A Semantics Aware Approach to
Automated Reverse Engineering Unknown Protocols

Yipeng Wang** Xiaochun Yun®
Alex X. Liut Zhibin Zhang*

Danfeng(Daphne) YaoY

M. Zubair Shafig’ Liyan Wang?

Yongzheng Zhang|l Li Guol

*Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
TDepartment of Computer Science and Engineering, Michigan State University, East Lansing, MI, U.S.A.
Graduate School of Chinese Academy of Sciences, Beijing, China
$National Computer Network Emergency Response Technical Team/Coordination Center of China, Beijing, China
11Department of Computer Science, Virginia Tech, Blacksburg, VA, U.S.A.

Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China

Email: yipeng.wangl @gmail.com, yunxiaochun@cert.org.cn, shafigmu@cse.msu.edu, liyanwan@cse.msu.edu

alexliu@cse.msu.edu, zhangzhibin @ict.ac.cn, danfeng @cs.vt.edu, zhangyongzheng @iie.ac.cn, guoli@iie.ac.cn

Abstract—Extracting the protocol message format specifica-
tions of unknown applications from network traces is important
for a variety of applications such as application protocol parsing,
vulnerability discovery, and system integration. In this paper, we
propose ProDecoder, a network trace based protocol message
format inference system that exploits the semantics of protocol
messages without the executable code of application protocols.
ProDecoder is based on the key insight that the n-grams of
protocol traces exhibit highly skewed frequency distribution that
can be leveraged for accurate protocol message format inference.
In ProDecoder, we first discover the latent relationship among
n-grams by first grouping protocol messages with the same
semantics and then inferring message formats by keyword based
clustering and cluster sequence alignment. We implemented and
evaluated ProDecoder to infer message format specifications of
SMB (a binary protocol) and SMTP (a textual protocol). Our
experimental results show that ProDecoder accurately parses and
infers SMB protocol with 100% precision and recall. For SMTP,
ProDecoder achieves approximately 95% precision and recall.

I. INTRODUCTION
A. Motivation and Problem Statement

This paper concerns the automatic inference of protocol
message format specifications from the network traces of
unknown application protocols. This has many applications
in networking and security. For instance, application protocol
parsing requires protocol inference. Application protocol pars-
ing, the translation of raw packet flows into higher level flows
of semantic content, has a wide variety of current and future
networking and security services such as semantics aware
Intrusion Detection and Prevention Systems (IDSes/IPSes),
network monitoring, network measurement, application-aware
load balancing, application fingerprinting, tunnel detection,
Quality-of-Service (QoS), and content-aware caching and rout-
ing. Take its application in IDSes/IPSes as an example. Tradi-
tional IDSes/IPSes treat packet payload as a sequence of bytes
and match it against malware signatures represented as a set of

978-1-4673-2447-2/12/$31.00 © 2012 IEEE

regular expressions. This coarse grained signature checking is
fundamentally limited due to its ignorance of the application
protocol structure in the packet payload. Modern IDSes/IPSes
become semantics aware by parsing packet payloads to get
the value for each application protocol field based on appli-
cation protocol message formats. Several application protocol
parsers, such as FlowSifter [25], UltraPAC [20], binpac [28],
and GAPA [4], have been proposed in prior literature.

All these application protocol parsers require protocol speci-
fications in order to generate parsers for the corresponding pro-
tocol. However, many application protocols on the Internet are
proprietary and have no publicly released specifications. Ac-
cording to the Internet2 NetFlow weekly reports on backbone
traffic, more than 40% of Internet traffic belongs to unidenti-
fied application protocols [27]. Communication protocols used
by malware and botnets do not have protocol specifications
from their designers. To parse a flow of unknown application
protocols, we first need to conduct protocol inference to get
the protocol message format. Network monitoring tools such
as Ethereal [1], NetDude [19], SNORT [31], and BRO [30]
also require application protocol parsers to implement their
functionalities.

Besides application protocol parsing, protocol inference
is useful for many other applications such as vulnerability
discovery and system integration. For vulnerability discovery,
to detect vulnerability in a deployed application, people often
perform penetration testing, which requires protocol specifi-
cation for that application. For system integration, to develop
applications that can work with proprietary protocols that have
no publicly known specifications, protocol inference is needed
to decode such protocols. For example, to develop an open
source client program that works with the proprietary Yahoo
Messenger protocol, one needs to first use protocol inference
to decode the message format of this protocol. Furthermore,
even for some application protocols with known specifications,
protocol inference is also needed sometimes for identifying

implementation bugs and for identifying implementation de-
tails that are not unambiguously specified.

Inferring protocol specification from executable code is
extremely difficult. First, the executable code of these unidenti-
fied protocols, such as botnet command and control protocols,
are often not available for reverse engineering. Second, even
when such executable code is available, the reverse engineer-
ing process is labor intensive and error prone. For example,
manually reverse engineering the Microsoft Server Message
Block (SMB) protocol took 12 years in the open source
SAMBA project [34].

For the protocol inference problem addressed in this paper,
the input is a network trace of the target application protocol.
Note that an application protocol typically have multiple types
of messages where each message type has its own format. If
the executable code of an application protocol is available, it
can be run in a controlled environment to gather packet traces.
Else, prior traffic classification schemes (such as [16]) can be
used to separate network traffic of the target protocol from that
of others. As traffic classification schemes often do not have a
100% accuracy, we do not assume that the input network trace
contains only the packets of the target application protocol.
The output of protocol inference are protocol message formats
represented by regular expressions.

B. Limitation of Prior Art

Prior protocol message format inference methods fall into
two categories: reverse engineering based methods [S]-[8],
[21], [34], which infer protocol message format by reverse
engineering the executable code of protocols, and network
trace based methods [10], which infer protocol message format
by analyzing network traces that contain the messages of
a given protocol. Reverse engineering based methods are
only applicable to protocols for which the executable code
is available; however, the executable code of many unknown
protocols are typically not available for reverse engineering.

