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Abstract—Data center applications require the network to
be scalable and bandwidth-rich. Current data center network
architectures often use rigid topologies to increase network
bandwidth. A major limitation is that they can hardly suppor t
incremental network growth. Recent studies propose to use
random interconnects to provide growth flexibility. However,
routing on a random topology suffers from control and data
plane scalability problems, because routing decisions require
global information and forwarding state cannot be aggregated.
In this paper, we design a novel flexible data center network
architecture, Space Shuffle (S2), which applies greedy routing on
multiple ring spaces to achieve high-throughput, scalability, and
flexibility. The proposed greedy routing protocol of S2 effectively
exploits the path diversity of densely connected topologies and
enables key-based routing. Extensive experimental studies show
that S2 provides high bisectional bandwidth and throughput,
near-optimal routing path lengths, extremely small forwarding
state, fairness among concurrent data flows, and resiliencyto
network failures.

I. I NTRODUCTION

Data center networks, being an important computing and
communication component for cloud services and big data pro-
cessing, require high inter-server communication bandwidth
and scalability [16]. Network topology and the corresponding
routing protocol are determinate factors of application per-
formance in a data center network. Recent work has been
investigating new topologies and routing protocols with a goal
of improving network performance in the following aspects.

1) High-bandwidth: Many applications of current data cen-
ter networks are data-intensive and require substantial intra-
network communication, such as MapReduce [15], Hadoop
[1], and Dryad [23]. Data center networks should have densely
connected topologies which provide high bisection bandwidth
and multiple parallel paths between any pair of servers.
Routing protocols that can effectively exploit the network
bandwidth and path diversity are essential.

2) Flexibility: A data center network may change after its
deployment. According to a very recent survey [34], 93% US
data center operators and 88% European data center operators
will definitely or probably expand their data centers in 2013
or 2014. Therefore a data center network should support
incremental growthof network size, i.e., adding servers and
network bandwidth incrementally to the data center network
without destroying the current topology or replacing the cur-
rent switches.

3) Scalability: Routing and forwarding in a data center
network should rely on small forwarding state of switches and
be scalable to large networks. Forwarding table scalability is
highly desired in large enterprise and data center networks,
because they use expensive and power-hungry memory to
achieve increasingly fast line speed [41] [35] [32]. If forward-
ing state is small and does not increase with the network size,
we can use relatively inexpensive switches to construct large
data centers and do not need switch memory upgrade when
the network grows.

Unfortunately, existing data center network architectures
[5] [17] [31] [18] [4] [35] [37] focus on one or two of the
above properties and pay little attention to the others. For
example, the widely used multi-rooted tree topologies [5] [31]
provide rich bandwidth and efficient routing, but their “firm”
structures cannot deal with incremental growth of network
size. The recently proposed Jellyfish network [37] uses random
interconnect to support incremental growth and near-optimal
bandwidth [36]. However, Jellyfish has to use inefficientk-
shortest path routing whose forwarding state is big and cannot
be aggregated. CamCube [4] and Small World Data Centers
(SWDC) [35] propose to use greedy routing for forwarding
state scalability and efficient key-value services. Their greedy
routing protocols do not produce shortest paths and can hardly
be extended to perform multi-path routing that can fully utilize
network bandwidth.

Designing a data center network that satisfies all three
requirements seems to be challenging. Flexibility requires
irregularity of network topologies, whereas high-throughput
routing protocols on irregular topologies, such ask-shortest
path, are hard to scale. In this paper, we present a new
data center network architecture, named Space Shuffle (S2),
including a scalable greedy routing protocol that achieves
high-throughput and near-optimal path lengths on flexible and
bandwidth-rich networks built by random interconnection.

S2 networks are constructed by interconnecting an arbi-
trary number of commodity ToR switches. Switches maintain
coordinates in multiplevirtual spaces. We also design a
novel greedy routing protocol calledgreediest routingthat
guarantees to find multiple paths to any destination on an S2
topology. Unlike existing greedy routing protocols [33], [28],
which use only one single space, greediest routing makes deci-
sions by considering switches coordinates in multiple spaces.
The routing path lengths are close to shortest path lengths.In/978-1-4799-6204-4/14$31.00c©2014 IEEE

http://arxiv.org/abs/1405.4697v3


TABLE I: Desired properties of data center network architectures.N: # switches,M: # links. Question mark means such
property is not discussed in the paper.

