size

Figure 1: Size of the largest DNS fail-
ure graph over time.

Figure 2: The largest DNS failure sub-
graph from 01/05/2009.

200 400 600 800 1000 1200

50

100

150

200

250

300

350

400

Domain names

Ho
sts

Figure 3: Block structures after row
and column rotations.

collected DNS data contains DNS requests and responses
from all hosts within the campus network for resources lo-
cated outside the campus network. The data is in the format
of packet traces collected using TCP dump. For DNS re-
quests, we have the information of (anonymized) hosts who
initiate the queries and the target domain names. For DNS
responses, we have access to the resolved IP addresses and
associated response codes (if any). We focus ontype ADNS
requests only, which queries for the IPv4 address(es) asso-
ciated with a DNS name. We refer to the DNS queries for
which the DNS responses contain a response code other than
“NOERROR” as failed DNS queries. Each day approxi-
mately 2 million DNS queries are captured, in which around
300K are failed DNS queries.

2.1 Analysis of Failed DNS Queries
We first investigate the plausible causes for such a large

number of failed DNS queries in the network by examining
patterns in the failed DNS queries as well as utilizing other
data sources. Table 1 shows a sample classification of the
failed DNS queries on 01/05/2009. We observe that a large
portion of failed DNS queries are due to the so-called “over-
loaded traffic” [3], where several anti-spam and anti-virus
services employ DNS to notify a querying host whether the
requested DNS name belongs to the blacklists they maintain
(e.g., of email spam servers or reported attack sites). We
observe that this type of failed DNS queries involves only a
small number (fewer than 20) of hosts, mostly email servers
for spam filtering. Server error is the second major contrib-
utor to the failed DNS queries. Such failed DNS queries are
caused by one or a few domain names related to a popular
web service are temporarily unresolvable. DNS misconfigu-
rations such as a query forwww.example.com.example.com
(such “recursive DNS names” are likely due to Window de-
fault DNS suffix configured at client machines) account for
7.87% of the all failed DNS queries, while DNS typos, which
are likely caused by users mistyping a few alphabetics of the
desired domain name, account for 2.26%.

For the remaining failed DNS queries, we look up the tar-
get DNS name in each failed query in a number of auxil-
iary data sources, including various blacklists [12], security
logs [13], botnet related domain names obtained via reverse
engineering [14], and information obtained by googling the

Type Pct (%) Examples
DNS Overloading 32.37 spamcop.net, surbl.org
Server errors 28.01 unresolvable domain names in a server farm
Misconfigurations 7.87 www.example.com.example.com
Typos 2.26 googloe.com, encyclopiedea.net
KnownThreats 2.08 g43gwef.com, antispyware2008xp.com
P2P 0.75 66bt.cn, zingking.com
Unknown 27.33 vuuewgkt.com, dehpydjsi.cn

Table 1: Categories of failed DNS queries.

Internet [15]. If a target DNS name is used by a worm/Trojan
and blacklisted, we attribute the failed DNS query asKnown
Threats. We find that 2.08% of the failed DNS queries be-
long to this category. Another 0.75% of the failed DNS
queries can be attributed to hosts participating in p2p activi-
ties, as the target DNS names are associated with p2p appli-
cations and services found on-line. Finally, we cannot prop-
erly attribute the the causes for the remaining 27.33% of the
failed DNS queries using various on-line sources mentioned
above, and thus classify them asUnknown. Most of the tar-
geted DNS names contain random-looking strings, and as
we shall see later, most of them are likely associated with
suspicious anomalies, e.g., domain-flux botnet activities.

2.2 DNS Failure Graphs and Properties
The aforementioned method of identifying potential threats

in “unproductive” DNS traffic by matching the target DNS
names in failed DNS queries against data sources of known
security threats is rather time-consuming; its effectiveness
hinges highly on the availability of useful external data sources.
By its very nature, this method cannot be used to detect
emergingthreats that are yet to be discovered and reported.
As shown in Table 1, a significant portion (27%) of failed
DNS queries cannot be attributed toknownthreats. The large
majority of these failed DNS queries contain DNS names
that are suspicious looking and are unlikely to represent “le-
gitimate” resources on the Internet, we have little informa-
tion regarding them. Hence we are interested in anautomatic
method for identifying suspicious activities behind thesefailed
DNS queries. This motivates us to develop theDNS failure
graph analysistechnique presented in this paper.