The only prior network trace based application protocol
message format inference method is Discoverer proposed
by Cui et al. [10]. Discoverer first reassembles IP packets
into application protocol messages; second, breaks up each
message into a sequence of tokens based on a set of predefined
delimiters such as space and tab; third, classifies messages into
various clusters based on each message’s token pattern; and
finally merges similar message formats. Discoverer has three
major limitations. First, Discoverer does not work for asyn-
chronous application protocols. Furthermore, even for syn-
chronous application protocols, it does not work with sampled
network traces. This is because it requires assembling packets
into application protocol messages. Discoverer treats each
maximum sequence of consecutive packets as an application
protocol message. This way of grouping packets into messages
is inappropriate for asynchronous protocols because two end
hosts may send packets to each other at the same time. Second,
Discoverer assumes that the first constant number of bytes of a
flow describe the complete structure of an application protocol.
However, this assumption often does not hold in reality. For

example, the Simple Mail Transfer Protocol (SMTP) indicates
the end of the mail data by sending a line containing only a “.”,
where “.” is an element of the message format and the email
message can be of any length. Third, Discoverer assumes the
existence of some delimiters for separating different fields in
protocols. However, unknown protocols may not use delimiters
and even if they use delimiters, such delimiters may not

available to the public.

C. Proposed Approach

In this paper, we propose ProDecoder, a semantics aware ap-
proach that takes network traces as the input and automatically
outputs the inferred protocol message format. ProDecoder
does not assume prior knowledge of protocol specifications
such as delimiters. It is applicable to both text and binary
protocols. Our approach is based on the key insight that the
n-grams of protocol traces exhibit highly skewed frequency
distribution that can be leveraged for accurate protocol mes-
sage format inference. ProDecoder has four major modules: n-
gram generation, keyword identification, message clustering,
and sequence alignment. We give an overview of each module
below.

1) n-gram Generation: The input to this module is a set
of packet traces that are of the same protocol. The process of
classifying raw network traffic into flows of different protocols
is called flow classification. The simplest flow classification
method is to classify flows based on the transport layer port
numbers. Of course, this simple method may misclassify traffic
carried by tunnels. There are more advanced flow classification
methods that have been proposed in prior literature [16], [18],
[29]. The output of this module is protocol messages where
each message is represented as a sequence of m-grams. An
n-gram is a subsequence of n elements contained in a given
sequence of at least n elements. For example, treating each
character as an element, the 3-grams generated from message
MAIL FROM are MAT, ATL, IL_, IL_F _FR, FRO and ROM.
Given many packets of the same protocol, ProDecoder first
decomposes each message, denoted as a sequence of m bytes
b1bs - - - by, into a sequence of m — n + 1 n-grams (n < m):
bibs -~ bus babs -+ brits - s bt 1bmnt2 - bin.

2) Keyword Identification: This module uses a genera-
tive model from natural language processing to infer pro-
tocol keywords, which are used to define protocol message
formats. We identify a protocol keyword as a set of n-
grams that mostly show up together in protocol messages.
For example, the set of 3-grams {MAI, AIL, IL_, L_F,
_FR, FRO, ROM} can be a keyword because MAIL FROM
often show up together in SMTP messages. A message can
have multiple keywords. For example, an SMTP message
MAIL FROM: <alice@gmail.com> (RCPT TO: <bo
b@live.cn>)+ DATA have three keywords that corre-
sponds to MATIL FROM, RCPT TO, and DATA.

3) Message Clustering: This module clusters messages
based on their keywords using machine learning techniques.
Using the keywords associated with each message as features,
we use the Information Bottleneck (IB) clustering algorithm to

group similar messages into a cluster based on their semantics
[33]. This module enables ProDecoder to distinguish among
similar keywords belonging to different protocol messages.
4) Sequence Alignment: For the messages in each cluster,
this module uses a well-known sequence alignment algorithm
to find the common byte sequences among them. For example,
given a set of SMTP messages, sequence alignment algorithms
can identify MAIL FROM as a common byte sequence. These
common byte sequences represent the stable part of protocol
messages and therefore can be used to represent the message
format of the protocol in the form of regular expressions.

D. Novelty and Advantages of Our Approach

The key novelty of ProDecoder lies in its exploitation of the
semantic information in protocol messages. It distinguishes the
different meanings of the same n-grams in different messages,
which may have different semantics and therefore should
be classified into different keywords. Consider the example
SMTP message in Figure 1, where the 3-gram ‘“250” repre-
sents different semantic meanings for different occurrences.
In this example, we use numbers from 1 to 8 to indicate the
order of the 8 messages, letter “S” to indicate the message
from the email sender, and letter “R” to indicate the message
from the email receiver. However, prior network trace based
protocol message format inference methods cannot make such
distinctions as they rely on counting the occurrences of strings,
ignoring the context of each string. Furthermore, ProDecoder
discovers the correlation among n-grams. In protocol mes-
sages, multiple n-grams together may form an element in the
protocol message format. For example, in an SMTP message,
the 3-grams, “250” and “_OK” together, denote a protocol
element that is used to confirm the mail transaction. Using
keyword identification, our approach can group correlated n-
grams together to form a keyword. Keyword identification
in ProDecoder is inspired from natural language processing
literature, where a major research issue is to identify topics
from a corpus of documents consisting of a vector of words.

1 S: MAIL FROM:<alice@USC-ISIE.ARPA:JQP@MIT-AI.ARPA>
2 R: 250 OK
3 S: RCPT TO:<joe@BBN-VAX.ARPA>
4 R: 250 OK
5 S: DATA
6 R: 354 Start mail input; end with <CRLF>.<CRLF>
7 S: Received: from MIT-AI.ARPA by USC-ISIE.ARPA ;
2 Nov 81 22:40:10 UT
Date: 2 Nov 81 22:33:44
From: John Q. Public <JQP@MIT-ATI.ARPA>
Subject: The Next Meeting of the Board
To: Jones@BBN-Vax.ARPA
8 R: 250 OK
Fig. 1. An example SMTP communication session

ProDecoder addresses the aforementioned three limitations
of Discoverer. First, ProDecoder works with asynchronous
application protocols and sampled network traces because it
does not assemble IP packets into application-level messages.
Second, ProDecoder does not assume that the first constant
number of bytes of a flow describe the complete structure of

an application protocol. Third, ProDecoder does not assume
the existence of delimiters for separating different fields in
protocols.