FatTree [5] CamCube [4] SWDC [35] Jellyfish [37] S2
Network bandwidth Benchmark No Comparison > Camcube > FatTree and SWDC ≈ Jellyfish
Multi-path routing X ? ? X X

Incremental growth ✕ ? ? X X

Forwarding state per switch O(logN) constant constant O(kNlogN) constant
Key-based routing ✕ X X ✕ X

Switch heterogeneity ✕ ✕ ✕ X X

addition, coordinates in multiple spaces enable efficient and
high-throughput multi-path routing of S2. S2 also effectively
supports key-based routing, which has demonstrated to fit
many current data center applications using key-value stores
[4].

Table I compares S2 and four other recent data center
networks qualitatively in seven desired properties, namely
high bandwidth, multi-path routing, flexibility for incremental
growth, small forwarding state, key-based routing, and sup-
port of switch heterogeneity. S2 achieves almost all desired
properties while every other design has a few disadvantages.

We use extensive simulation results to demonstrate S2’s
performance in different dimensions, including routing path
length, bisection bandwidth, throughput of single-path and
multi-path routing, fairness among flows, forwarding table
size, and resiliency to network failures. Compared to two
recently proposed data center networks [35] [37], S2 provides
significant advantages in some performance dimensions and is
equally good in other dimensions.

The rest of this paper is organized as follows. We present
related work in Section II. We describe the S2 topology and
its construction in Section III. In Section IV, we present the
routing protocols and design considerations. We evaluate the
performance of S2 in Section V. We discuss a number of
practical issues in Section VI and finally conclude this work
in Section VII.

II. RELATED WORK

Recent studies have proposed a number of new network
topologies to improve data center performance such as bi-
section bandwidth, flexibility, and failure resilience. Al-Fares
et.al. [5] propose a multi-rooted tree structure called FatTree
that provides multiple equal paths between any pair of servers
and can be built with commodity switches. VL2 [17] is a data
center network that uses flat addresses and provide layer-2
semantics. Its topology is a Clos network which is also a multi-
rooted tree [10]. Some data center network designs use direct
server-to-server connection in regular topologies to achieve
high bisection bandwidth, including DCell [18], BCube [19],
CamCube [4], and Small-World data centers [35]. However,
none of these designs have considered the requirement of
incremental growth of data centers.

A number of solutions have been proposed to provide net-
work flexibility and support incremental growth. Scafida [20]
uses randomness to build an asymmetric data center network
that can be scaled in smaller increments. In LEGUP [13], free
ports are preserved for future expansion of Clos networks.
REWRITE [12] is a framework that uses local search to find a

network topology that maximizes bisection bandwidth whiling
minimizing latency with a give cost budget. None of these
three [20] [13] [12] have explicit routing design to utilizethe
network bandwidth of the irregular topologies. Jellyfish [37]
is a recently proposed data center network architecture that
applies random connections to allow arbitrary network sizeand
incremental growth. Jellyfish can be built with any number of
switches and servers and can incorporate additional devices
by slightly changing the current network. Usingk-shortest
path routing, Jellyfish achieves higher network throughput
compared to FatTree [5] and supports more servers than a
FatTree using the same number of switches. However, to
support k-shortest path routing on a random interconnect,
forwarding state in Jellyfish switches is big and cannot be
aggregated. Using the MPLS implementation ofk-shortest
path as suggested in [37], the expected number of forwarding
entries per switch is proportional tokNlogN, whereN is the
number of switches in the network. In addition,k-shortest
path algorithm is extremely time consuming. Its complexity
is O(kN(M +NlogN)) for a single source (M is the number
of links) [8]. This may result in slow convergence under
network dynamics. Hence, Jellyfish may suffer from both
data planeandcontrol plane scalabilityproblems. PAST [38]
provides another multi-path solution for Jellyfish, but the
throughput of Jellyfish may be degraded. A very recent study
[36] discusses the near-optimal-throughput topology design for
both homogeneous and heterogeneous networks. It does not
provide routing protocols which can achieve the throughput
in practice.

As a scalable solution, greedy routing has been applied to
enterprise and data center networks [4] [35] [32]. CamCube [4]
employs greedy routing on a 3D torus topology. It provides an
API for applications to implement their own routing protocols
to satisfy specific requirements, called symbiotic routing. The
network topologies of Small-World data centers (SWDCs)
are built with directly connected servers in three types: ring,
2D Torus, and 3D Hex Torus. ROME [32] is a network
architecture to allow greedy routing on arbitrary network
topologies and provide layer-2 semantics. For all three network
architectures [4] [35] [32], multi-path routing is not explicitly
provided.