Before we perform the DNS failure graph analysis, we
first “cleanse” the DNS failed queries by filtering1 failed

1We have developed a heuristic cleansing procedure to automati-

3

DNS queries that are attributable to “normal” network ac-
tivities such as DNS overloading, server errors, misconfigu-
rations and typos. Since our objective is to use failed DNS
queries to identify potentially suspicious activities, weper-
form this cleansing step mainly to reduce the amount of data
used in the DNS failure graph analysis. The cleansing pro-
cedure is fairly conservative in the sense that we only filter
failed DNS queries that can be confidently attributed tonor-
mal network activities2.

We now formally defineDNS failure graphs: Given an
observation periodT, let H denote the set of hosts (IP ad-
dresses) making at least one failed DNS query, andD be
the set of (unique) DNS names in the failed queries. ADNS
failure graphis a bipartite graphG := {H ×D,E}, where
an edgee= (h,d) exists between an hosth∈H and a DNS
named ∈ D, i.e., (h,d) ∈ E , if and only if hosth makes
at least one failed DNS query3 for d during the observa-
tion time periodT. Given this definition, we construct daily
DNS failure graphs (i.e.,T = 1 day) using our datasets. We
observe that in general there are roughly 2,000 hosts con-
necting to around 3,000 failed DNS names each day. Each
daily DNS failure graph is often composed of 1000 or more
isolatedcomponents (subgraphs): each component is fully
connected, but there are no edges connecting any two (con-
nected) components (i.e., the components are isolated from
each other). Despite the large number of these isolated com-
ponents – a large majority of them are small, there exists
a few components that are significantly larger than the oth-
ers. We measure the size of each component in terms of
the percentage of hosts covered by the component out of all
hosts. Fig. 1 shows the sizes of the largest components over
a two-week period (from 01/05/2009 to 01/18/2009), where
the solid curve in the figure represents the size of the largest
components in the daily DNS failure graphs; for compari-
son, the dotted curve represents the size of the largest com-
ponent in thecumulativeDNS failure graphs constructed by
varying T from 1 day up to the entire two weeks. We see
that the size of the largest component in the daily DNS fail-
ure graphs ranges from 14% to 37%. As the observation

cally filter these “normal” DNS query failures. For example,we
filter overloaded DNS query failures by matching the responders of
failed DNS queries against a list of known anti-spam/anti-malware
sites, and adopt a similar approach as proposed in [1] for filtering
failed DNS queries due to server errors. Due to space limitation, we
do not provide the detailed heuristics used here. Note that we do
not automatically filter failed DNS queries involving p2p activities,
partly because they are hard to filter automatically. More impor-
tantly, many p2p applications or services are sometimes abused by
malware activities; some of them appear suspicious on theirown.
2In fact, as will be evident in our DNS failure graph analysis later,
most failed DNS queries due to normal activities are well separated
from suspicious ones. Hence this cleansing procedure in general
does not affect the effectiveness of our technique.
3We remark that in this paper we consider the DNS failure graphs
to be unweighted, representing the absence/presence of a certain
DNS query. However, our method can be extended to weighted
DNS traffic graphs, where the weight of an edge(h,d) can be used
to represent, e.g., the number of failed queries from hosth for d.

periodT expands from 1 day up to the entire two weeks,
more hosts (77% in the entire two weeks) are included in the
largest component; the big jump in the curve is caused by
two large components (in two different days) get connected
by one single host.