The rest of the paper proceeds as follows. In Section II,
we review related work. We provide the technical details of
ProDecoder in Section III. We present implementation details
and experimental results for ProDecoder in Section IV. Finally,
we conclude the paper in Section V.

II. RELATED WORK
A. Reverse Engineering Based Methods

Such methods infer protocol message format by reverse
engineering the executable code of protocols. Accurately re-
verse engineering protocols typically involves manual efforts,
as described in [7] and [34]. There are several proposals about
automating this process. Lim et al. proposed a method that au-
tomatically extracts the format from files and application data
output functions, which may not be available [21]. Caballero
et al. proposed a protocol reverse engineering method called
Polyglot that uses dynamic analysis of program binaries [5].
The methods proposed in [8] and [6] infer protocol message
formats by observing the dynamic execution of protocols. Lin
et al. [22] and Wondracek et al. [36] proposed tools to reverse
engineer network message formats based on observing how
a program processes protocol messages. Cui et al. proposed
Tupni, a protocol reverse engineering method for automatically
identifying record sequences and record types in input formats
[11]. In contrast to these methods, our approach does not
require the binary code of protocols.

B. Other Related Work

Kannan et al. proposed a semi-automated method for ex-
tracting session structures of an application protocol based on
the session logs between a pair of end hosts. Comparing Kan-
nan’s method with ProDecoder, first, the goals are different -
Kannan’s method aims at extracting session structures whereas
ProDecoder aims at extracting protocol message formats.
Note that session logs are typically unavailable for unknown
application protocols. If we are given full logs of sessions
between many pairs of end hosts, it is straightforward to extend
ProDecoder to output session structures. Second, the level of
automation is different - Kannan’s method is semi-automated
whereas ProDecoder is fully automated.

Haffner et al. proposed ACAS, a method for the automated
construction of application signatures based on packet traces
[17]. The goal of ACAS is different from ProDecoder: ACAS
aims at obtaining application protocol signatures whereas
ProDecoder aims at obtaining message formats. Application
protocol message formats can be used as protocol signatures,
but not vice versa. A major limitation of ACAS is that it
assumes that the first 64 bytes of a flow completely describes
the structure of the application protocol carried by the flow.
This assumption often does not hold in reality especially
for binary protocols. Ma et al. proposed another protocol
identification method that uses statistical and structural content

network
trace

regular
expressions

MAIL FROM:<@QUSC-
ISIE.ARPA:JQP@EMIT-AI.ARPA>
250 OK RCPT TO:<Jones@BBN-

VAX.ARPA> 250 OK

(MAIL) (AILF) (ILFR) (LFRO)
(FROM) (ROM:) (OM:<)

(M:<@) (:<@M) (<@MI) (@MIT)
(MIT-) (IT-A) (T-AI) (-AI.)
(AI.A) (I.AR) (.ARP) (ARPA)
(250) (50 O) (0 OK) (RCPT)
(CPT) (PT T) (T TO) (TO:)
(TO:<) (0:<J) (:<Jo) (<Jon)
(Jone) (ones) ...

Received: from MIT-AI.ARPA
by USC-ISIE.ARPA

(MAIL) (FROM:) (USC-ISIE)
(ARPA) (@) (JQP) (MIT-AI)
(250) (OK) (RCPT) (TO)
(Jones) (BBN-VAX) (ARPA)
(250) (OK) (Received:) (from)
(MIT-AI) (ARPA) (by) (USC-
ISIE)

(MAIL) (FROM:) (USC-ISIE)

‘ MAIL FROM: <@> ‘
(ARPA) (@) (JQP) (MIT-AI)

250 OK ‘

\ (250) (0K) \ ‘

‘ (RCPT) (TO) (Jones) (@) ‘ ‘ RCPT TO:<@> ‘

(BBN-VAX) (ARPA)

(Received:) (£rom) (MIT- ‘ SOEOIvCER e LY ‘

AI) (ARPA) (@) (by) (UsC-
ISIE)

Fig. 2.

models based on flow content [23]. Similarly, this method also
assumes that a protocol is a distribution on sessions of length
at most n, where n is 64 in [23].

Wang et al. proposed Veritas, a system for automatically
inferring protocol state machines from network traces [35].
They use a Kolmogorov-Smirnov (K-S) test based method
to extract application protocol signatures, which is needed
in constructing protocol state machines. Veritas also differs
from ProDecoder in terms of goals - Veritas aims at obtaining
protocol state machines whereas ProDecoder aims at obtaining
protocol message formats. Furthermore, Veritas only analyzes
the first n bytes of each packet, where n is 12 in [35].

III. PRODECODER

In this section, we present details of ProDecoder, a se-
mantics aware approach that takes network traces as the
input and automatically outputs the inferred protocol message
format. ProDecoder has four major modules: n-gram genera-
tion, keyword identification, message clustering, and sequence
alignment. Figure 2 shows the architecture of ProDecoder. We
next provide details of each component below.

A. n-gram Generation

The input to ProDecoder is a set of packet traces that
are of the same application protocol. The trace of one flow
contains many packets. Each packet contains either a partial
or complete keyword, or multiple keywords defined in the
specification of the protocol. A keyword is essentially a byte
sequence of arbitrary length. For example, the keywords used
in the Simple Message Transfer Protocol (SMTP) include
“MAIL FROM”, “RCPT TO”, “250”, “OK”, etc. In addition
to text based protocols such as SMTP and HTTP, ProDecoder
is also aimed to decode binary protocols such as SMB.
Therefore, we need to further break down each keyword into
constituent elements. For example, the keyword ‘“250” can
be decomposed into 727, “5”, and “0”. Note that we can
aggregate consecutive elements to create up-scaled elements.
For example, the three consecutive elements 727, “5”, and “0”
can be combined into the keyword “250”. These elements are
also known as tri-grams, where three consecutive elements can
be joined together. Similarly, this process can be generalized to

Architecture of ProDecoder

n-grams, where n denotes the number of consecutive elements
that are joined together.

