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Abstract—We study the problem of maximizing the broadcast is defined as the number of simultaneous active connections
rate in peer-to-peer (P2P) systems undenode degree bounds, i.e.,  that a node maintains with its neighbors. Due to connection
the number of neighbors a node can simultaneously connect to overhead costs, it is necessary to limit the number of sanult

is upper-bounded. The problem is critical for supporting high- . _ .
quality video streaming in P2P systems, and is challengingu to ~ €OUS connections a peer can maintain. This naturally lound

its combinatorial nature. In this paper, we address this prblem the node degrees in P2P systems. For instance, in practical
by providing the first distributed solution that achieves near- systems such as PPLive [18], the total number of neighbors

optimal broadcast rate under arbitrary node degree bounds, of a node is usually bounded around 200, and the number
and over arbitrary overlay graph. It runs on individual node s of active neighbors of a node is usually bounded by 10-15

and utilizes only the measurement from their one-hop neighors, .
making the solution easy to implement and adaptable to peer [15]. In such large P2P systems with hundreds of thousands

churn and network dynamics. Our solution consists of two Of peers, the system topology is not a complete graph.
distributed algorittms proposed in this paper that can be of There has been work studying this challenging problem
independent interests: a network-coding based broadcastg al- of maximizing streaming rate under node degree bounds
gorithm that optimizes the broadcast rate given a topologyand a and over general P2P graph. SplitStrg@oopNet [6], [7]

Markov-chain guided topology hopping algorithm that optimizes .
the topology. Our distributed broadcasting algorithm achieves ZIGZAG [8], PRIME [9] and most practical systems (such

the optimal broadcast rate over arbitrary P2P topology, whie as PPLive[[18] and UUSeé [19]) bound node degree but do
previously proposed distributed algorithms obtain optimdity not provide rate optimality guarantee. Recently, the astho
only for P2P complete graphs. We prove the optimality of our in [10] proposed a centralized Cluster-Tree algorithm that
solution and its convergence to a neighborhood around the ,chieves near-optimal broadcast rate with high probgiitier
optimal equilibrium under noisy measurements or without time- .
scale separation assumptions. We demonstrate thedfectiveness compIeFe graph, under_the .aslsumptlo.n that the node degree
of our solution in simulations using uplink bandwidth statistics bound is at least logarithmic in the size of the network. A
of Internet hosts. summary and comparison of previous work and this work are
in Table[.

Despite of these exciting results, the following two impor-
Peer-to-peer (P2P) systems have provided a scalable #ntt questions remain open:

cost dfective way for streaming video in the past decade., what is the maximum broadcast rate under arbitrary node
Recent studies [11]=[14], however, indicate that the pratt degree bounds, and over general P2P overlay graph?
performance of P2P streaming systems can be far from thei, How to achieve the maximum broadcast rate imlis
theoretical optimal. tributed manner?
There have been work studying the performance limit
P2P systems to understand and unleash their potential. %Y
, : ; . ) u
focus is on thestreaming capacityproblem [15] in P2P live
streaming systems , i.e., maximizing the streaming ratgestib
to the peering and overlay topology constraints. The proltide
critical for supporting high-quality video, which is deteined
by the streaming rate, in P2P live streaming systems. In this®
paper, we focus on the broadcast scenario where all peers in
the system are receivers.

|. INTRODUCTION

stems running distributed algorithms, compared witts¢ho
|"°rning centralized algorithms, are more adaptable to peer
churn and network dynamics.

In this paper, we answer the above two questions and make
the following contributions:

We provide the first distributed solution that achieves
a broadcast rate arbitrarily close to the optimal under
arbitrary node degree bounds, and over arbitrary overlay

The case of unconstrained peering on top of a complete graph. Oyr solutipn runs on individual nodgs and utilizes
graph is well studied, where the maximum broadcast rate only the information from their one-hop neighbors.
is derived in several papers] [1[+[3],_]16],_17]. The cas@ur solution consists of the following two algorithms thanc
of unconstrained peering over general graph can also [pR of independent interests.
addressed by using a centralized solutian [5]. . We propose a distributed broadcasting algorithm that
The streaming capacity problem becomes NP-Complete achieves the optimal broadcast rate over arbitrary overlay
over general graph withode degree bound&0]. Node degree graph. Previous distributed P2P broadcasting algorithms
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TABLE |
SUMMARY AND COMPARISON OF PREVIOUS WORK AND THIS WORK FOR MAXIMIZING P2PBROADCAST RATE.

References General Arbitrary Node Exact or 1- € Distributed

Overlay Graph?| Degree Bound? Optimality? Solution?
Mutualcast[[1] and the algorithms hI[2L1[3] X X v v
Iterative in [4], [5] v v X
CoopNefSplitStream|[[6], [[7] X v X X
ZIGZAG [8], PRIME [9] v v X v
Cluster-tree[[10] X v conditionally optimal* X
This paper v v v v

* The Cluster-Tree algorithm is (@ ¢)-optimal with high probability if the node degree boundOglogN).

are optimal only for complete overlay graph [1]-[3]. Our ° °
algorithm is based on network coding and utilizes back-

pressure arguments.
« We also propose a distributed algorithm that optimizes the ?\,/? e\,/?
topology. In this algorithm, each node hops among their
possible set of neighbors towards the best peering con- 2 ) {3
figuration. Our algorithm is inspired by a set of log-sum- @) ()
exp approximation and Markov chain based arguments
expounded in[[20].
« We prove the optimality of the overall solution. We also
prove its convergence to a neighborhood around the op- 1Y) (2) (1) '@
timal equilibrium in the presence of noisy measurements
or without time-scale separation assumptions. We demon-
strate the ffectiveness of our solution in simulations 2 ) (3)(2) (3
using uplink bandwidth statistics of Internet hosts. © @

Il. PrROBLEM FORMULATION Fig. 1. Peering configuration examples for a 5-node netwoitk wode
degree bound 3 for each node.

[ N

A. Settings and Notations

We model the P2P overlay network as a general dlreCteolLet ¥ denote the set of all feasible peering configurations

graphG = (V,E), whereV denotes the set of nodes aid . . .
denotes the set of links. Each link in the graph correspon%\éergrapm under node degree bounds. Given a configuration

. € ¥, we obtain a connected sub-graph®fthat satisfies
to a TCPUDP connection between two nodes. [Nt denote . . i
the neighbor set of nodee V in the graph. Each nodee V the node degree bound constraints. We denote this sub-graph

) . . asGs = (V, Ef), whereE; represents the set of links in this
is ass_omated with an upload capac(fy_ > 0. We assume ub-graph. We denofs, ; as the set of nodes neighbors in
there is no constraint on the downloading rate for each no ’

v € V. This assumption can be partly justified by the empiric%ﬁS sub-graph. We havl, (| < B, where|-| represents the

observation that as residential broadband connectionis wn'ze of a set.
asymmetric upload and download rates become increasingly Problem Formulation and Our Approach
dominant, bottlenecks typically are at the uplinks of theess For a configurationf € ¥, let x; be the maximum
networks rather than in the middle of the Internet. achievable broadcast rate under i.e., the highest rate at
As such, P2P networks have capacity limits on the nod@gich every node in the system can receive the streaming
instead of links. This is dierent from traditional underlay content simultaneously. The problem of maximizing broatica
networks where the capacity limits are on the links. rate under node degree bounds can be formulated as follows:
We focus on the single-source streaming scenario, i.e., a
sources broadcasts a continuous stream of contents to the MRC : maXer  Xi. @
entire network; we denote its receiver setRag V — {s}. This problem iscombinatorialin nature which is known
We consider the peering constraints that each node hatode NP-completé [10], and there is nffiéient approximate
degree boundB,, i.e., it can only exchange streaming contergolution to the problem even in a centralized manner.
with up to aB, number of neighborsimultaneouslydue to In this paper, we address this problem by providing a
connection overhead cost. We allowffdrent nodes to have distributed solution. In particular, we first develop a dizited
different degree bounds. Figl 1 shows four sample peerimngadcasting algorithm that can achiexe under arbitrary
configurations of a 5-node network with node degree boundf3e #. We then design a distributed algorithm that opti-
for each node. mizes towards the best peering configurations. They operate



in tandem to achieve a close-to-optimal broadcast rate rundi@lowing flow conservation constraints:
arbitrary node degree bounds, and over arbitrary overlaghgr