Despite their large sizes, these connected components are
comprised of many loosely connected (e.g., via a few edges)
subgraphs, each of which are more densely connected. We
use the largest component in the daily DNS failure graph
on 01/05/2009 to illustrate this point by visualizing it using
Graphviz [16], as shown in Fig. 2, where the blue nodes and
red nodes represent hosts and DNS names, respectively. (For
clarity of visualization, we have randomly removed 60% of
nodes with degree 1 in Fig. 2). Clearly, this largest connected
component contains several dense subgraphs that are loosely
connected via a few edges. These dense graphs imply that
there exist strongcorrelated behaviors(“community struc-
tures” in social network analysis jargons) among the hosts
in these dense subgraphs: the strong correlations manifestin
the failed DNS names they query; in other words, there are
strong interaction patternsthat connect the set of hosts and
the set of DNS names they collectively query.

To further illustrate these “community structures,” we rep-
resent the same graph in Fig. 2 using its adjacency matrix
A = [ai j]. The rows and columns ofA represent the hosts
(H) and the DNS names (D), respectively; entryai j = 1
if edge (hi ,d j) ∈ E, andai j = 0 otherwise. We rotate the
rows and columns inA to best reflect the “community struc-
tures” in the graph. We plot the rotatedA in Fig. 3, where
dots represent those non-zero entries inA. The “community
structures” (dense subgraphs) in the graph are now visible
as “blocks” inA. Further, we see that there are several types
of “community” or “block” structures: some contain a small
number of hosts but a large number of DNS names, other
contain a large number of hosts but a smaller number of DNS
names, and yet other contain both relatively large numbers of
hosts and DNS names. These different interaction patterns
between the hosts and DNS names suggest that the hosts in-
volved are likely engaging in different kinds of suspicious
activities. These visual analyses suggest that the largestcon-
nected components can be furtherdecomposedinto dense
subgraphs, which more likely correspond to correlated be-
haviors. In the next section, we present a general and effec-
tive methodology for automatically extracting these dense
subgraphs or “communities”.

3. DECOMPOSING DNS FAILURE GRAPHS
We present an algorithm for decomposing, and extracting

dense subgraphs from, DNS failure graphs. This algorithm
is based on the tNMF-based graph decomposition technique
developed in [9]. An overview of the algorithm is presented
in Alg. 1. In the following, we explain each step in detail.

3.1 Co-clustering using tNMF
Given a DNS failure graphG , as the first step in Alg. 1,

4

5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Subgraphs with ordered by decreasing density

Fi
rs

t d
er

iv
at

iv
e

of
 d

en
si

ty

Figure 4: Density change. Figure 5: Merging co-clusters.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

Dominant Host Ratio

Pe
rc

en
ta

ge

0 0.2 0.4 0.6 0.8 1
0

0.5

1

Dominant DNS Ratio

Pe
rc

en
ta

ge

Figure 6: Distributions ofdhr andddr.

Algorithm 1 Decomposing DNS failure graphs
1: Input: A DNS failure graphG ;
2: Obtain disconnected subgraphsG := ∪iGi ;
3: for eachGi in G do
4: Run tNMF to decomposeGi into k× l co-clusters;
5: Filter noise inGi by removing co-clusters with low densities;
6: Merge dense co-clusters;
7: Output all coherent co-clusters;
8: end for

we extract all the isolated components fromG . In the next
step, we iteratively decompose each of these large compo-
nents using the tri-nonnegative matrix factorization (tNMF)
algorithm, which has been successfully applied to decom-
pose (application)traffic activity graphs(TAGs) in [9]. In
the following, we provide a brief overview of the tNMF al-
gorithm in the context of decomposing DNS failure graphs.

Given a DNS failure graphG (or rather, a large connected
component inG) representing the interaction patterns of
m hosts andn DNS names. LetAm×n be the correspond-
ing adjacency matrix ofG . The tNMF algorithm approxi-
matelyfactorize Am×n into threelow-rank nonnegativema-
trices,Rm×k, Hk×l , andCn×l so as to minimize the following
objective functionJ, subject to the orthogonality constraints
onR andC:

min
R≥0,C≥0,H≥0

J(R,H,C) = ||A−RHCT ||2F ,s.t.RTR=CTC = I

where|| · ||F is the Frobenius norm, andk, l << min(m,n).
An iterative algorithms is developed in [17] to solve this op-
timization problem.