The key technical question in this module is what value
should be used for n. We conducted a pilot study on the
distribution of n-grams in two well-known protocols, SMTP
and SMB, for varying values of n. Figure 3 shows the
distributions of n-grams in both SMTP and SMB. As ex-
pected, the distribution of n-grams in both protocols is highly
skewed. In Figure 3, x-axis denotes the rank of n-grams
in terms of their frequency on y-axis and both axes are
converted to logarithmic scale to emphasize the skewness in
their distribution. We observe that the distribution of n-grams
approximately follows a straight line on log-log scale, which is
a characteristic of Zifp distribution [24]. It is well-known that
for most natural languages, the word occurrences follow a Zipf
distribution. Furthermore, we observe that the goodness-of-fit
values improves for n = 3 compared to n = 2. However,
we also observe that the distribution becomes highly sparse
for values of n > 4. Using the these observations, we choose
n to be 4 for our method. On a related note, some binary
protocols may have keywords whose sizes are smaller than n.
Such keywords are combined with adjacent bytes to from n-
grams. Later in Section III-D, we show that ProDecoder can
identify these keywords by using sequence alignment.

B. Keyword Identification

The purpose of this module is to identify the protocol key-
words that appear in the given network trace of an application
protocol. The input to this module is a sequence of n-grams
generated by the previous module. The output of this module
is a sequence of protocol keywords identified by ProDecoder,
where each keyword is the concatenation of one or more 7n-
grams. These keywords will be used in the next module to
cluster messages.

We now present our Latent Dirichlet Allocation (LDA)
based approach to keyword identification. Let m denote a
message consisting of a vector of words 2, where each
word z is a candidate protocol keyword and it consists of
a vector of n-grams .. In the context of this paper, here a
message means a packet. To identify protocol keywords from
a corpus of messages, we use a generative model called LDA,
which has been widely used in natural language processing

* 2-grams; R% = 0.8875
o 3-grams; R? = 0.9453 1
© 0 9 4-grams; R? = 0.8689
3t 1
g
g -4r
o
o
w
o o
o
)
-6
-7+
-8 L L L L * —
0 1 2 3 4 5 6 7
Log Rank
(a) SMTP
0 . .
* 2-grams; RZ=0.917
-1+ © 3-grams; R? = 0.9308}
9 4-grams; R? = 0.9419
_ot
g
g -3
o
o
w
o 4
o
)
-5+
—6f
7 ; ; ; ;
0 1 2 3 4 5
Log Rank
(b) SMB
Fig. 3. mn-gram distribution in SMTP and SMB protocols

[3], [9]. The counterpart of protocol keyword identification
in natural language processing is topic identification from
a corpus of documents, where each document consists of a
vector of words. In our approach, each message is treated as
a probability distribution of words, where each word is in
turn a probability distribution over n-grams. Given a corpus
of M messages, let p(w) be the marginal probability that
n-gram w appears in the corpus, let p(z = z;) be the
marginal probability that word zj; appears in the corpus, and
let p(w|z = zi) be the conditional probability that n-gram
w appears in a message containing word zj in the corpus.
Therefore, for a corpus of M messages containing a total of
K unique words, the marginal probability of n-gram w is
defined as follows.

K
pw) = p(w|z = 2)p(z = 2)
o (1)

subject to: Zp(z =z) =1
k=1
The task of LDA is to use the given corpus of M mes-
sages to estimate two types of distributions: (1) the n-gram
distribution p(w|z = zx), denoted ¢y, for each word z,
and (2) the word distribution p(z), denoted ¥,,, for each
message m. We use two parameter sets, ¢ = {¢)}/_, and
0 = {9} M_,, where each is a matrix, to represent these two

types of distributions, respectively. Given ¢ and 6, the LDA
model can generate a set of n-grams w,, ., where u denotes
the index of this n-gram with respect to message m. This
generation process is dictated by two hyperparameters, o and
B, where « is the Dirichlet prior parameter of per-message
word distributions and S is the Dirichlet prior parameter of
per-word n-gram distribution. Specifically, for each message
m, a sample word distribution Jm ~ Dir(a) is drawn, where
Dz’r&a) is the Dirichlet distribution for parameter o.. Based
on ¥,,, a word indicator z,, , ~ M ult(ﬁm) is sampled for
n-gram Wy, ,,, where M ult(ﬁm) is the multinomial distribu-
tion with parameter 5m. For each word indicator zy, ,, the
corresponding n-grams wiy, ., ~ Mult(y.,,) are generated.

Our goal is to identify the set of keywords used in the
application protocol message format. Towards this end, we
need to identify the n-gram distribution for each word and
the word distribution for each message in the given corpus.
This is a classic Bayesian inference problem, where the target
posterior distribution is defined as follows:

-

Z|w :p(z, o) — HZL p(zi, w;)
p(_‘l) p(_») szzl 25:1 p(wi, Zi = k)

(@)

Our target distribution p(Zz]w) represents word distributions for
the given message corpus. The denominator p(«w) denotes the
marginal probability of generating n-grams and the numerator
p(Z, @) denotes the joint probability of generating words and
their corresponding n-grams. The solution to this problem
gives us K keywords and their associated W n-grams for the
given corpus. However, we cannot directly solve for the target
distribution because denominator p(w) involves a summation
over K" items and it does not factorize [3], [12]. Therefore,
we cannot obtain a closed-form solution for the Bayesian
inference problem described in Equation 2.

To obtain an approximate solution for the Bayesian infer-
ence problem, there are three candidate strategies: (1) variation
Bayes, (2) expectation propagation, and (3) and Markov Chain
Monte Carlo (MCMC). Among these three strategies, we
choose MCMC because it is tolerant to local optima, requires
little memory, and is competitive in speed [14]. Specifically,
we use an MCMC algorithm called Gibbs sampling [15].
Gibbs sampling is an iterative algorithm, where in each
iteration the value of each variable is updated by a value
drawn from the target distribution of that variable conditioned
on the rest of variables. For our problem, p(Z]w/) in Equation
2 is our target function from which we draw samples. Each
sample z; is replaced by a value drawn from the distribution
p(zi|Z_;, W), where z; represents the ith component of z and
Z_; represents z; for any j # 4. By further simplification, the
conditional posterior distribution p(z;|Z_;,) can be derived
from the following proportional relationship, where n,(f) is the
number of times that n-gram ¢ is assigned to keyword k£ and

nﬁ,’f) is the number of times an n-gram from the message m

has been assigned to keyword k.