SWDC, Jellyfish, and S2 all employ randomness to build
physical topologies. However, they demonstrate substantially
different performance because of their different logical or-
ganizations and routing protocols. SWDC applies scalable
greedy routing on regularly assigned coordinates in a single
space and supports key-based routing. Jellyfish provides higher



throughput usingk-shortest path routing, but it sacrifices
forwarding table scalability. S2 gets the best of both worlds:
it uses greedy routing on randomly assigned coordinates in
multiple spaces to achieve both high-throughput routing and
small forwarding state.

III. SPACE SHUFFLE DATA CENTER TOPOLOGY

The Space Shuffle (S2) topology is a interconnect of com-
modity top-of-rack (ToR) switches. In S2, all switches playa
equal role and execute a same protocol. We assume there is
no server multi-homing, i.e., a server only connects with one
switch.

A. Virtual coordinates and spaces

Each switchs is assigned a set ofvirtual coordinatesrep-
resented by aL-dimensional vector〈x1,x2, ...,xL〉, where each
elementxi is a randomly generated real number 0≤ xi < 1.
There areL virtual ring spaces. In thei-th space, a switch
is virtually placed on a ring based on the value of itsi-th
coordinatexi . Coordinates in each space are circular, and 0 and
1 are superposed. Coordinates are distinct in a single space.
In each space, a switch is physically connected with the two
adjacent switches on its left and right sides. Two physically
connected switches are called neighbors. For a network built
with w-port switches1, it is required that 2L < w. Each switch
has at most 2L ports to connect other switches, called inter-
switch ports. The rest ports can be used to connect servers.
A neighbor of a switchs may happen to be adjacent tos in
multiple spaces. In such a case,s needs less than 2L ports to
connect adjacent switches in allL spaces. Switches with free
inter-switch ports can then be connected randomly.

Figure 1 shows a S2 network with 9 switches and 18 hosts
in two spaces. As shown in Figure 1a, each switch is connected
with two hosts and four other switches. Figure 1b shows
coordinates of each switch in the two spaces. Figures 1c and
1d are the two virtual spaces, where coordinate 0 is at top and
coordinates increase clockwisely. As an example, switchB is
connected to switchesA, C, F , and G, becauseA andC are
adjacent toB in space 1 andF and G are adjacent toB in
space 2.A only uses three ports to connects adjacent switches
I , B, andH, because it is adjacent toI in both two spaces.A
andE are connected as they both have free inter-switch ports.

B. Topology construction

As a flexible data center network, S2 can be constructed by
either deploy-as-a-whole or incremental deployment.

For the deploy-as-a-whole construction of a network with
N switches andH servers, each switch is assigned⌊H

N ⌋ or
⌊H

N ⌋+1 servers. The number of spacesL is then set to⌊1
2(w−

⌈H
N ⌉)⌋. Switch positions are randomly assigned in each space.

For each space, cables are placed to connect every pair of
adjacent switches. If there are still more than one switches
with free ports, we randomly select switch pairs and connect
each pair. We will discuss more cabling issues in Section VI-A.

1We now assume homogenous switches. We will discuss switch hetero-
geneity in Section VI-D.
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(a) Space Shuffle topology

ID x1 x2
A 0.05 0.17
B 0.13 0.62
C 0.23 0.91
D 0.36 0.42
E 0.42 0.53
F 0.51 0.58
G 0.63 0.73
H 0.78 0.26
I 0.91 0.97

(b) Switch coordinates
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Fig. 1: Example S2 network with 9 switches and 18 servers
in 2 spaces. Squares are switches and circles are servers.

S2 can easily support any expansion of the data center
network using the incremental deployment algorithm. Suppose
we decide to expand the data center network bym servers.
A switch can connectw−2L servers, and we can determine
the number of new switches is⌈m/(w−2L)⌉. For each new
switchs, we assign it a set of random coordinates. We finds’s
two adjacent nodesu andv in each space, which is currently
connected. Then, the operator removes the cable betweenu
and v and lets connect to both of them. New switches and
servers can be added serially by iterative execution of this
procedure.

Similar to Jellyfish [37], S2 can be constructed with any
number of servers and switches. For incremental network
expansion, only a few cables need to be removed and a few
new cables are placed. Hence there is very little network
update cost.

At this point, coordinate generation is purely random. We
will discuss the impact of coordinate randomness to the
proposed routing protocol and introduce a method to guarantee
that any two coordinates are different in Section IV-D.