In the context of our study, the decomposition results of
the tNMF algorithm can be interpreted as follows. The ma-
tricesRandC divide the rows and columns intok host groups
and l DNS name groups, whereR·p, p = 1, · · · ,k, andC·q,
q = 1, · · · , l , serve respectively as the “membership indica-
tor” functions of the row groups and column groups. Assum-
ing ahardco-clustering setting [9], we assign each host/DNS
name to only one row/column group with the largest entry in
R/C (random assignment is used to break ties). We denote
the new row and column membership indicator matrices in
the hard co-clustering setting asR̂ andĈ, respectively.

One row groupp and one column groupq form a subgraph

in G , and its densityHpq is computed as follows:

Hpq :=
(R̂TAĈ)pq

||R̂·p||1 · ||Ĉq·||1
,1≤ p≤ k, 1≤ q≤ l , (1)

and|| · ||1 is theL1-norm. The subgraphs with highHpq (den-
sity) values correspond to dense subgraphs, while the ones
with low Hpq values can be viewed as a loosely connected
subgraphs with a small number of random links (or noisy
edges). By filtering these weak connections or noisy edges,
we can then extract the dense subgraphs from the DNS fail-
ure graph (or each of its large connected components).

3.2 Obtaining Coherent Co-clusters
The parametersk and l are two key parameters that de-

termine the number of row groups and column groups, and
therefore the total number of resultant co-clusters. Many ap-
proaches such as trial-&-error, model selection through sta-
tistical testing, and so forth, can be applied for selectingk
and l . In this paper, we start with larger (likely than the
“true”) values fork and l (i.e., we first over-estimatek and
l)4, which yieldsfiner-grainedsubgraphs or co-clusters. We
then apply acoherentco-cluster selection process to merge
these finer-fined subgraphs into more coherent subgraphs or
co-clusters (with potentially “irregular” shapes). A similar
approach has been applied in [18], which shows that such an
approach is more effective in obtaining more coherent co-
clusters than attempting to directly find the “true” values of
k andl .

With such choices ofk and l , we apply the tNMF algo-
rithm to decompose a given DNS failure graph. We compute
the densities for all the subgraphs thus extracted, and rank
them in a decreasing order. We then use the change in the
densities of subgraphs thus ranked to differentiate dense sub-
graphs from non-dense graphs, i.e., those that consist mainly
of a few random, noisy edges. We use the graph in Fig. 2
as an example to illustrate how this is done, where we ap-
ply the tNMF method withk = l = 15. After ranking the
subgraphs based on their densities, Fig. 4 shows the relative
change (defined as(Hi −Hi+1/Hi)) of the (non-zero) densi-
ties. We observe that the most significant change happens
when the number of dense subgraphs is chosen to be 12. Be-
cause of their small densities, the remaining subgraphs are
4In our experiments, we choosek = l = ⌈min(m,n)/30⌉.

5

considered as containing mainly random, noisy edges and
thus discarded.

After the noisy, non-dense subgraphs are removed, we can
check to see whether some of the dense subgraphs can be
merged to form more coherent co-clusters (with potentially
irregular shapes). We merge two subgraphs if they share
either a common host group or a common domain name
group. Fig. 5 shows the merging results for the graph in
Fig. 2: although after removing the noisy, non-dense sub-
graphs, we have obtained a total of 12 dense subgraphs;
these 12 dense subgraphs essentially form 6 coherent co-
clusters (after merging)– the numbers in Fig. 5 identify these
6 coherent co-clusters. Comparing to the four other co-clusters,
co-cluster 1 and 3 do not have a typical box shape, thus they
cannot be obtained when using a classical co-clustering al-
gorithm (e.g., the standard tNMF algorithm in [9]), which
always produces box-(or rectangular) shaped co-clusters.