(n,(:) -1+ 5)(71%) —1+a)

w K k
(it ”1(:) =1+ WB) (X ko i —1+ [((3,(;)
After a sufficient number of iterations, MCMC converges and
we obtain keywords Z, which are then used to estimate the
parameter sets 6 and ¢ according to the following equations:

(t)
n,’ +p
Pkt ::__TV_ﬁLGT______ 4)
szlnk +Wg
(k)
N +
Dk (5

7 Zszl ”%) + Ka
To ensure that the Gibbs sampling algorithm has converged
and that the model with the estimated parameter sets ¢ and
¢ is generalizable, we use perplexity to quantify the quality
of our estimation. Perplexity, which is defined as follows, is
a well-known measure of the ability of a model to generalize
M -
2 m=1108 (W)

to unseen data [2].
(6)
Yot N }

where NV, is the total number of n-grams in message m. We
use all training data to compute the perplexity score. A lower
perplexity score denotes better generalization performance in
practice, so we prefer a lower perplexity score in ProDecoder.
Perplexity also allows us to determine the right number of
keywords for the given corpus of messages.

perplexity(Diest) = exp {—

C. Message Clustering

An application protocol has many types of messages where
each type of messages follow a particular format. To infer
the different message formats used by an application
protocol, we need to partition the given corpus of
messages into multiple clusters where the messages in
one cluster are of the same type following the same format.
For example, given a corpus of four SMTP messages,
MATIL FROM: <alice@gmail.com>, MAIL FROM:
<bob@live.cn>, RCPT TO:<smith@gmail.com>,
RCPT TO:<john@gmail.com>, we need to partition it
into two clusters, one containing the first two messages and
the other containing the last two messages. This message
clustering module accomplishes this task.

In this module, for each message, we use the K key-
words (and their corresponding probability) associated with
the message as its K features. After keyword identification,
each message m is labeled with K keywords where each
keyword £k is associated a probability 1,,, . Note that without
the keyword identification module, we can use the n-grams
generated from each message as its features; however, this
naive solution has serious disadvantages compared to our
method. First, keywords represent a high level abstraction
of n-grams and incorporate the correlation among multiple
n-grams. Directly using n-grams as features will lose such
correlation information. Second, for a corpus of messages, the

total number of keywords K is typically orders of magnitude
smaller than the total number of n-grams; thus, using key-

, words as features significantly reduces the dimensionality of

the clustering problem compared to directly using n-grams as
features.

Using keywords and their corresponding probabilities as
features, we apply the standard hierarchical clustering method.
We use the Information Bottleneck (IB) [32] as the metric
for cluster validation because of two main reasons. First, IB
allows us to find a solution with suitable trade-off between
the complexity of the model and its precision. Second, IB
eliminates the need of defining similarity or distance measures
for clustering in advance.

Given a set of feature vectors X = x1,xo, ...,z (Where
M is the number of messages in the given corpus), IB allows
us to partition the set into C' clusters. Towards this end, we
need to introduce another auxiliary random variable Y, which
incorporates relevant features of X. The objective of IB is to
cluster X into C' clusters while preserving the relevant features
Y as much as possible. Formally, IB optimizes the following
expression:

lraz = I(an) - VI(OaX)v (7
where v works as a trade-off between I(C;Y") and I(C; X).
Here I(C';Y') denotes the mutual information between random
variables C' and Y. Let p(C,Y’), P(C), and P(Y") denote the
joint distributions of C' and Y, the marginal distribution of C,
and the marginal distribution of Y, respectively. Thus, then
mutual information is defined as:

1CsY) = 3 plevy) og L

: ®)
oy ©p(y)

Mutual information 7 lies in the range [0, 1]. The larger the
value of mutual information is, the more the two random
variables are dependent.

In ProDecoder, we heuristically set the number of clusters
to 1.5 times the optimal number of keywords K, identified ear-
lier. We also explored using Dunn index to select the suitable
number of clusters; however, it resulted in degraded accuracy.
After the number of clusters, denoted), is determined, we
recursively merge clusters to minimize the merger cost £,
after initially treating each message in the corpus as a distinct
cluster. This recursive procedure continues till only A clusters
are left.

D. Sequence Alignment

For each cluster of messages, the sequence alignment mod-
ule aims to infer the final protocol message formats for the
cluster by finding the invariant fields among messages, which
are in the form of regular expressions. For example, for the
following cluster of three messages:

1) MAIL FROM:

2) MAIL FROM:
3) MAIL FROM:

<alice@microsoft.com>
<bob@berkeley.edu>
<carol@gmail.com>

our sequence alignment module will output the regular expres-
sion

MAIL FROM: <.*Q@.%..%>,

In ProDecoder, we use the Needleman-Wunsch algorithm
for sequence alignment [26]. The weight parameters of the
Needleman-Wunsch algorithm used in this study are match
= 2, mismatch = —2, and gap = 1. The basic Needleman-
Wunsch algorithm can only deal with two sequences at a time.
In ProDecoder, we extend it to handle multiple dimensions by
lining up N sequences along N 1-dimensional edges of an
N-dimensional hypercube. However, the computation of the
scoring function in this scheme requires O(2"V L") operations,
where L represents the length of the final sequence after
alignment. To improve efficiency, we use a well-known heuris-
tic method called progressive alignment to perform multiple
sequence alignment [13].

IV. EXPERIMENTAL RESULTS

We evaluate the effectiveness of ProDecoder in inferring
protocol formats of both textual and binary protocols. The
input to ProDecoder is the real-world traffic trace containing
packets of the target protocol and its output is the inferred cor-
responding protocol message formats. Below, we first describe
the data set used for evaluating ProDecoder, then define the
evaluation metrics, and finally present experimental results.