We elaborate on these two algorithms in the following two Z fy < Z fil, YveR—-{d}, (2)
sections. uein(v) ueout(v)
z < el ©)
I1l. THE ProPOSED DISTRIBUTED BROADCASTING ALGORITHM ue;‘"(s)
0 < f5 4)

By exploiting network coding[I21], we design a back- , X . .

pressure based distributed broadcasting algorithm. Badk?€rein(v) = {ul(u.v) € E}is the set of nodes sending content
pressure type algorithm is proposed initially n[22]. Thipe L© v under configuratiorf, andout(v) = {ul(v,u) € Es,u # s}

of algorithms select a subset of queues in the system withthe set of nodes recelvmg.conte.nt fram .
the maximum back-pressures and serve these queues subje@tPowerful theorem established in_[21] states that a multi-
to resource constraints, where back-pressure is defindueasG@St Or broadcast razirom sto a set of receivers is achievable
difference between the queue at the local node and that ofifit@nd only if z is feasible fors and any received. This is
downstream nodes. Back-pressure algorithm design hasl fodnStrong result as it says that if the network can support a
applications in many network resource allocation domaift§licast rate o betweens and any receiver assuming other
[23], [24], [25]. In this paper, we apply this method for thdeceivers’ trdic is apsent, t_hen it can support a multicast rate
first time to design distributed P2P broadcasting algorithfif Z 0 all the receivers simultaneously. Such ratean be

Our algorithm can achieve the maximum broadcast rate oRhieved by every node in the network performing network
arbitrary P2P topology. coding [21]. Further, authors if_[29][[30] show that it is
suficient to perform random linear network coding.

) ) In random linear network coding, by independently and ran-
A. Routing vs. Network Coding domly choosing a set of coding déieients from a finite field,

In P2P systems, there are two approaches for broadcasf?lfhg]h node sends out the coded packet as a linear combination
contents: one is based on routirig][26], in which nodes onfj 1€ node’s received packets. The combination infornmago

store and forward packets; and the other is based on netwdR€ECified by aogfiicient vectorin the packet header, which is
coding [21], [26], in which a node is also allowed to mixUPdated by applying the same linear transformations aseto th

information and output data as functions of the data it rezei data. When one node receives a full set of linearly independe

Some commercial P2P systems are built upon routing-baéﬁélﬂje_d packets, it can decode and. recover the ori.ginal pa(?ket
approach (e.g., PPLiVE [L8]), and some are based on net\NB}kth's, paper, we focus on the dlstr|_t>pted algonthm deS|gn.
coding (e.g., UUSeeE[lQ],IIIﬂ.) It is known that both The _d|scu33|ons of d_ecodmg probability and implementatio
routing and network coding approaches can achieve optintigt@ils can be found in [20].[30]. _
broadcast rate over arbitrary P2P graph [2]] [17]. Compewed Under the setting of network coding, we can cons_,lcﬂ%r
routing-based approach, the network-coding based approdé & “virtual” information flow betweers and d. Multiple
introduces additional packet header overhead for carryiﬂﬁormat'(?n flows “piggyback” together to transmit over the
coding codficients (e.g., 3% extra overhead according tBnysical links. The actual physical rate over a physica Is
[29]) and computation complexity for encoding and decodin‘@f"y t.he maximum rate of!ndeuaI |nformat|or_1 flows pagsin
(e.g., [13], [27] discuss how to keep the complexity low)oVer it. Letgyy be the physical flow rate over a link,(v) € Ex,

However, the network-coding based approach is robust fn we havef{, < g forall de R

peer dynamics since there is no need for constructing and/Vith the above understanding, we formulate the problem of
maintaining the spanning trees. In this section, we desigriM@Xximizing broadcast rate under configuratibas follows:
distributed broadcasting algorithm based on network apdin )

that is robust to dynamics. In Sectign VII, we will discuss MP - err]g;éu(z) ®)

how the overall problem can be solved by using centralized d d
s.t. foy + ZLjv=g < fon YveV —{d},d e R(6
solutions when only routing is allowed. Z uv T ARV Z v d R©)

uein(v) ueout(v)
f\f’u < gw, YVEV,Yueout(v),deR, @)
B. Network Coding Based Formulation Z G < Co YV E V, )
According to the Max-Flow-Min-Cut theorem, a data trans- ucout(y)

mission of ratez between source and a received is feasible where U (7) is a twice-diferentiable strictly concave utility
if and only if there exists a flow, denoted &S, satisfying the functiorf, 1,, denotes the indicator function. The constraints

1We refer interested readers fo [27].]28] for more detailsperformance 2|t might seem unnecessary to involve a strictly concavétyfilinction in
of routing-based and network-coding-based practical B2Rms. We focus this formulation. The reason is that we later design a pridual algorithm
on optimal distributed P2P broadcasting algorithm desigseld on network to solve the problem, and using a strictly concave utilitpdiion can avoid
coding in this paper. its potential instability probleni[17].



in @) describe the flow conservation requirements. The cofis such, it is sHicient to study the following problem ig:

straints in[[¥) come from the piggybacking property of infor
mation flows. The node upload capacity constraints arglin (8) MaXgz0 Z Z Yoy (15)
The problemMP is a convex problem. All feasible broadcast VeV ueouty)
rates must satisfy the constraints[ih (B)-(8) and are aabiev S.t. Z g < Cy,YVEV,
by using random linear network coding. ueout(v)
where
C. Algorithm Design via Lagrange Decomposition Wy Z[/l"'d = Audl”, Y(u,v) € Ey. (16)

To proceed, we first relax the first set of constraintsin (6 deR

in problemMP to obtain a partial Lagrangian as follows: ~denotes the aggregate back-pressure between two neigbori
nodesu andv, and []* £ max¢, 0).

Lz f,g,1) For anyv eV, let

=U@- Y, Z/lv,d[ PR R IE f\;*u] U(v) £ arg max wi, (17)

VeV-{djdeR - Auein(y) ueout(y) be one of its neighbors with the maximum back-pressure

_ _ d _ d (breaking ties arbitrarily). Then one optimal solution for
=U(@@ ZZM{ Z fuy + ZLyv=g Z f"”]’ ©) problemSSPis as follows:

veV deR uein(v) ueout(v)
whered,q,v € V —{d},d € R are Lagrange multiplierslgq = ( su)* _ {CV, if u= g*(v), (18)
0, ¥d e R, and Zuein(s) fL?S =0. 0, otherwise,
The strong duality holds for problemP since the Slater 5,4
conditions are satisfied [31]. Therefore, we can solve @mbl gV 0, if Adyg—Aug<0,
MP by finding the saddle points df(z f, g, 4). (fvu) = {g\*/u othe,rwisey (19)

Noticing that
Given f* and g*, primal-dual algorithms can be designed to

Z Z Avd ZLjy=g) = ZZ Asd (10) adaptz and A to pursue the desired optimal solution.
VeV deR deR We summarize the above analysis into a distributed algo-
and rithm including the following components:
Primal-dual Rate Control: we pursue the saddle point in
z and A simultaneously as follows:
> ZM[ PIRIEDY fv"u] SDIDIDINHCNES BRI
veV deR uein(v) ueout(v) deR veV ueout(v) zZ= Q'[U (Z) - ZdeR Asd];,
(11) /lv,d = I(v,d [Zuein(v) (fL?V) + Zly=s
* +
we can find the saddle points &fz f, g, 1) by solving the — Yueouty) (f\f’u)ﬁ ] , YWeV-{d,deR
v,d /1v,d

following problem successively in f, g, A: .
gp yiat.g Addd=Adg=0, VYdeR

(20)
rpzi(g] {TZ%KU(Z) - ZZ Asd) + maxz Z Z vu(/lvd Aud) | wherea andk,q are positive step sizes, and the function

f.o= deR VeV ueout(v)

s.t. [1)- @). b, a>0.