4. ANALYSIS OF CO-CLUSTERS
After decomposition, the DNS failure graphs break into

multiple coherent co-clusters (dense subgraphs). In this sec-
tion, we provide a detailed analysis of the co-clusters ex-
tracted from our 3-month DNS trace.

4.1 Characterizing Co-Clusters
We categorize different co-cluster structures based on whether

there is a dominant host or a dominant domain name in the
co-cluster. More specifically, letAm×n denote the adjacency
matrix corresponding to a particular co-cluster consisting m
hosts andn domain names. Letpi· := ∑ j ai·/∑i, j ai, j and
p· j := ∑i a· j/∑i, j ai, j be the marginal probabilities of the rows
and the columns, respectively. We define the Dominant Host
Ratio (dhr) asdhr := −(∑i pi· logpi·)/ logm, which varies
between 0 and 1. Adhr close to 0 implies there is a domi-
nant host that connects to far more domain names than other
hosts in the same co-cluster. Similarly, we define the Dom-
inant DNS Ratio (ddr) asddr := −(∑ j p· j logp· j)/ logn to
identify dominant domain names. We say a co-cluster has
a (likely) host-starstructure ifdhr < δ andddr > 1− δ. In
comparison, a (likely)dns-starstructure is defined ifdhr >
1− δ andddr < δ. If dhr > δ andddr > δ, we call such a
structure abi-mesh.

In Fig. 6, we show the distributions ofdhr andddr of all
the co-clusters extracted from daily DNS failure graphs over
a 3-month time period. We note when a co-cluster is too
small, we usually do not have enough evidence to interpret
the meaning of that co-cluster. In addition, these three struc-
tures are also less meaningful for small co-clusters. There-
fore, we only analyze the co-clusters which contain at least5
nodes (hosts plus domain names). Though such co-clusters
account for only 8% of all the co-clusters, they cover more
than 42% hosts and 53% domain names. From the strong bi-
modal shapes of bothdhr andddr distributions in Fig. 6, we
chooseδ = 0.1 to distinguish the three types of structures.

4.2 Interpreting Co-clusters

We next study the root causes of these different co-cluster
structures. For each co-cluster, we first extract all the asso-
ciated domain names. We then match these domain names
against all external data sources we have. For a matched
domain name, we label it with the root cause specified by
the data source. We then assign a co-cluster with the most
dominant root cause. In Table 2, we summarize all the co-
clusters extracted from the daily DNS failure graphs. Each
row describes a specific category of co-clusters classified by
the root cause. The second column shows the root cause
of the co-cluster. The third column indicates the proportion
of the co-clusters from that category out of all the observed
co-clusters. We provide examples or explanation of each
category in column 4. We further identify the percentages
of co-clusters in each category are bi-meshes, host-stars and
dns-stars (column 5-7).

From Table 2, we observe that Trojan (backdoor) is the
most common root cause, which accounts for 28.1% co-
clusters in total. These detected Trojan instances maintain a
hard-coded list of domain names of the C&C servers where
they can upload sniffed privacy information and download
commands or updates. These domain names hardly change
after the Trojans are released. Therefore, such domain names
can be easily banned or removed from the registrar once the
Trojans are detected and thereby resulting in DNS query fail-
ures when a Trojan instance queries for these blocked do-
main names. The co-clusters in this category often exhibit
bi-mesh or host-star structures. We note that although these
Trojan instances are detached from the C&C servers, the as-
sociated hosts are still vulnerable to future attacks sincethe
exploits are not yet fixed.

The second major root cause (25.2%) is the spamming
activity. Hosts involved in spamming activities periodically
query for a large number of mail servers, where many of
these mail servers belong to large ISP networks and some-
how have their domain names changed. Therefore, these co-
clusters are dominantly host-stars. We also observe 29.9%
of the co-clusters are bi-meshes, possibly due to different
hosts equipped with the same email server list. No dns-star
is found in this category.