A. Data Set

We choose SMTP, which is used for email communication,
as the target textual protocol, and SMB, which is used for
file sharing, as the target binary protocol. For the traffic
classification algorithm used for network trace collection, we
simply use the TCP port numbers to filter traffic — port 25
for SMTP and port 445 for SMB. We collect both SMTP
and SMB traces from a backbone router of a major ISP on
the Internet. The payload of the SMTP (or SMB) packets in
our trace will constitute the corpus of the SMTP (or SMB)
messages. Our trace consists of 5,000 SMTP packets of a
total of 0.34 MB, 5,000 SMB packets of a total of 0.87
MB, and 5,000 non-SMTP and non-SMB packets of a total
of 1.21 MB. The overall size of our trace was limited due
to computational complexity of keyword identification and
message clustering modules. The average packet lengths are
also small for both SMTP and SMB protocols because they
mostly consist of command codes rather than payload data. We
use ninety percent of the packet traces for training ProDecoder
and the rest ten percent for measuring the precision and recall
of ProDecoder.

B. Evaluation Metrics for Effectiveness

Given a packet trace of one application protocol, we first
define the following three sets:

1) True Positives: the set of packets where each packet
matches a regular expression generated by ProDecoder
and indeed contains the application protocol fields that
correspond to the regular expression.

2) False Positives: the set of packets where each packet
matches a regular expression generated by ProDecoder
but does not actually contain the application protocol
fields that correspond to the regular expression.

3) False Negatives: the set of packets where each packet
does not match any regular expression generated by
ProDecoder but actually contains an application protocol
field.

Next, we define the following two metrics that we use to
quantitatively evaluate the effectiveness of ProDecoder:

|True Positives|

precision = — —
|True Positives| + |[False Positives|
©)

|True Positives|

10)

recall =
|True Positives| + |[False Negatives|

C. Effectiveness Results

The keyword identification process of ProDecoder uses the
following parameters

1) maximum iteration count L in Gibbs sampling algorithm
2) m-gram vocabulary size determined by P.
3) hyper-parameters o and /5 in LDA

Next, we first discuss how to select a suitable value for L, and
then present results for varying values of P, «, and S.

Recall that we use the Gibbs sampling algorithm to find
correlations in n-grams to identify protocol keywords. We
used perplexity as the metrics to ensure that the LDA model
estimated using Gibbs sampling is generalizable. As Gibbs
sampling is an iterative algorithm, it is important to select
an appropriate maximum iteration count, denoted by L, for
it to converge. To this end, we study how different values
of L affect the perplexity values for both SMTP and SMB
protocols. For both SMTP and SMB, we carry out experiments
for K = 20, 40, 60, and 80 and P = 40%, 60%, and 80%.
Figure 4 shows the perplexity values for the above values of
K and P for SMTP and SMB, respectively. For SMTP, we
observe that the perplexity values typically converge by 8, 000
iterations. For SMB, we observe that the perplexity values
typically converge by 1, 000 iterations. For the final evaluation
of ProDecoder, we select conservative values of L = 10,000
for SMTP and L = 2,000 for SMB protocol to ensure that
we achieve convergence. The keywords identified using Gibbs
sampling algorithm are then used as features to cluster mes-
sages into groups. Figure 5 shows the dendrogram structure
of hierarchical clustering for SMTP and SMB protocols. After
clustering messages, we finally use sequence alignment to infer
the final protocol message formats.

Next, we present the precision and recall results of ProDe-
coder for varying values of P, «, and 3 for both SMTP and
SMB packet traces. In our evaluations, we vary the ranges
of a € {0.1,0.5,0.9}, 5 € {0.005,0.01,0.05,0.1,0.5}, and
P € {0.4,0.6,0.8}. Figures 6 and 7 show the plots of both
precision and recall for varying values of o, 3, and P for SMB

[==K=20 K=40 = = =K = 60 = K = 80

[==K=20 K=40 = = =K = 60 = K = 80

+ 1 K=20 =e=K=40 == =K=60 —K =80

236 56.5
234\ 56
23.2p A g 55.5¢
Z o~ Z ssl E
H B S sumen 3 " 8 3
JIURE [AT . cnmoms e
z | “smssanmmsmngnnn o msmsumEmenn © el
3 228f $ 545 &] 30 2D g T
2261 541 7.
. 0
20 4LV N i N g W 53.5- ! 5851
SR TP T T S U S SR .
. . . . s j ; . § N R e R R A T LI
0 2000 4000 6000 8000 10000) 2000 4000 6000 8000 10000) 2000 4000 6000 8000 10000
Iterations lterations Iterations
(a) SMB: P = 40% (b) SMB: P = 60% (c) SMB: P = 80%
[(=+= K=20 "1 K=40 = = =K =60 ==K = 80 [(=+= K=20 "' (K=40 = = =K =60 ==K = 80 [(=e= K=20 "+ K=40===K=60 ==K =80
120 300 540
A
s
H 290(8 52013
H % 5001 %4y
g 280 : -
115 ORI ST S 480} i mmmm]
z ., 2 270 RCCIE ISP S z
3 s 3 8 “e0r
= L TPy P 2 2
g VP £ oeol 2 4a0k
o o o -
110 .
TR 250
AR AT P L PE P
240

105

N
@
S

0 2000 4000 6000 8000 10000 0 2000 4000

lterations

(d) SMTP: P = 40%

lterations

(e) SMTP: P = 60%

10000 0 2000 4000 6000 8000
Iterations

6000 8000 10000

(f) SMTP: P = 80%

Fig. 4. Selection of L for SMTP and SMB protocols

T 1T
1781

1.775

Distance
T
@D ~N
a X

T T

.
>
T

1.755f T
1.75F i
11420 62528 31310162923212215 724 82719 2 912 5 41117261830
Instances
(a) SMTP
1.4F [

1.391 .l
1.381 o

@

£1.37 .

o

»

B 1.36f T
1.351 T
1.341- T
1.