Given A and z, we consider the following scheduling sub-
problem onf, g:

(12) [b]: = {max(Q b), a<0o,

Neighbor Scheduling, Content Scheduling, and Network
Coding: Every nodev € V maintains a queue storing packets
that are intended fod. Whenever a transmission opportunity

. d _ arises, nodes chooses one neighbar(v) with the maximum
SSP:ma, g0 dzeég ue%;(v) fu(dea = dua) - (13) back-pressure according {0 {17).
sit. )- @. If Wy vy > 0, Nnodev sends packets t@ (v) at rateC,. Every
output packet is constructed as follows. Nodehooses one
The above linear programming problem has a structure th¥acket from the head of each queuedof A4 — Au(v).d > O,
allows us to solve it distributedly. The first observatiorthiat and output one random linear combination of these heard-of-
if an optimal g* is given, then an optimal* can be obtained queue packets. If otherwis,) < 0 or there is no head-of-
as follows:Vu,ve V.d € R, line packets to code, nodedoes nothing.
We have the following observations.
(f\;:lu)* _ {O, if Avg B Aug <0, (14) . The Lagrangian variablg, g4 is proportional to the length
Oy, Otherwise. of queue storing packets that are intended for receaiver



The back-pressune,, measures the aggregatéfdience is usually challenging and problem-specific, the distelout
in the queues of altl € R betweenv andu. The larger implementation directly yields a distributed algorithnr the
the back-pressure is, the more desperate nogants to problem.
receive data fronv. In this paper, we follow the framework frorn [20] and design

« Our algorithm can be implemented in a distributed mar distributed topology hopping algorithm for our probldn). (1
ner. It only requires nodes to exchange information witlihere are two steps in designing our algorithm under the
its one-hop neighbors, and thus is robust to peer churn addrkov approximation framework [20]: log-sum-exp approx-
system dynamics. When a new peer arrives, it conneatsation and constructing problem-specific Markov chairet th
to a set of neighbors, assigned by the streaming senadiows distributed implementation.
or trackers. Then the peer starts exchanging streaming o
data with them following the strategy defined by ouf*: LOg-Sum-Exp Approximation
algorithm. When a peer leaves, its neighbors are informedFirst, the maximum broadcast rate can be approximated by
and then close the connections. For the network codiaglog-sum-exp function as follows:
operation, theoretically we need to adjust the size of field
where the coding cdicients are chosen to make sure max x; ~ }Iog Zexp(ﬁxf) 21)
of the decoding probability when the number of nodes fer B ~ ’
changes|[[32],[133]. While[]29] and_[13] show that in
practice the finite field",s or Fs is enough to have a suf-whereg is a positive constant. Lé¥ | denote the size of the
ficiently high decoding probability. Therefore, only locaset¥, then the approximation accuracy is known as follows
configuration changes corresponding to dynamics, whi€&0l:
is easy to implement compared to centralized algorithms
where typically global information is needed for whole 0< }Iog
configuration change (e.g., spanning trees reconstruction B

in spanning tree based solutions). o L
« Although our algorithm is designed for P2P broadcast As s approaches infinity, the approximation gap approaches

scenarios, it also works for P2P multicast scenarios whefg'©0: As discussed iri [20], however, usu_a,ﬂyshould n_ot
helper nodes exist. The helper nodes simply also perfoFFH(e too large values as t_here are p_racﬂcal _constramts or
the operations described L {1820). Our algorithm cdtPnvergence rate concerns in the algorithm de5|gr1 aft_ellswar
be considered as the extension of the algorithniin [30] 10 Petter understand the log-sum-exp approximation, we
from link-capacity-limited underlay networks to node&SSociate with each configuratidn € ¥ a probability ps.

capacity-limited overlay networks. Consider the following problem

5" o)

—max X¢ < }Iog [F]. (22)
fer fer B

The following theorem characterize the convergence of the MRC - EQ : max Z P Xt (23)
proposed algorithm. P20 fer

Theorem 1: The algorithm in [[IB)E(20) converges to the st Z pr=1 (24)
qptimal solution of problemMVIP globally asymptotically in - f€¢ '
time.

The proof utilizes standard Lyapunov arguments and a Ly#s optimal value is mags x; and is obtained by setting the

punov function for primal-dual algorithm, similar to thossed Probability corresponding to one of the best configuratians

in [17], [34]. The proof is relegated to Appendix]-A. be one and the rest probabilities to be zero. Hence, problem
Remark: We derive our algorithm and prove its converMRC —EQ is equivalent to the original probleMRC.

gence based on a fluid model formulation. It is also possibleOn the other hand, according {o [20] we have the following

to obtain a similar back-pressure based distributed afgori observations.

with packet-level dynamics taken into account and prove Theorem 2 (cf. [20]): The optimal value of the following

its stability, following a set of Lyapunov drift argumentsoptimization problem

elaborated in[[35]. 1
MRC -3 :maxz PfXf — — Z ps log ps (25)
IV. THE PropPosep DisTRIBUTED TorPoLOGY HOPPING ALGORITHM =0 = B
We recently proposed i [20] to use Markov chain as a st Z pr =1 (26)
principled approach in designing distributed algorithnog f o

solving combinatorial network problems approximately. In

particular, we show one can design distributed algorithnig given by%log [Zfe;c eXp(ﬂXf)]. The optimal solution of
for a combinatorial network optimization problem in theroblemMRC - 3 is given by
following way. First, construct a special class of Markov

chains with problem-specific steady-state distributicecdhd, Pi(x) = exp(ﬂxf) VfeF. @7)
search for a Markov chain in this class that allows disteblut ¥ exp(Bxr)

implementation. If such Markov chain can be found, which frer



As such, by the log-sum-exp approximation [n1(21), wa timer according to itsneasuredreceiving rate and counts
obtain an approximate version of the maximum broadcast ratewn accordingly. When the timer expires, the dedicatedenod
problemMRC, off by anentropyterm —% 3.~ ps logps. If  performs the neighbor swapping and resets its timer. Aslsimp
we can time-share amongfidirent conf?gurations accordingas the implementation may sound, this option is expensive
to the optimal solutionp;(x) in (27), then we can solve theto implement. Once the peering configuration changes, the
problem MRC approximately and obtain a close-to-optimasystem needs to notify all the nodes to measure the new
broadcast rate. receiving rate and reset their timers accordingly. It is clear

B. Markov Chain Guided Algorithm Design how to implement such system-wide notification in a low-

We design a Markov chain with a state space being the sej,
of all feasible peering configurations and has a stationary
distribution as p;(x) in (7). We implement the Markov
chain to guide the system to optimize the configuration. As
the system hops among configurations, the Markov chaj
converges and the configurations are time-shared according
to the desired distributio (x).

The key lies in designing such Markov chain that allows
distributed implementation. Sincp;(x) in (27) is product-
form, it sufices to focus on designing time-reversible Marko

chains [20].

next

overhead manner.

this paper, we desigg; ¢ andqy ¢ as follows:

1 expBxs)
U = SXpf) expBxr) + explxy) (29)
Qi ¢ ! expxi) (30)

- exp(r) expBxs) + expBx;)’

where t is a constant. It is straightforward to verify that
getailed balance equation is satisfied. As will be clear & th

subsection, our choices of transition rates do notirequ

Let . f' € ¥ be two states of Markov chain. and denotg&oordination or notification among peers in its implementat
dr¢ as the transition rate from stateto f'. We have two ¢ Distributed Implementation

degrees of freedom in designing a time-reversible Markov
chain:

One distributed implementation of our designed Markov

chain is briefly described as follows.

. The state space structure we can add or cut direct
transitions between any two states, given that the state’
space remains connected and any two states are reachable
from each other.

The transition rates: we can explore various options in
designingg; ¢, given that the detailed balance equation
is satisfied, i.e.,

Pr(¥)are = Pr()ap ¢, Y, T e F. (28)

Satisfying the above equations guarantees the designed
Markov chain has the desired stationary distribution as in
).

Recall that for a node € V, the set of its neighbors under
configurationf is denoted byN, ;. We call node inN, ¢ Vv's
in-use neighbor and node N,\N, ; V's not-in-use neighbor.
For the ease of explanation, we further defiMigas the set of
all the node-pairs undefr, i.e., Nt = {{v,u},Yve V,ue Ny}.
Note we do not dferentiate node pairg, v} and{v, u}. As an
example, for the peering configuratidnshown in Fig[(b),

Nt is given by({s 1}, {s 2},{s,4},{1, 2},{1,4},{2, 3}, {3, 4}}.

