
Detecting theUnintendedin BGP Policies
Debbie Perouli∗, Timothy G. Griffin†, Olaf Maennel‡, Sonia Fahmy∗, Iain Phillips‡, Cristel Pelsser§

∗Computer Science, Purdue University, USA;†Computer Lab, University of Cambridge, UK;
‡Computer Science, Loughborough University, UK;§IIJ, Japan

∗{depe,fahmy}@purdue.edu,†tgg22@cl.cam.ac.uk,‡{o.m.maennel,i.w.phillips}@lboro.ac.uk,§cristel@iij.ad.jp

Abstract—Internet Service Providers (ISPs) use routing policies
to implement the requirements of business contracts, manage
traffic, address security concerns and increase scalability of their
network. These routing policies are often ahigh-level expression
of strategies or intentions of the ISP. They have meaning when
viewed from a network-wide perspective (e.g., mark on ingress,
filter on egress). However, configuring these policies for the
Border Gateway Protocol (BGP) is undertaken at a low-level,
on a per router basis. Unintended routing outcomes have been
observed. In this work, we define a language that allows analysis
of network-wide configurations at the high-level. This language
aims at bridging the gap between router configurations and
abstract mathematical models capable of capturing complex
policies. The language can be used to verify desired properties
of routing protocols and hence detect potential unintended states
of BGP. The language is accompanied by a tool suite that
parses router configuration languages (which by their nature are
vendor-dependent) and translates them into vendor-independent
representations of policies.

I. I NTRODUCTION

Configuring BGP can be extremely challenging. Each de-
vice needs its own low-level vendor-specific configuration,
but BGP policy objectives are typically designednetwork-
wide at a high-level. The research community has made
significant strides in determining BGP anomalies [1], inferring
policies [2], and building Internet topology models [3]. Un-
fortunately, most of these efforts rely on BGP data obtained
from a set of monitors [4] which have limited visibility [5]
and use [6]. An even greater concern is that no single ISP has
sufficient information to debug certain problems [7]. The only
way to detect or debug certainunintendedpolicy interactions
among ISPs is from a combined view of the configurations of
all ISPs involved.

Available tools for validating alreadyexisting device con-
figuration files [8]–[10] are limited in their scope, power,
and degree of abstraction. However, recent work [11], [12]
has proposed mathematically proven frameworks that enable
the detection of potentially unsafe policy combinations. The
stratified shortest paths problem (SSPP) formalization [13]
allows us to push BGP policy analysis further. It enables the
development of techniques to detect configurations that may
potentially lead to unsafe BGP conditions.

The primary goal of this work is to bridge the gap between
device configuration languages used to configure routers and
mathematically sound abstractions such as theSSPP. This

This work has been sponsored in part by a gift from Cisco Systems. The
authors would like to thank Randy Bush (IIJ) for several detailed discussions.

Fig. 1: Our tool suite parses raw router configuration files
using Perl pattern matching, then the relevant topology and
BGP policy information is translated into Haskell.

allows the correct routing decisions to be rigorously checked
on real networks. It further allows validation that the de-
ployed network matches the operators’ high-level intentions.
To achieve this goal, we have developed a toolset that tran-
slates router configurations into a structure usable for math-
ematical proof. We express this structure using a functional
programming language, Haskell [14], because it provides rich
support for mathematical abstractions such as semi-rings,and
a convenient scheme for expressing and manipulating policies
as functions.

II. POLICY REPRESENTATION

Tools developed as part of this work convert raw device
configuration files into the more abstract representations L0
and L1. Fig. 1 depicts an overview of the tools. Parsing
raw configuration files mainly involves pattern matching, so
it is performed via a set of Perl scripts. The output L0
representation includes policies, communities, AS paths,prefix
lists, and BGP sessions. Vendor-independent keywords are
used in L0, but the structure of the policies still mimics the
original vendor and OS-specific configuration language. A
Haskell tool converts configurations written in L0 to L1. L1
removes vendor-specific control-structures, such asNext, and
is therefore more appropriate for further analysis.

A. Language Zero

The L0 policy representation is inspired by the Juniper
syntax, where a policy is a list ofpolicy unitsand each unit
is a list of policy terms. A term has a list ofactions that
is executed only if the specified list ofmatch conditionsfor



that term are satisfied. Either of the two lists can be empty.
Each term also has acontrol keywordspecifying whether the
route matching the conditions will be accepted, rejected, or
will undergo further processing by another policy unit or term
(Next-term). The following is an example of a policy with two
policy units, the first one having two policy terms.

l0 = [PUunit [PTterm [m1] [a1,a2] Next,
PTterm [m2] [] Reject],

PUunit [PTterm [m3] [b] Accept]]

B. Language One

The L1 canonical representation provides means to compare
and compose policies. The formal definition of an L1 policy
as a Haskell data structure is:

data BGPPolicy = BGPPolicyAtomic Action
| BGPPolicyConditional L1Match

BGPPolicy BGPPolicy
| BGPPolicySequence [BGPPolicy]
| BGPPolicyId ID

BGPPolicyAtomicrepresents a protocol action such as set
local preference, set next hop, or delete community. Typ-
ically, actions are executed only under specific conditions.
For this reason,BGPPolicyConditionalallows an L1 policy
to be represented as an IF-THEN-ELSE tree. The condition
statement is a predicate match on route attributes and the
two policies are the THEN and the ELSE branches of the
tree, respectively.BGPPolicySequenceenables a policy to be
a forest of policy trees, a list of atomic actions, or a mix
of both. Instead of using the definition of a policy in a
BGPPolicySequenceor a BGPPolicyConditional, we can use
its QualifiedID. BGPPolicyId is the constructor of the data
structure which makes legal the use of aQualifiedID in the
place of aBGPPolicy. Note that we keep a hash table mapping
QualifiedIDs to definitions.