1183015 5 72210131626112325 8 42919 32124172820 2271412 6 9
Instances

(b) SMB

Fig. 5. Dendrograms of hierarchical clustering for SMTP and SMB protocols

protocol. We observe that ProDecoder achieves 100% preci-
sion for all possible values of «, /3, and P. Furthermore, the
recall values of ProDecoder vary in the range of 60% — 100%
for different parameter settings. The recall of ProDecoder
degrades for higher values of « and [, and lower values of
P. For SMB protocol, the optimal values of ProDecoder’s
parameters are « = 0.1, § = 0.005, and P = 0.8 and
the corresponding precision and recall values are both 100%.

TABLE I
SUMMARY OF RUNNING TIME OF PRODECODER’S MODULES
n-gram Keyword Message Sequence
Generation Inference Clustering Alignment
SMTP 3 seconds 172 minutes | 148 minutes | 10 minutes
SMB 7 seconds 48 minutes 15 minutes 3 minutes

Figures 8 and 9 show the plots of both precision and recall for
varying values of «a, 3, and P for SMTP protocol. For SMTP,
we observe a different trend for the precision of ProDecoder.
Specifically, the precision of ProDecoder decreases for higher
values of P and lower values of 3, whereas it is unrelated
for . The recall values of ProDecoder generally decrease
for higher values of « and (3, and lower values of P. Note
that the trend observed for recall of ProDecoder is similar
for both SMTP and SMB protocol. For SMTP, the optimal
values ProDecoder’s parameters are o« = 0.1, 8 = 0.01, and
P = 0.6 and the corresponding precision and recall values are
both approximately 95%.

D. Efficiency Results

We evaluated the computational efficiency of difference
modules of ProDecoder. The results are in Table I. Our
experiments were executed on a cluster machine where each
node had 4 quad-core Xeons processors running at 2.13GHz
with 16GB RAM. We note that keyword identification and
message clustering modules consume at least an order of
magnitude more time than the n-gram generation module and
the sequence alignment module. Note that ProDecoder runs
offline for a given network trace.

0= 0.1(SMB)

1001 @ o &
98 —
g
5 96 b
0
8
o 94r
B = 0.005
—¢p=0.01
9l 1-©-p=005 f
p=0.1
p=05
004 0.5 0.6 0.7 0.8
P
(a) a=0.1
a=0.1 (SMB)
100F . & :]
90 8
{ 8or 1
]
(s
Q
@ 70¢ :
= =0.005
—B=0.01
60 -5-p=0.05 ||
B=0.1
B=05
50l
0.4 0.5 0.6 0.7 0.8
P
(a) a=0.1
o=0.1(SMTP)
100 H
98
&
5 % '
o
(5]
2
o 94r —
92r - —
90l : : : :
0.4 0.5 0.6 0.7 0.8
P
(a) a=0.1
a=0.1(SMTP)
100F 7
90 :
__80f :
2
T 700 1
Q
['4
60[=B =0.005]
=B =001
50 -©-p=0.05 ||
B=0.1
B=05
40752 0.5 0.6 0.7 0.8
P
(a) a=0.1

o =05 (SMB)
1001 @ o &
98- : -
S
5 9 1
@
g
T 94r
B =0.005
—¢p =001
o2f |-©-B=0.05 |
B=0.1
p=05
053 05 0.6 0.7 0.8
P
(b) «=0.5
Fig. 6. Precision of ProDecoder for SMB protocol
o= 0.5 (SMB)
g
=
8
o
p=05
054 05 0.6 0.7 0.8
P
(b) «=0.5
Fig. 7. Recall of ProDecoder for SMB protocol
o=0.5 (SMTP)
: : : —*A-—[s:o.ods
100 | >p=001 ||
--$=0.05
98l p=01
_ p=05
5 96r 1
o oar 1
92r 1
Y 05 06 07 08
P
(b) «=0.5
Fig. 8. Precision of ProDecoder for SMTP protocol
o =0.5 (SMTP)
100F
90 1
80 1
g
g 70F : 1
o
60 =A=p = 0.005]
- p=0.01
501 ©-B=005 i
B=0.1
Bp=05
4004 0.5 0.6 0.7 08
P
(b) «=0.5
Fig. 9. Recall of ProDecoder for SMTP protocol

o =0.9 (SMB)
100} @ & @1
98f g
g
5 96 b
@2
8
o 94r
—=%-B =0.005
—¢$=0.01
9l - |-5-=005 ||
p=0.1
p=05
004 0.5 0.6 0.7 0.8
P
(c) «=0.9
o= 0.9 (SMB)
100]
90
R 80
T
[$]
Q
x 70
B =0.005
- [=0.01
60 “-p=0.05
p=0.1
p=05
50l ; ;] :
0.4 0.5 0.6 0.7 0.8
P
(c) «=0.9
o =09 (SMTP)

Precision (%)

(¢) a=0.9

o=0.9 (SMTP)

Recall (%)

V. CONCLUSIONS

This paper represents the first attempt that leverages the
semantic information (such as the relationship among multi-
ple common byte sequences) in protocol messages to infer
their format specifications. ProDecoder is a novel multidisci-
plinary approach, which draws upon theories and techniques
from natural language processing, machine learning, and bio-
informatics literature. It is purely based on raw network
packet traces and does not require protocol executable code.
ProDecoder works with asynchronous application protocols
and sampled network traces and does not assume any prior
knowledge about protocol message formats (such as the delim-
iters used in protocol messages). Our evaluations on real-world
network traces of two well-known textual and binary protocols
showed that ProDecoder can accurately and efficiently infer
protocol message format specifications.

[1]
[2]

[3

[t}

[4]

[5

[t}

[6]

[7]
[8]

[9

—

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

REFERENCES

The Ethereal Network Analyzer. http://www.wireshark.org/.

L. Azzopardi, M. Girolami, and K. van Risjbergen. Investigating
the relationship between language model perplexity and IR precision-
recall measures. In Proceedings of the 26th International ACM SIGIR
Conference, pages 369-370, 2003.

D. Blei, A. Ng, and M. Jordan. Latent Dirichlet Allocation. Journal of
Machine Learning Research, 3:993-1022, March 2003.