In our Markov chain design, we first specify its state space
structure as follows: we set the transition rgtg- to be zero,
unlessf and f’ satisfy that|N:\Ny| = 1 or [Ny \Nj| = 1.

In other words, we only allow direct transitions between two
configurations if such transitions correspond to a singléeno
adding a new node in its in-use neighbor set or removing one
in-use neighbor from its in-use neighbor set.

Second, given the state space structure of Markov chain, we
design the transition rates to favor distributed impleraton
while satisfying the detailed balance equation[in] (28).

One possible option is to sek ¢+ to be expt(Bxs). One
way to implement this option is for every node to generate

Initialization: Each peew € V randomly selects neigh-
bors from its neighbor listN, under the node degree
bound and builds connections with these selected neigh-
bors.

. Step 1: Let f denote the current configuration. Each

nodev € V generates an exponentially distributed random
number independently with meaﬁ%"‘“, and counts
down according to this number.

Step 2: When the count-down expires, nodeaneasures

its current receiving rate as an estimate of the broadcast

rate x;. Then with probability'r,‘“”‘| nodev goes to the
|NV‘*|Nv,f

Step 2g with probability
Step 2hb
— Step 2a:Nodev randomly selects one in-use neigh-
bor in Ny s and removes it fronN, ;. Under the new
peering configuratiori’, nodev measures its receiv-
ing rate as an estimate af . With the estimates of
x¢ and Xy, peerv stays in the new configuratioh

with probability%, and switches back to

exppBXx.,

f with probability 1— %
repeatsStep 1

Step 2b: Node v randomly selects one not-in-use
neighbor inN,\Ny . If the node degree of the se-
lected not-in-use node is equal to the boundvsr
node degree is equal to the bound, nad@mps
back toStep limmediately. Otherwise, nodeadds
this selected node intbl, ;. Under the new peering
configurationf’, nodev measures its receiving rate
as an estimate of;-. With the estimates ok; and
X¢, peerv stays in the new configuratiof’ with

N nodev goes to the

Nodev then



.- exp(Bxf/)
probability OB EXPBR,)

and switches back td Algorithm 1 Broadcasting Algorithm

exppx;s)

swpxeppx) - Node v then

with probability 1 -
repeatsStep 1 2

It is straightforward to summarize the above implementatio 3:
into a distributed algorithm that runs on individual nodesla 4:
utilizes only the measurement from their one-hop neighbors:
The correctness of the implementation is shown as follows: 6:

Proposition 1: The implementation in fact realizes a time- 7:
reversible Markov chain with stationary distribution [nzj2 8:
The proof is relegated to Appendix]-B. 9

Remarks: a) In Step 1, the generation of count-down 10:
timers does not depend on the receiving rate, thus the systém
does not need to notify the nodes about changes of peerirgy
configurations. b) With the above implementation, the syste13:
hops towards configurations with better broadcast rate-proi:
abilistically. For example, ifx;: > X;, then the system will 15:
be more likely to stay in configuratioff than in f, and vice 16:
versa. c) With large values @8, the system hops towards 17:
better configurations more greedily. However, this may as:
well lead to the system getting trapped in locally optimalo:
configurations. Hence there is a trad@-to consider when 20:
setting the value oB. Moreover, the value of also dfects 21:
the convergence rate of the time-reversible Markov chathéo 22:
desired stationary distribution. It is worth future invgstion 23:
to further understand the impact gf d) In the presence of 24:

1: The following procedure runs on each individual node

independently.
For the sources and each time+slot,
X [%+a(U' (%) = Saer Asa) |
For each node € V and each time slot,
w0
for u e out(v) do
for ford e Rdo
Wyy = Wyy + Max(dyg — Ay, 0)
end for
if Wwyy > W* then
W «— Wy
u «u
end if
end for
if wyy- > 0 then
for de Rdo
if Avg— Awg > 0 then
f\?w «C,
end if
end for
end if
for de Rdo .
Avd < [ﬁvd + kV,d(Zuein(v) fL?V - Zueout(v) f\?u)]
end for

peer dynamics, our algorithm incurs only simple actionebas
on local information. When a new peer arrives, a neighbor

set and a neighbor list are assigned to it. The peer builgisain transits before the underlying broadcasting allyorit
connections with the nodes in the neighbor set. Then the peghverges and thus it transits based on inaccurate obisersat
starts counting down &Step 1and follows the strategy of our of the broadcast rates.

algorithm. When a peer leaves, we just eliminate it from the Consequently, the topology hopping Markov chain may
neighbor list of its previous neighbors and end up connastio converge to the desired stationary distributiph(x). This

obs
V. CONVERGENCE PROPERTIES OF OVERALL SOLUTION

ervation motivates our following study on the conveogen

of Markov chain in the presence of inaccurate transitioagat
We have designed the distributed broadcasting algorithm inFor each configuratiorf € & with broadcast rate;, we

Section[Ill and the Markov chain guided topology hoppingssume its corresponding inaccurate observed rate befongs
algorithm in Sectio 1V. The pseudocodes of each algorithfRe hounded regiorkAf,Af]. Ay is the inaccuracy bound and
are shown in Algorithni]l and Algorithi 2 respectively. Bothyan be diferent for diferentf.

algorithms are simple to implement, run on each individual g easy explanation of our approach, we further assume
node, and only require nodes to exchange information Wifhe ohserved broadcast rate for configuratioonly takes one

their neighbors. . _ . of the following 2h¢ + 1 discrete values:
If the broadcasting algorithm converges instantaneously,

time-scale separation assumption holds, then we can abiin
accurate value ok; for any configurationf € . Transiting
based on the accurate, the designed Markov chain will
converges to the desired stationary distributior[id (28@n¢é
by operating these two algorithms in tandem, we obtain né;f’ N
close-to-optimal broadcast rate under arbitrary node esegr’j € {-Ns....,n¢} and Zj;—nf nit = 1.
bounds, and over arbitrary Over|ay graph. The Optima"tp ga With the inaccurate observed broadcast rates, the tOpO'Ogy
is characterized in(22). hopping behaves as follows. Suppose the current configarati

In practice, however, it is possible to obtain only an iniS f and the observed broadcast ratexis+ 3-Ar, where
accurate measurement or estimatexef These inaccuracies j € {—ns....,ns}. After some count-down process, the system
root in two sources. One is the noisy measurements of theps to a new configuratiorf” and probes its broadcast
maximum broadcast rates given the configuration. The ottiéte. In configurationf’, the broadcast rate is observed as
is the fast state transition of Markov chain, i.e., the MarkoXt + At J’ € {=Nf.,..., Ny}, The system stays in the new

1 1
Xi—Ag, ..., Xg — — A, Xg, Xg + — A, ..., X5 + At ],
Nt Nt

where n; is a positive constant. Further, with probability
the observed broadcast rate takes valye+ n—JfAf,



Algorithm 2 Topology Hopping Algorithm Original Topology Hopping Markov Chain M
1: The following procedure runs on each individual node with Exact Broadcast Rates

independently. We focus on a particular node V.

2: procedure Initialization

« Initialize Ny, By; randomly connects to peers froly Corresponding Extended Markov Chain M’
under the degree bound with Inaccurately Observed Broadcast Rates

. Generate a timer that follows exponential distribution
with mean equal to 2 exp)/(INy]) and begin counting

D13 -A).25,-)

‘*\ ®>—

down. go e \‘»\.// \\\./\.//

3: end procedure /A\'/A\Q/A'/_\
4 \V/‘\V/ \V/‘\V/

5: When the timer expires, invoke the procedure Transition.
6: procedure Transition
7. With probability D!