C. L0 to L1 Translation

L1 makes the control flow explicit by eliminating control
structures that are specific to a given configuration language,
like Next which is similar to agoto. For this reason, an L1
representation is typically longer, but easier to follow. The
following is the L1 equivalent of the L0 policy given in
Section II-A:

l1 = BGPPolicyConditional (convertMatch m1) p1 p2
p1 = BGPPolicySequence [BGPPolicyAtomic a1,

BGPPolicyAtomic a2,
com]

p2 = BGPPolicyConditional (convertMatch m2)
(BGPPolicySequence [BGPPolicyAtomic DenyAction])
com

com = BGPPolicyConditional (convertMatch m3)
(BGPPolicySequence [BGPPolicyAtomic b])
(BGPPolicyAtomic NullAction)

Fig. 2 illustrates the control flow of policyl1. In this
example, conditionm1 is first checked. If it is true,p1 is
executed (otherwise,p2). Policy p1 is a list of three policies,
two of which are atomic.p2 is itself an if-then-else policy.
Another if-then-else tree,com, is the last policy of thep1

p 1 p 2

l1

m 1

c o m

m 3

a 1
a 2

t r u e

m 2

false

c o m DenyAction

t r u e

c o m

false

b

t r u e

NullAction

false

Fig. 2: Control flow of example policiesl1 and l0. Compared
to L0, L1 makes the flow explicit by eliminating structures
like Next.

sequence and in the else branch ofp2. FunctionconvertMatch
translates an L0 match statement into an L1 predicate. These
predicates can be on a prefix, an AS path, or a community.
NullAction means that the route is accepted;DenyActionthat
it is rejected.

REFERENCES

[1] Y.-J. Chi, R. Oliveira, and L. Zhang, “Cyclops: the AS-level
connectivity observatory,”SIGCOMM Comput. Commun. Rev., vol. 38,
pp. 5–16, September 2008. [Online]. Available: http://doi.acm.org/10.
1145/1452335.1452337

[2] L. Gao, “On inferring autonomous system relationships inthe Internet,”
IEEE/ACM Transactions on Networking, vol. 9, no. 6, 2001.

[3] Z. Mao, L. Qiu, J. Wang, and Y. Zhang, “On AS-level path inference,”
in Proc. of ACM SIGMETRICS, June 2005.

[4] University of Oregon RouteViews project,
http://www.routeviews.org/.

[5] R. Bush, O. Maennel, M. Roughan, and S. Uhlig, “Internet optometry:
assessing the broken glasses in internet reachability,” inProceedings of
Internet Measurement Conference (IMC), 2009.

[6] M. Roughan, W. Willinger, O. Maennel, D. Perouli, and R. Bush,
“10 Lessons from 10 Years of Measuring and Modeling the Internet’s
Autonomous Systems,”IEEE JSAC, Special Issue on “Measurement of
Internet Topologies”, vol. 29, 2011.

[7] T. G. Griffin and G. Huston, “BGP wedgies,” RFC 4264, http://tools.
ietf.org/html/rfc4264, 2005.

[8] N. Feamster and H. Balakrishnan, “Detecting BGP configuration faults
with static analysis,” in2nd Symp. on Networked Systems Design
and Implementation (NSDI), May 2005, http://www.gtnoise.net/projects/
monitoring-diagnosis/18-rcc.

[9] D. Caldwell, A. Gilbert, J. Gottlieb, A. Greenberg, G. Hjalmtysson, and
J. Rexford, “The cutting EDGE of IP router configuration,”SIGCOMM
Comput. Commun. Rev., vol. 34, no. 1, pp. 21–26, 2004.

[10] A. Feldmann, “Netdb: IP network configuration debugger/database,”
Technical Report, AT&T Labs-Research, 1999.

[11] D. Perouli, T. G. Griffin, O. Maennel, S. Fahmy, C. Pelsser, A. Gurney,
and I. Phillips, “Detecting Unsafe BGP Policies in a Flexible World,”
in Proc. of IEEE ICNP, To Appear, 2012.

[12] D. Perouli, S. Vissicchio, A. Gurney, O. Maennel, T. G. Griffin,
I. Phillips, S. Fahmy, and C. Pelsser, “Reducing the Complexity of
BGP Stability Analysis with Hybrid Combinatorial-Algebraic Models,”
in WRiPE, To Appear, 2012.

[13] T. Griffin, “The stratified shortest paths problem (invited paper),” in
Proc. of COMSNETS, 2010.

[14] “Information on the haskell programming language.” [Online].
Available: http://www.haskell.org/