N. Borisov, D. J. Brumley, and H. J. Wang. A generic application-level
protocol analyzer and its language. In Proceedings of the Network and
Distributed System Security Symposium (NDSS), 2007.

J. Caballero, H. Yin, Z. Liang, and D. Song. Polyglot: automatic
extraction of protocol message format using dynamic binary analysis.
In Proceedings of the 14th ACM Conference on Computer and Commu-
nications Security (CCS), 2007.

C. Y. Cho, D. Babi¢, R. Shin, and D. Song. Inference and analysis of
formal models of botnet command and control protocols. In Proceedings
of the 17th ACM Conference on Computer and Communication Security
(CCS), 2010.

G. I. M. Client. http://gaim.sourceforge.net.

P. M. Comparetti, G. Wondracek, C. Kruegel, and E. Kirda. Prospex:
Protocol specification extraction. In Proceedings of the 30th IEEE
Symposium on Security and Privacy (S&P), 2009.

B. Croft. Language models for information retrieval. In Proceedings of
the 19th International Conference on Data Engineering (ICDE), 2003.
W. Cui, J. Kannan, and H. J. Wang. Discoverer: automatic protocol
reverse engineering from network traces. In Proceedings of the 16th
USENIX Security Symposium, 2007.

W. Cui, M. Peinado, K. Chen, H. J. Wang, and L. Irun-Briz. Tupni:
Automatic reverse engineering of input formats. In Proceedings of
the 14th ACM Conference on Computer and Communications Security
(CCS). 2008.

J. M. Dickey. Multiple hypergeometric functions: Probabilistic in-
terpretations and statistical uses. Journal of the American Statistical
Association, 1983.

R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison. Biological
Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids.
Cambridge University Press, 1999.

D. Gamerman and H. F. Lopes. Markov Chain Monte Carlo: Stochastic
Simulation for Bayesian Inference. 2006.

T. L. Griffiths and M. Steyvers. Finding scientific topics. Proceedings
of the National Academy of Sciences of the United States of America,
101:5228-5235, 2004.

F. Gringoli, L. Salgarelli, M. Dusi, N. Cascarano, F. Risso, and K. C.
Claffy. GT: Picking up the truth from the ground for internet traffic.
SIGCOMM Computer Communication Review, 39(5), 2009.

P. Haffner, S. Sen, O. Spatscheck, and D. Wang. Acas: automated
construction of application signatures. In Proceedings of the 2005 ACM
SIGCOMM Workshop on Mining Network Data, 2005.

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]

[29]
[30]

[31]

[32]

[33]

[34]

[35]

[36]

A. R. Khakpour and A. X. Liu. Iustitia: An information theoretical
approach to high-speed flow nature identification. In Proceedings of
the IEEE International Conference on Distributed Computing Systems
(ICDCS), 2009.

C. Kreibich. Design and implementation of netdude, a framework
for packet trace manipulation. In Proceedings of the USENIX Annual
Technical Conference (ATC), 2004.

Z. Li, G. Xia, H. Gao, Y. Tang, Y. Chen, B. Liu, J. Jiang, and Y. Lv.
NetShield: Massive semantics-based vulnerability signature matching for
high-speed networks. In Proceedings of AM SIGCOMM, 2010.

J. Lim, T. Reps, and B. Liblit. Extracting output formats from
executables. In Proceedings of the 13th Working Conference on Reverse
Engineering, 2006.

Z. Lin, X. Jiang, D. Xu, and X. Zhang. Automatic protocol format
reverse engineering through context-aware monitored execution. In
Proceedings of the 16th Network and Distributed System Security
Symposium (NDSS), 2008.

J. Ma, K. Levchenko, C. Kreibich, S. Savage, and G. M. Voelker.
Unexpected means of protocol inference. In Proceedings of the 6th
ACM SIGCOMM Internet Measurement Conference (IMC), 2006.

C. D. Manning and H. Schiitze. Foundations of statistical natural
language processing. MIT Press, 1999.

C. Meiners, E. Norige, A. X. Liu, and E. Torng. Flowsifter: A counting
automata approach to layer 7 field extraction for deep flow inspection.
In Proceedings of the IEEE Conference on Computer Communications
(INFOCOM), 2012.

S. Needleman and C. Wunsch. A general method applicable to the search
for similarities in the amino acid sequence of two proteins. Journal of
Molecular Biology, 48(3):443-453, 1970.

I. netflow statistics. http://netflow.internet2.edu.

R. Pang, V. Paxson, R. Sommer, and L. Peterson. binpac: a yacc
for writing application protocol parsers. In Proceedings of the ACM
SIGCOMM Internet Measurement Conference (IMC), 2006.

V. Paxson. Bro: A system for detecting network intruders in real-time.
In Proceedings of the 7th USENIX Security Symposium, 1998.

V. Paxson. Bro: A system for detecting network intruders in real-time.
Computer Networks, 31(23-24):2435-2463, 1999.

M. Roesch. Snort: Lightweight intrusion detection for networks. In
Proceedings of the 13th USENIX Systems Administration Conference
(LISA), pages 229-238, November 1999.

N. Slonim and N. Tishby. Agglomerative Information Bottleneck. In
Proceedings of Neural Information Processing Systems (NIPS), pages
617-623, 1999.

N. Tishby, F. Pereira, and W. Bialek. The information bottleneck
method. In Proceedings of the 37-th Annual Allerton Conference on
Communication, Control and Computing, pages 368-377, 1999.

A. Tridgell. How Samba was written, August 2003. http://www.samba.
org/ftp/tridge/misc/french_cafe.txt.

Y. Wang, Z. Zhang, D. Yao, B. Qu, and L. Guo. Inferring protocol state
machine from network traces: A probabilistic approach. In Proceedings
of the 9th International Conference Applied Cryptography and Network
Security (ACNS). 2011.

G. Wondracek, P. C. Milani, C. Kruegel, and E. Kirda. Automatic
network protocol analysis. In Proceedings of the 15th Annual Network
and Distributed System Security Symposium (NDSS), 2008.