INy|
& No e N} V Fig.2. A le of the original three-state topology HiogpMarkov chai
. . . . ig. 2. An example of the original three-state topology hinggMarkov chain
o randomly remove one in-use neighbor fravs; and the extended Markov chain. M is the original topology ging Markov
10: X¢r Zuein(v) o chain with accurate broadcast rates. M’ is the correspgneitended Markov
11: Nyt < N, with probability chain with inaccurate broadcast rate observations. Fdr eacfigurationf €
’ . {1,2, 3}, the observed broadcast rate takes valkies Af, X, X; + Af with
1- eXpGXf/)((eXp6Xf) + e)-(DGXf/)): probability _1.t.70,s andny¢ respectively. The transition rates are assigned
12: refresh the timer and begin counting down; according to[[3R) and (33).
13 With probability 1- T,
14: No < Nys; ) j ) ) )
15: random'y add one not-in-use neighbbrin Cha|n:(f, X¢ + EAf)’J € {—nf, ey nf}. Further, Given direct
Ny \Ny.¢ to Ny+; transitions between configuratioh and f’ in the original
16: if INy¢| =By or [Ny ¢| = By topology hopping Markov chain, there are direct transgion
17: refresh the timer and begin counting down; between statesf(x; + n—JfAf) and (f’,xy + nj—f/Af/) (Vj €
18: end if {-ns,...,nsh, )" € {—=ng,...,Nn¢}) in the corresponding new
19: Xir e Yueinw) fovs Markov chain. The corresponding transition rates are shown
20: Nt < No with probability as follows:
1 - expBxy)/(expBxr) + expBxy)); . ,
21: refresh the timer and begin counting down; (Fxt+ae A X+ 5= A)
22: end procedure -y expB(xs + n]_f,Af,))
== (32)

“expl) expB(xe + nj—f//Af/)) + expB(xs + LAr))

configurationf’ with probability and

expB(xp + L-Ar)) | |
B( 4 ) B( i ))’ q(f/,Xf/+%Af7)’(f’xf+%Af)
expB(Xs + =-Ag)) + expB(Xs + o-Ag |
, ; njt expB(xt + 3-Ar))

and switches back to configuratidnwith probability = . . - , (33
eXPE)  exp(xi + - A)) + expB(xp + 7-Ar))

. expB(xi- + 7 Ar)) ) )
- T T where}.l | nj¢=1andy,”  nj.r =1 This new Markov
expB(xi + 5-Ar)) + expB(Xs + 5-Ar)) chain can be thought as an extended version of the original
By arguments similar to the proof of Proposition 1, the trariopology hopping Markov chain. As an example, an extended
sition rate from configuratiori with broadcast rate + %Af Markov chain is shown and explained in Fig. 2.
The extended Markov chain has a unique stationary distri-

to configurationf” with broadcast rate; + J—'Af, is given by . ’ e ) S
f’ bution since it is irreducible and only has a finite number of

- expB(Xs + %Af/)) states. We can study the impact of inaccurate broadcast rate
5 ”() . 7 ! j . (381) by comparing the stationary configuration distribution loé¢ t
XPU) expB(xr + 5-Af)) + expB(Xs + 5-Ar)) new Markov chain and that of the original topology hopping

We construct a Markov chain to capture and study the abd\&rkov chain. _ S _
topology hopping behavior. In this Markov chain, a state is We denote thg stationary distribution of tlstatesin the
associated with a configuration and an observed broadc3@ Markov chain by
rate. Given any configuratiord € _T and its correspond- B2 [Py uin.i€l-ne....nehfeF] (34)
ing x¢, there are B¢ + 1 states in the extended Markov AR

13



TABLE Il

We also denot@: [pr(X), f € ] as the stationary distribution PEER UPLOAD CAPACITY DISTRIBUTION
of the configurationsin the extended Markov chain. Given a
configurationf € 7, there are B¢ + 1 states associated with Upload Capacity (kbps) 64 | 128 | 256 | 384 | 768
f in the extended Markov chain. We have Fraction (%) 28| 143] 43 ] 233] 553
Pr0= > Bryala VfeF. (35)
jet-ny....ng) N 0.00005 respectively. These parameters are empiricallyechos

Recall that the stationary distribution of the configuratio o obtain S,mO(I)th, algorithm updatlngdang small grrorz. in th
for the original topology hopping Markov chain ig* In our simulations, we assign node degree bounds in the

[p:(x), f € F]. We use the total variance d|stan¢EI[36] téollowing two ways. The first is to set identical bound on
qufantlfy the diference betweep® and p, as each node’s node degree. The second is to set degree bound

proportional to the node’s upload capacity. This is basethen
drv(p", ) = Z P = Pprl. (36) empirical observations that nodes with high upload cajeecit

usually have more system resource (e.g., memory and CPU
power) than nodes with low upload capacities. With more

feT

We have the following result: system resource, nodes can maintain more concurrent con-

Theorem 3: Let A*max = MmaXer Af, and Xmax = nections, thus have larger node degree bounds. In our second

maxes Xt The dry(p, p) are bounded as follows: degree bounds assignment, nodes set their node degreesbound
0 < drv(p", ) < 1 — exp(=28Amay) - (37) proportional to the ratio between their upload capacitied a

64 kbps. In particular, nodes with 64 kbps have a degree bound
Further, the optimality gap in broadcast rafpsx” — px'| is  of 2, and nodes with 128 kbps have a degree bound of 4, etc.
bounded as below: We carry out two sets of simulations. First, we evaluate the
T =T performance of our distributed broadcasting algorithmeund
[P*X" — PX'| < 2Xmax(1 — €XP(=28Amax))- (38) Setting | and IIl. Second, we evaluate the overall perforraanc
The proof is relegated to Appenfix-C. when we combine the topology hopping algorithm and the
Remarks: a) The upper bound odry(p*, p) shown in [37) broadcasting algorithm under Setting | and IlI. In these two
is general, as it is independent of the number of configunatiosets of simulations, we also compare the performance under
|7], the values ofn;, and the distributions of inaccuratethe two degree bounds assignments explained in the previous
observed rateg; ¢ (-ny < j <ny, f € ). b) The upper bound Paragraph.
on drv(p*, p) shown in [3¥) decreases exponentially with
the worst inaccuracy boundl,x decreasing. c) It would be ° G
interesting to explore a tighter upper bounddaR(p*, p) than

the one in[(317). (1) (0) (1) (a)

VI. PERFORMANCE EVALUATION

We implement a packet-level simulator to our proposed 2) 3 2) 3
solutions and use this simulator to evaluate the performanc
of our solutions.

A. Settings

In our simulations, time is chopped into slots of equal
length, and we adopt threefliirent settings. In Setting I, we @
set the total number of nodes to be 100, and assign the node
upload capacities randomly according to the distribution Fig. 3. Peering configurations under Setting 1. For theeeaisillustration,
Tabl€el, which is obtained from the uplink bandwidth statis we only allow node 1 to add or remove neighbors between nodasd24.
of Internet host<T37). We set the source’s upload capagibet 1€ st nodes keep their neighbors fixed.

768 kbps; with this upload capacity, source is not the brastc
bottleneck[1], [[8].

Setting Il is the same as Setting |, except we set the toéﬂ
number of nodes to be 10. In this simulation, we evaluate our distributed broadcagsti

In Setting Ill, there are 4 dierent peering configurationsalgorithm proposed in Sectionllll. We randomly choose a
as shown in Fig[]3. Every node has a unit capacity. Undsub-graph that satisfies the node degree bounds constraints
configurationf, f, and f3 the maximum broadcast rate is 1and run our algorithm over it. We evaluate three aspects
and under configuratiofy the maximum broadcast rate i$0 of the proposed algorithm: 1) does it converge to optimal

When running our network coding based broadcasting &lroadcast rate as expected from theoretical analysis? &) Ho
gorithm, we set the updating step sizezandA to be Q1 and fast does it converge? 3) How wouldi@irent values of degree

Evaluation of the Proposed Broadcasting Algorithm
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receiving rate under Setting | when degree bound is set t@)LThis figure shows the impact of degree bound on the peeiviegeate under Setting |.
The full-mesh rate is the maximum broadcast rate when the dedrees are unboundéd [1].
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Evaluation of our overall solution which combineg tilopology hopping algorithm and the broadcasting algarita) The average peer receiving

rate when the node degree bound is 3 gnid 20; b) The average peer receiving rate when the node dégneed is 3 angs is 50; c) The average peer
receiving rate when peer degree bound is proportional toptsad capacity ang is 20. The percentage of average receiving rate improveofemir overall
algorithm against our broadcasting algorithm and the snfy@uristic algorithm are shown in these three figures. Famgle, in (a), 22% means that the

average receiving rate of our overall algorithm i22Ltimes of that of our broadcasting algorithm, and 550% mehat the average receiving rate of our
overall algorithm is & times of that of the simple heuristic algorithm.
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when we increase the node degree bounds. We plot the
CDF of peer receiving rates (after the broadcasting algarit
converges) for the case where degree bound is 4, 10, and
proportional to the peer’s upload capacity. It's seen thla¢mv

the bound is 10, the obtained rate is close to the full-mesh
rate, which suggests that we do not need a large degree bound
to achieve close to the full-mesh rate. The obtained ratksds a
close to the full-mesh rate when degree bound is propoitiona

to the peer’s

under Setting Il; b) Configuration distribution obtaineg dur algorithm for
different values of8 under Setting lI.

summarized in Fid.]4.

rate.

upload capacity.