The third category is caused by domain-flux botnets. The
bot master of a domain-flux botnet uses a domain name gen-
eration algorithm (DGA) to periodically create a new do-
main name list for the C&C servers and select a few of them
to register. A bot belonging to the botnet is equipped with the
same DGA and keeps refreshing the domain name list of the
servers. The bot then tries to connect to the domain names in
the list to reach the C&C server. Since most domain names
on the list are not registered, such bot activity often leads
to a large number of (correlated) DNS query failures. For
some of the domain-flux botnets, the DGA algorithms have
been successfully reverse engineered [8, 10, 11]. We employ
these reverse-engineered DGA algorithms to precompute the
domain name list and use it to identify co-clusters caused by

6

ID Root cause Pct.(%) Details Bi-mesh Host-star DNS-star
1 Trojan (Backdoor) 28.1 Variants of Dropper, Pakes!sd6, Rustock.E, Tidserv, WinFixer, 63.2% 26.3% 10.5%

Ertfor.A, Kraken, FakeAlert.a, Anti-Virus2008, Crypt.ta, etc.
2 Spamming 25.2 Hosts querying for non-existing mail servers. 29.9% 70.1% 0
3 Domain-flux botnets 13.3 Conficker A/B, Torpig. 66.1% 33.9% 0
4 Peer-to-peer 5.2 Hosts querying for non-existing p2p servers. 100% 0
5 Unknown 28.1 Domain names not found in the data sources. 72.2% 20.1% 7.7%

Total 100

Table 2: Categorization of identified co-clusters.

domain-flux bots. With this method, we find totally 13.3%
of all the co-clusters are due to domain-flux bots. In this
category, 86% of the co-clusters are bi-meshes, with another
14% are host-stars when only one bot instance from a par-
ticular domain-flux botnet is observed.

P2P activities contribute to 5.2% of all the co-clusters.
The correlated DNS query failures happen when more than
one hosts look up for the same p2p servers that no longer ex-
ist. All of the identified p2p activities are bi-meshes, access-
ing the same failed domain names66bt.cnandzingking.com.

The last category consists of 28.1% of all the co-clusters
that we cannot find their root causes based on the domain
names. We suspect that these co-clusters are likely caused by
unreported anomalous activities. As we shall see in Sec. 5,
we find that a number of unknown co-clusters behave simi-
larly as the co-clusters caused by known domain-flux bots.

Discussion on the removed weak links. Because the
subgraphs represent heterogeneous suspicious activitiesand
hence ideally they are isolated subgraphs in the DNS failure
graphs. However, by studying the removed weak links, we
find that under several circumstances they will be connected
to form large subgraphs. First, many of them are connected
due to one single host participating in two activities, possi-
bly due to multiple infection and dynamic IP allocation. For
example, we find hosts that are infected by both Conficker
A/B and the Trojan Horse. Second, hosts in different sub-
graphs may access other failed domain names, correspond-
ing to email servers or p2p servers.

5. EVOLUTION OF DNS FAILURE GRAPHS
In this section, we explore the temporal properties of the

DNS failure graphs. We first propose a best-effort linking
algorithm to correlate co-clusters identified from daily DNS
failure graphs at different times. We then differentiate sub-
graphs experiencing significant changes over time from the
stable ones. At the end of the section, we show that the un-
stable subgraphs are likely unreported domain-flux bots.
5.1 Tracking Co-cluster Changes

For a particular co-cluster, both hosts and domain names
may change over time due to dynamic address allocation and
certain domain name generation schemes. In order to track
the changes of co-clusters over time, we employ a best-effort
approach which takes both factors into account.

Given a particular co-clusterGi,t from dayt, let Hi,t and
Di,t be the sets of hosts and the domain names associated
with Gi,t , respectively. We use the Jaccard Similarity Coeffi-

cient(JSC)5 to measure the similarity betweenGi,t and every
subgraphsG j ,t+1 from the following day (t + 1) to find the
best match in terms of both the hosts and the domain names.
In particular, We callG j ,t+1 the best match ofGi,t if

j = argmaxj max(JSC(Hi,t ,H j ,t+1),JSC(Di,t ,D j ,t+1))

and max(JSC(Hi,t ,H j ,t+1),JSC(Di,t ,D j ,t+1)) > θ. Fig. 7
shows the distribution of the JSCs for the best matches be-
tween the subgraphs on 01/05/2009 and those on 01/06/2009.
Due to the bimodal shape, we chooseθ = 0.6 as the cut-off
threshold in our experiments, i.e., a co-cluster has no best
match if the JSC value is less than 0.6. In this way, we can
track the changes of a particular subgraph by finding its best
matches in the subsequent days recursively.