C. Evaluation of the Overall Solution

Our overall solution, which combines the Markov chain
bounds #&ect the maximum broadcast rate? The results ageided topology hopping algorithm and the back-pressude an

network coding based broadcasting algorithm, achieves the
From Fig.[4(a) and FidJ4(b), we see that our broadcastingar optimal broadcast rate under arbitrary node degreecbou
algorithm converges. It converges faster in the small sized over arbitrary overlay graph. To evaluate its perforcean
network as shown in Fif] 4(a) than in the large size network @& generate a sub-graph randomly, run our algorithms on
shown in Fig[#(b). From Fid.]4(d), we also see the convergedery node, and evaluate the achieved broadcast rate.

rate when the node degree bond is 10 is very close to aThe topology hopping algorithm runs on top of the broad-
theoretical upper bound — the optimal broadcast rate undmisting algorithm. Under given topology, the broadcasting
no degree bounds computed accordingfo [1]l [17], [3]. Thidgorithm achieves the optimal broadcast rate. Nodes swap
suggests that our algorithm converges to the optimal biasidcneighbors based on their observed receiving rate, thusgehan
ing the topology from time to time. In the simulation, we run
Under diferent degree bounds, the optimal broadcast rdatee broadcasting algorithm long enough so that it converges
varies. Figl[#(d) shows that the optimal broadcast rateaszs before the topology transits according to the Markov chain.



This way, the overall algorithm converges to the close-tgimulation settings (e.g., node uplink capacity distridnoif,
optimal broadcast rate. we remark that our topology-hopping based algorithm is theo
In all simulations, we compare our overall algorithm withretically guaranteed to achieve close-to-optimal stregmate
our back-pressure and network coding based broadcastimgler arbitrary node degree bounds and P2P settings, while
algorithm to illustrate the benefit of topology hopping, anthe broadcasting algorithm with random topology selection
with a simple heuristic algorithm introduced below to itizge has no performance guarantee. Moreover, in practical P2P
the benefit of our overall solution. Remind that no existingtreaming systems, the node degree bounds are typicalliy sma
works solve the problem of streaming-rate maximizationarndFor example, in PPLive, the node degree bounds are 15-
general node degree bounds and over arbitrary topology @@ [15], while the size of the system (i.e., total number of
studied in this paper. peers that are simultaneously watching the same channel)
The simple heuristic algorithm we compare our overai$ usually hundreds of thousands. Thus, we suspect we can
algorithm against is also composed of two parts: routingee substantial gain of topology hopping if our algorithm is
based broadcasting algorithm and random topology hoppiimgplemented in such system with small node degree bounds,
algorithm. In routing-based broadcasting algorithm, eaebr as suggested by our simulation results under small nodedegr
evenly allocates its upload capacity to its neighbors. Givdounds.
the topology and capacity allocation, a centralized ra@utin From Fig[6(d), Figl 6(b) and Fif. 6{c), we observe that the
strategy (e.g. spanning trees based solution) is used teva&chaverage receiving rate of our overall algorithm is about®.5
the best broadcast rate the system can support. Similady, times higher than that of the simple algorithm respectively
random topology hopping algorithm runs on the top of thand also we can see from Fif. 6(a) and Fig. p(b), our
broadcasting algorithm. Every peer maintains a timer. Wheitgorithm can achieve smoother streaming rate than the sim-
the timer of one peer expires, the peer randomly drops ople algorithm because our algorithm optimizes the topology
active neighbor which is exchanging data with it, and themopping and stays in the optimal topology while the simple
selects one random candidate from its feasible neighbor liggorithm hops among topologies randomly and arbitrarily.
and starts to exchange data with it. By doing so, we actually
allow nodes running the simple scheme to have a node degree VII. DiscussioNs AND FUTURE WORK
beyond the bounds. This relaxation gives the simple scheme
more degree of freedom to optimize its performance. Overall In this paper, we propose a distributed solution to achieve
the topology changes randomly on the top under which pe@shear-optimal broadcast rate under arbitrary node degree
use routing to exchange streaming data. bounds, and over arbitrary overlay graph. Our solution is
Our first observation is that our overall scheme converggistributed and consists of two algorithms that can be of
to the solution that theory predicts. We carry out simulaio independent interests. The first is a distributed broadhast
under Setting I1l. Under this setting the optimal broadecagt algorithm that optimizes the broadcast rate given a P2P
is 1. The optimal configuration solution to probleMRC — 3  topology. It is derived from a network coding based problem
is calculated and shown in Fig: 5(a) forfiéirent values of. formulation and utilizes back-pressure arguments. It can b
We run the overall scheme for this specific case and show grnsidered as the extension of the algorithniirj [30] frork-lin
empirical configuration distribution in Fig. 5(b). Compagi Ccapacity-limited underlay networks to node-capacityéu
the distributions in Fig-5(h) and Fig. 5|b), we can see that toverlay networks. The second algorithm is a Markov chain
distribution obtained by our overall solution is very clase guided hopping algorithm that optimizes the topology, iresp
the optimal one. We also calculate the achieved broadcast fay the Markov Approximation framework introduced [n_[20].
under diferent values of. Forg = 1,5 and 10, the broadcast Assuming the underlying broadcasting algorithm converges
rate is 0917, 0987, and (98 respectively. We see that withinstantaneously, the topology hopping algorithm converge
large B, the achieved broadcast rate is close to the optintéile optimal configuration distribution. When the broadicast
value 1, as predicted by our analysis in Secfioh IV. algorithm does not converge fast enough, the topology mappi
Next, we evaluate our overall solution under Setting Markov chain transits based on inaccurate observationiseof t
In Fig. and Fig[ 6(b), the broadcast rates obtained dar@ximum broadcast rates associated with the configurations
305 kbps and 312 kbps respectively. They are about 22%e show that the topology hopping algorithm still converges
and 25% higher respectively than the broadcast rate 280t to a sub-optimal configuration distribution. We chagsize
kbps achieved by running the broadcasting algorithm overaa upper bound on the total variance distance between the
randomly chosen topology. This demonstrates the advantagdimal and sub-optimal configuration distributions, aslwe
of performing topology hopping to optimize the configuratio as an upper bound on the gap between the achieved and the
as compared to only randomly choosing topology. optimal broadcast rates. We show that both bounds decreases
By setting node degree bounds proportional to peers’ uploexiponentially as the bound on inaccuracy decreases.
capacity, nodes with higher upload capacity maintain moreUsing uplink bandwidth statistics of Internet hosts, our
connections. From Fid. 6(c), we observe that this flexipilitsimulations validate thefiectiveness of the proposed solu-
offers a broadcast rate of 475 kbps. Although the additiortédns, and demonstrate the advantage of allowing node degre
gain of topology hopping is small under the specific P2Bounds to scale linearly with their upload capacities.



In the scenarios where network coding is not allowed, we1]
can formulate the broadcasting problem in Subsedfion]llI-B
as a linear program to construct a feasible node capa 'ﬁ;]
allocation so that the sum of rate of all spanning trees is-max
imized [15], which is solvable by centralized LP algorithms
Then we can design the overall algorithm in the followingt3!
way. The overall algorithm is also composed of two separate
algorithms: the spanning tree based broadcasting algoritiy4)
and the Markov chain guided hopping algorithm. The topology
hopping algorithm is same as the one in Secfioh IV whi
runs on the top of the broadcasting algorithm and guid
the topology hopping. Compared to our distributed overall
algorithm when network coding is applied, this algorithnit6]
is centralized making it unsuited for use in a dynamicallﬁﬂ
changing systems.

Two interesting future directions are as follows. Firste th[1g]
convergence rate of our solution is determined by the mixifhtp]
time of the topology-hopping Markov chain, which can b&Ol
substantial for large P2P systems. It is thus of great ister
to explore the design of topology-hopping Markov chains
that mix fast and at the same time allows distributed impl¢22]
mentation. Second, while our algorithms adapt well to peer
dynamics, our theoretical analysis is for static scenatitmsv
to extend the analysis to dynamic scenarios such as thgsg
observed in practical P2P systerhs1[38] is another intergsti
future direction.
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APPENDIX We use the above two equations](43) dnd (44) to substitute

A. Proof of Theorerfi]1 the corresponding terms in the inequalityl(39) and then get

We use the following Lyapunov function

1 1 1 V(z A)
V(ZA,0) =—(z-Z)*+ = —(Ava — A 9)%, , ,
@2.0) =55 @=2) "+ 3 zV: dZ; kg (v ™ Aud) <2-2)(V@-U@)
wherez, 2" are the saddle points df1(9). . d d
By differentiating the Lyapunov function with respect to * Z; ;(’l"’d ) Z(:) fuy + Z Lus - Z:;( ) v
time we get ve €| , / uein(y, ueouty,
=z-7)(V@-U'@) (45)
vz ) +5 Aua { 3 ozl Y fvdu} (46)
, V deR in(v) t(v)
:(Z_ Z*) I:U (Z) _ Z /l&d:| ve uein(y, ueout(v,
aR . + ZZ%{ PR Z*l\,:s}. (47)
. veV deR ueout(v) uein(v)
+ Z Z(/lvyd - /lV,d) { Z fl.?V + Zlv:s - Z f\fju}
VeV deR ueinv) ueoutty) Iy . Next we check the value of (U5)_(46]._{47) respectively.
, First, the strict concavity obJ(-) implies
s(z—z*)[u (z)—z/lgd} y ot(-) imp
deR
, z-7)(U'(9-U'(2)) <0 48
+ZZ(AV,(,—AV!(,){Z O+ e fvdu}. (39) (z-2)(V@-V'@) (48)
veV deR uein(v) ueout(v)

Since z°, 1" are optimal solutions, they should satisfy the

KKT conditions forz*, A" are shown as follows i
constraints of the problemIP. So we have

U'@)- > 4=0 (40)
d * *
g R Z (F9) +ZLles< ) () veVideR
uein(v) ueout(v)
/l\t,d[ Z (fQ)" +Z Lvs — Z (f\fju)*} =0,veVideR  Therefore,
uein(v) ueout(v)
(41)
where f*is the optimal solution oMP. r
From equation[{40), we obtain Mg L fd}
B uv V=8 vu
, ; g ;e ,ueizn;v) ue;;(v)
U'@)=) 1 (42) : d d d d
) ) deR SZ Z/lv,d Z fuv - Z fvu + Z (fvu)* - Z (fuv)*}
By using the above equatign{42), we can transform the termsev der Luein(v) ueout(v) ueout(v) uein(v)
in the inequality [(3P) as follows ZZ [ Z ) Z )
= Avd fuv - fvu
Z veV deR Luein(v) ueout(v)
(Z—Z“)[U/(Z)— Asd [
deR - Avd (ffv)* - (f\?u)*} :
g g;e ueizn(:v) ue%;(v)

=(z-7)(UV@-U'@))+(z-72) [Z Ag - Z /lgd] (43)

deR deR Note thatf is the solution of the following problem

and

_* d =s — \fju
Z Z(/lv’d /lv,d)[ Z fov + ZLv- Z f } maxz Z/lv,d{ Z f\?u - Z fl?v}

veV deR uein(v) ueout(v)
veV deR ueout(v) uein(v)
=3 D (e - A0) [ D7l D) f\?u} s.t[2)- @)
veV deR uein(v) ueout(v)
+(z-72) Z(’l&d - Ag)- (44) which is equivalent t&8SP. Since f*is also feasible, for(46)

deR we have



PIPIT

> i+l ) f\f’u}

Let & £ {(z A)|V(z 2) = 0} and G = {(z A)| (@5) = 0, (@6) =
0, 1) = 0}. SinceV(z ) < (@38)+ (@8) + (@4) and [(4b)<
0, (44) < 0, @) < 0, we have&E c G. Let M be the largest

VeV deR uein(v) ueout(v) invariant set inS. By LaSalle’s invariance principlez(t), A(t))
converges to the seM ast — «. Since M c & Cc G, as
RTINS f\f’u} t — oo (Z(t), A(t)) satisfies
veV deR uein(v) ueout(v)
i . (t)=2 (49)
—ZZM[Z (P (fv‘t)}
veV deR uein(v) ueout(v) and
<0.
_ D (A® = 4a®)] D] fa® +Zhes— Y f0] =0,
Now we focus on the term(%#7). According tb {41), the ‘ev &R ueinv) uéout(y) (50)

following equality holds.

Z Z A\twd Z f\?u - Z fL?V - Z*]—vs}

veV deR Lueout(v) uein(v)

=3 3 Al DL &= Dt D) - D (RS
veV deR :ueout(v) uein(v) uein(v) ueout(v)
ORI PIEEIE]
veV deR Lueout(v) uein(v)
—ZZ%[ PGS (f&t)*}.
veV deR ueout(v) uein(v)

Note thatf* is the solution of the following problem

maxZZ/l\*,,d{ Z - Z ft?v}
veV deR ueout(v) uein(v)

s.t.[7)- (§).
So,

ZZM[ o=y fﬁv—flv:s}

veV deR ueout(v) uein(v)
* d d
= Z Z ’lv,d [ Z fuv - Z fvu}
veV deR ueout(v) uein(v)
* dy* dyx
_Zz/lv,d[ Z (fuv - Z (fvu) }
veV deR ueout(v) uein(v)
<0.

Overall, we get

V(z 2)
<(z-7)(V(®-U@2))

+ZZM[Z f+ZLles— Y f&’u}

veV deR uein(v) ueout(v)
* d d
5 Zﬂm[ S ooy fw_zqv:s}
veV deR ueout(v) uein(v)

<0.

|

Further, in M, Y4rAsd(t) = U'(Z°). To see this, if this is
not satisfied, then by (20) we can s&& will not stay inz,
which is contradicted with(49). This concludes the proof.

B. Proof of Propositiof 1

By two conditions for state space structure of Markov chain,
we know that all configurations can reach each other within
a finite number of transitions, thus the constructed Markov
chain is irreducible. Further, it is a finite state ergodicrite
chain with a unique stationary distribution. We now showt tha
the stationary distribution of the constructed Markov chiai
indeed [(2T).

Now we verify that under the implementation, the state
transition rate fromf to f' satisfies[(20).

In our Markov chain design, we only allow direct transitions
between two configurations if such transitions correspand t
a single node adding a new neighbor or removing a neighbor,
i.e., INf\W¢| = 1 or I[Ny \N¢| = 1. We consider these two
scenarios separately in the following.

Let f — f  denote the event that when the timer expires
the process will enter staté after leaving the current state
f. The probability of this event is denoted by Prf ).

When [INs\N¢| = 1, assumingN{\Nt = (v, u), the event
f — f' can be divided into two disjoint events: the event that
nodev's timer expires, then node selects nodel to remove
and remove it from its in-use neighbor set and the event that
nodeu’s timer expires, then node selects node to remove
and remove it from its in-use neighbor set. Denote these two
events byfv—uf andfu—-vf .Letv—u be the event that
nodev selects node and removes it from its in-use neighbor
set andu — v be the event that node selects noder and
removes it from its in-use neighbor set. Now we calculate the
probability of f v—uf" and f u—vf’ respectively.