We use a simple criterion to differentiate stable co-clusters
and variable ones based on the change of the domain names.
We consider a co-cluster to be stable over time if the JSC
between the domain name sets appearing at the first day and
the last day is less than 0.16. In addition, we only focus on
the co-clusters that last for more than 1 week. For co-clusters
with a shorter life, we need more observations to study their
changes.

5.2 Analyzing Potential Domain-Flux Bots
While most stable co-clusters (more than 90%) correspond

to the activities of different Trojan instances, we identify 8
co-clusters with significant domain name changes. Using the
reverse-engineered DGA algorithm, we find four co-clusters
are related to three types of domain-flux bots: Conficker A,
Conficker B and Torpig (the Conficker B bots form two sep-
arate co-clusters, due to one particular day when no bot in-
stance sends out DNS queries). In fact, these 4 co-clusters
cover all the domain-flux bots belonging to these three bot-
nets without any false alarm.

In addition, the remaining 4 co-clusters also demonstrate
similar patterns as those of the reported domain-flux bots.
We next provide a detailed analysis of these co-clusters to
show that they are also likely corresponding to unreported
domain-flux bots.

We start by looking at the patterns in the domain names.
Table 3 shows the examples of domain names from these 4
candidates. CandidateA uses.com, .net or .cc for the top
level domain name while the other three candidates only use
5For two setsA andB, the JSC is defined as|A∩B|/|A∪B|.
6We note that the threshold 0.1 is set to address the cases of
domain-flux bots with different domain generation cycles.

7

0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000

Maximum JSC of the best match

C
ou

nt

Figure 7: Maximum JSC.

CandidateA CandidateB CandidateC
ymtyupvty.net sbttwbkh.com ncamnsdtxa.com
fqhfaia.cc xbhsxdgk.com hlhxeezzsd.com
ppewqutd.com wsisjxde.com ywtfpxtwop.com

CandidateD
guyyruldrbrbqyfxdtnb.com
dlqrhudtjiajuopbagwg.com

hqcwbspyvdpmhrejvhdi.com

Table 3: Domain name patterns.
Figure 8: Identifying cycles of do-
main name changes.

.com. The second level domain names from these 4 can-
didates are apparently random strings of a variable length
(candidateA) or a fixed length (B of length 8,C of length
10 andD of length 20). This indicates these domain names
are likely to be generated by machines (following some al-
gorithms) other than human beings.

We next study the cycles of domain name changes of the 4
candidates. Fig. 8 shows different lengths of cycles of these
4 candidates, where thex-axis represent the number of days
(relative to the time when the bot instances begin to be ob-
served) and they-axis stands for the cumulative number of
unique domain names appearing over time. Similar as the
three known domain-flux bots, candidateA,C and D also
have a one-day cycle. In comparison, candidate B has a cy-
cle of 1 week. At the end of the two-week period, the total
number of unique domain names observed for each candi-
date also varies significantly compared with the known bots.
For example, Torpig bots only have 42 unique domain names
after 2 weeks (3 new domain names generated by the DGA
per day), in comparison, candidate C has more than 42K in
2 weeks, where around 3K new domain names are observed
per day. To further differentiate whether 4 candidates are the
variants of the known bots, we compare the hosts associated
with each of them. In fact, there is no IP address shared by
the candidates and the known bot instances, indicating these
candidates are likely unreported domain-flux bots.