E— —

Pr(fv—-uf)
—
=Pr(v— ulv's timer expires) Pr{s timer expires)
INy]

Nyl 1 expix;’) _ Zexpd

N TNl expxe) + expBx;) 3,y it
1 expxy)

ZVEV INy| eXP@Xf) + eXp@Xf’)

(51)



and statef is Yoy 5 expi(r). With the probability Prf — f),
the process jumps to state when leaving statef. So, the

Pr(fu-vf) transition rate from staté to f  is
=Pr(u - vju's timer expires) Prf’s timer expires) > exp@ - X;)
Ny , = .
CNetl 1 expBxy') 7500 A0 = SV INd expB- x1) + expB - xp)
- . . < -
Nl INu ¢l exp@xr) + expBxe) 3.y #p‘@ « Z [Ny expi(r)
1 expxy) (52) vev
ZVEV |NV| exp@xf) + exp@xfr)' = exp 1(T) exp(B ) Xf/) ) (57)
Therefore, we have exp@ - Xr) + expfB - Xr')
Pr(f — f) With 27), we see thap;(x)-qr,r = pj,(X)-Qr. 1, VT, T/ € 7,

, , i.e., the detailed balance equations hold. Thus the caststiu
=Pr(fv—uf)+Pr(fu-vf) Markov chain is time-reversible and its stationary disttion
2 exp@x;) 3 is indeed[(2]) according to Theorem 1.3 and Theorem 1.14 in

ST INo eXpBx) + expBx; ) 3 Ea

When [Nt \N¢| = 1, assumingNt \Nt = (v,u), similarly  C. Proof of Theorerfll3
we divide f — f’ into two disjoint eventsfv+uf and

] , . We denoteM as the original topology hopping Markov
futyf. fv+uf denotes the event that nodés timer  chain with exact broadcast rates, ad as the corresponding
expires, then node selects nodel to add and add it in its extended Markov chain with inaccurately observed broadcas
in-use neighbor setf u+ v f" denotes the event that nods  rates. For the convenience of expression, forfalt 7, j ¢
timer expires, then node selects nodes to add and add it {-ny,...,n¢}, we usef; to represent the statef,(x; + < +Ar)

in its in-use neighbor set. Let+ u be the event that node in the extended Markov chail’, andpy, to represent distri-
selects node and adds it as one in-use neighbor arelv be  pution of inaccurate observed rates.

the event that node selects node and adds it as one in-use  Therefore, given direct transitions between configurafion

neighbor. Then we have and f’ in the original topology hopping Markov chaihl,
there are direct transitions between statesand f; (V] €
Pr(fv+ut) {-ns,...,ns,k € {-n¢,...,n¢}) in the extended Markov
— chainM’. Following [32) and[(33), we have the corresponding
=Pr(v+ ulv's timer expires) Pr{s timer expires) transition rates
N,
INVI = INy ¢ 1 exp@Xx) Z‘expl(r) n, expB(Xr + £ Ar))
- ' — ' D N ny
INy| INvI = INy,t| ~ exp@Bxt) + expBX¢) 3.y Texp® A& exp(—r) expB(xs: + —Af ) + exp@(xf + A Af))
1 exppxy) (54) (58)
Zvev |Nv| eXP@Xf) + eXP@Xf’) and
and ;
/ o expB(xr + o-Ar))

Pr(f f Lf = : - ,
ruryt) _ | _ Tl ™ SXP0)  explo(xs + A1) + expB(xr + KAL)
=Pr(u + vlu's timer expires) Pf's timer expires) (59)

INy|
:|Nu| - |Nu,f| ) 1 eXp@Xf/) 2 expf)

N¢r
wherey " | ny=landy.” oy =1

_ ‘ Y Nyl . T
INol INul =[Nl €xpExe) + expBXr) - 3oy 2expr) Now we compute the stationary distribution of states for the
- 1 exp@x;) (55) extended Markov chaii’. By detailed balance equation, we
- Zvev [Ny] eXpngf) + exp@xf/) . have
Therefore, we have Pt = pfk/qfk/,fi,Vj e{-ns,...,nf,ke{-n¢, ..., npl.
Pr(f — f) (60)
=Pr(fv+uf)+Pr(fu+vf) Then we have
1 1
expBx; _
2 p@ f ) (56) pfj . = pfk/ .

Nt - eXpB(Xe + 25 Ar))
(61)

T ey IN  expBxy) + expBxy)’ n1; - expB(xs + %Af))

In our implementation, under configuratiénpeerv counts
down with rate! exp(r). Therefore, the rate of leaving the 71 € {=Nf.....Nil. K€ {=Np.....Np.}.



Therefore, Then we have
Pf, _ pfé
Nt - €XPEXs) i - €XPBXi)

_ @t eXpixs)
62 =———_ VfeF.
©2 P S arexnpx)

and
By (214), we know

. expXxr)
7% expxr)’
freF

ﬂ = A ~exp6$Ap),Vk €{-n¢,...,N¢ ). (63)

Pty 1% VfeF.

ConsiderAan arbitrary staié in the extended Markov chain
M’, wheref € # and f # f, f. Since state space ofl’ is Let
connected, we can always find a path to~conn’ecand fo
through a series of adjacent statgd)o, . .., f(L)o, and fo = - f%y:af/ expBxs)
f(1)o, f(L)o = fo. Therefore, a= S el
fgf PBXs)

% _ = Pfi+1) (64)

Plo i1 Pilo It is not hard to see thag = aif S0
and by [62) we have 0! > by iff ar <&
p~ p~ . . .
— = e . (65) The total variation distance
Nig+1y - EXPBXeae1) Mgy - EXPBX()) )
Then drv(p*, p) = > Z P} — psl
Pf oF fer
. = LI 66 ~ L
N, - €XpBXs) - nt, - expBxr) (66) = Z(pf pi),

feA

By (€3) and [(66), we know thatf € 7, whereA = (f € 7 pi > pi).

Pfo is a constant 67) By (78), we knowA={f e F :ar <a} CF.
o~ expiBx1) Therefore ¥ f € A,
and o — B exp{Bxs) af expBxs)
Pr,  n, ' . foPE= Ny ) )
p_fj = 77_fl . exp@nlfAf),\/J € {=ns,...,N¢}. (68) félgceXp@Xf ) f%‘;caf expfxi)
On the oother tjand we have = explpx1) S expiix:)
, B expBxs) a 3 exp@Bxs
N f%f pPBxs) le%T pPBx+)
2.2, P=t (69) __eeb) o
fer j=-ni >, expXxs) a
fref

By (61), (68) and[(609), we obtain the stationary distribatio
of states for the extended Markov chaui as follows: . nt .
Since } nf =1andVje{-ns,...,ng},

J=—n¢

ViedF,jel{-n;s,....,ng},

5 N1, - eXpB(Xs + £A) expB-Ar) > explBAT) > expBima)
[:Jfj = o™ . (70) Ng
f%l?_ k}nf, nt, - expB(xe + n—I:,Af’)) and
The stationary distribution of peer configurations in the eXpGniAf) < expBAf) < expBAmax),
extended Markov chaiM’ is the probability distribution of f
aggregate statef, j € {-ns,...,ns}, i.e., by (72) we know that/f € ¥
n¢ Nt
Bri=> P (71) ar> > - eXpBAmad) = EXPAAma)
j==n¢ j==n¢
Let and
ng J ng
ap 2 Z 1y, - €XPBo-Ap). VE € F. (72) af < Z 11, - eXPBAmax) = eXpBAma)-

J=—n¢ J=-n¢

(73)

(74)

(75)

(76)

(77)

(78)

(79)

(80)

(81)

(82)

(83)

(84)

(85)



Then by [75), we have < expBAmax). Therefore,

af
1-—=<
(04

_ exp(_IBAmaX)

m =1-exp(2BAmay),Vf e ACF.

So by [81), we have/f € A,
. = exXpxi)
PP S exppxr)
fref

exp@xt)
T Y expxy)
freF

[1-2
o

(1 - expt-2BAmax)-

Then,
drv(p', ) = ) (P} - P1)
feA
.y expBxr)

2 exppxy)
feA fref

(1 - exp(_zpBAmax))

< Z expBxr)

G L expbxe)
=1 - exp(-28Amax)-
Therefore,

X" = T =1 (0} - Pr)xil
fer
< Xmax Y I(P; = P1)l
fer
= 2Xmaxdrv(p*, P)
< 2%Xmax(1 — eXp(28Ama).-

This concludes the proof.
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