An interesting observation for candidateB is that a few
of the failed domain names are indeed registered. For ex-
ample,xnihxzatff.comandsjfnannvwv.comare registered on
01/06/2009, respectively. However, the hosts are observed
to access them only on 01/01/2009, which results in failed
DNS queries. We suspect this may be caused by either the
synchronization problem between the registration process
and the DGA algorithm, or the DGA may generate domain
names that may repeat in future.

6. CONCLUSION
In this paper, we proposed an approach for identifying

and classifying network anomalies based on unproductive
DNS traffic. We advanced the notion of DNS failure graphs
to capture the interaction between hosts and failed domain
names. We then applied a statistical tri-nonnegative matrix
factorization technique for extracting coherent co-clusters
(dense subgraphs) from DNS failure graphs. Analysis on
a 3-month DNS trace captured at a large campus network

indicates most of such co-clusters correspond to a variety
of network anomalies that often exhibit different subgraph
structures. Temporal analysis on these co-clusters identifies
4 co-clusters plausibly due to unreported domain-flux bots.

7. REFERENCES
[1] D. Dagon, “Botnet detection and response, the network isthe

infection,” in OARC workshop, 2005.
[2] Z. Zhu, V. Yegneswaran, and Y. Chen, “Using failure

information analysis to detect enterprise zombies,” in
SecureComm’09, Athens, Greece, 2009.

[3] D. Plonka and P. Barford, “Context-aware clustering of dns
query traffic,” inIMC’08, Vouliagmeni, Greece.

[4] T. Holz, M. Steiner, F. Dahl, E. Biersack, and F. Freiling,
“Measurements and mitigation of peer-to-peer-based botnets:
a case study on storm worm,” inLEET’08, 2008.

[5] Y. Xie, F. Yu, K. Achan, R. Panigrahy, G. Hulten, and
I. Osipkov, “Spamming botnets: signatures and
characteristics,” inSIGCOMM ’08, 2008.

[6] J. John, A. Moshchuk, S. Gribble, and A. Krishnamurthy,
“Studying spamming botnets using botlab,” inNSDI’09,
2009.

[7] Y. Zhao, Y. Xie, F. Yu, Q. Ke, Y. Yu, Y. Chen, and E. Gillum,
“Botgraph: large scale spamming botnet detection,” in
NSDI’09, 2009.

[8] P. Porras, H. Saidi, and V. Yegneswaran, “Conficker C
analysis,” http://mtc.sri.com/Conficker/addendumC/.

[9] Y. Jin, E. Sharafuddin, and Z.-L. Zhang, “Unveiling core
network-wide communication patterns through application
traffic activity graph decomposition,” inSIGMETRICS ’09,
2009.

[10] “Conficker working group,”
http://www.confickerworkinggroup.org/wiki/.

[11] B. Stone-Gross, M. Cova, L. Cavallaro, B. Gilbert,
M. Szydlowski, R. Kemmerer, C. Kruegel, and G. Vigna,
“Your botnet is my botnet: Analysis of a botnet takeover,” in
CCS’09, 2009.

[12] “MX Toolbox Blacklists,”
http://www.mxtoolbox.com/blacklists.aspx.

[13] “ThreatExpert Report,” http://www.threatexpert.com.
[14] P. Porras, H. Saidi, and V. Yegneswaran, “An Analysis of

Conficker’s Logic and Rendezvous Points,”
http://mtc.sri.com/Conficker/.

[15] I. Trestian, S. Ranjan, A. Kuzmanovi, and A. Nucci,
“Unconstrained Endpoint Profiling (Googling the Internet),”
in Proc. of ACM SIGCOMM ’08, 2008.

[16] “Graphviz - graph visualization software,”
http://www.graphviz.org/.

[17] C. Ding, T. Li, W. Peng, and H. Park, “Orthogonal
nonnegative matrix t-factorizations for clustering,” inProc.
of ACM KDD, 2006.

[18] M. Deodhar, G. Gupta, J. Ghosh, H. Cho, and I. Dhillon, “A
scalable framework for discovering coherent co-clusters in
noisy data,” inICML’09, 2009.

8