C. Similar to random regular graphs

We wonder whether S2 topologies are close to random reg-
ular graphs (RRGs), which, as discussed in [37] [39] and [36],
provide near-optimal bisection bandwidth and lower average
shortest path length compared to other existing data center
topologies built with identical equipments. By definition,an
r-regular graph is a graph where all vertices have an identical
degreer. RRGs with degreer are sampled uniformly from the
space of allr-regular graphs.

Since constructing an RRG is a very complex problem, Jel-
lyfish [37] uses the “sufficiently uniform random graphs” that
empirically have the desired properties of RRGs. Therefore,
we compare S2 with Jellyfish in the average shortest path



TABLE II: Shortest path lengths: S2 vs. Jellyfish
SpaceShuffle JellyFish

N average 10% 90% average 10% 90%
100 3.80111 3 4 3.80396 3 4
200 4.00241 3 5 4.00500 3 5
400 4.29735 4 5 4.29644 4 5
800 4.57358 4 5 4.57306 4 5
1200 4.69733 4 5 4.69670 4 5

length. Table II shows the empirical results of shortest path
lengths between servers of S2 and Jellyfish. We show the
average, 10% percentile, and 90% percentile values for all
pairs of servers on 10 different topologies of S2 or Jellyfish.
A network hasN switches, each of which has 12 inter-
switch ports. We find that the shortest path lengths of S2 are
very close to those of Jellyfish, and they have identical 10%
and 90% percentile values. We also find that the switch-to-
switch path lengths of both S2 and Jellyfish follow logarithmic
distribution logN, consistent to the property of RRGs [9]. As
discussed by [37], networks with lower shortest path lengths
provide higher bandwidth. We demonstrate that S2 has almost
same shortest path lengths to those of sufficiently uniform
random graphs used by Jellyfish. We will further demonstrate
its bisection bandwidth in Section V.

Essentially, SWDC, Jellyfish, and S2 use similar random
physical interconnects to approximate RRGs2. However, their
logical organizations and routing protocols are substantially
different, which result in different network performance such
as throughput and forwarding table size.

IV. ROUTING PROTOCOLS

A desired routing protocol in data center networks should
have several important features that satisfy application require-
ments. First, a routing protocol should guarantee to find a
loop-free path to delivery a packet from any source to any
destination, i.e.,delivery guaranteeandloop-freedom. Second,
the routing and forwarding should be scalable to a large size
of servers and switches. Third, it should utilize the bandwidth
and exploit path diversity of the network topology.

A straightforward way is to use shortest path based routing
such as OSPF on S2. However, shortest path routing has a
few potential scalability problems. First, in the data plane,
each switch needs to maintain a forwarding table whose size
is proportional to the network size. The cost of storing the
forwarding table in fast memory such as TCAM and SRAM
can be high [35]. As the increasing line speeds require the use
of faster, expensive, and power-consuming memory, there isa
strong motivation to design routing protocol that only usesa
small size of memory and does not require memory upgrades
when the network size increases [41]. Second, running link-
state protocols introduces non-trivial bandwidth cost to the
control plane.

A. Greediest Routing

Since the coordinates of a switch can be considered geo-
graphic locations inL different spaces, we design a new greedy

2We also notice a recent work using RRGs for P2P streaming [27], whose
routing protocol cannot be used in data center networks.

TABLE III: MCDs to C from H and its neighbors in Figure 1
Cir dist in Space 1 Cir dist in Space 2 Min cir dist

H 0.45 0.35 0.35
A 0.18 0.26 0.18
D 0.13 0.49 0.13
G 0.40 0.18 0.18
I 0.32 0.06 0.06

geographic routing protocol for S2, calledgreediest routing.
Routable address: The routable address of a serverh,

namely~X, is the virtual coordinates of the switch connected
to h (also called h’s access switch). Since most current
applications uses IP addresses to identify destinations, an
address resolution method is needed to obtain the S2 routable
address of a packet, as ARP, a central directory, or a DHT
[26], [32]. The address resolution function can be deployedon
end switches for in-network traffic and on gateway switches
for incoming traffic. In a packet, the destination serverh
is identified by a tuple〈~X, IDh〉, where ~X is h’s routable
address (virtual coordinates of the access switch) andIDh is
h’s identifier such as its MAC or IP address. The packet is
first delivered to the switchs that has the virtual coordinates
~X, and thens forwards the packet toh based onIDh.

MCD: We use thecircular distanceto define the distance
between two coordinates in a same space. The circular distance
for two coordinatesx andy (0≤ x,y< 1) is

CD(x,y) = min{|x− y|,1−|x− y|}
. In addition, we introduce theminimum circular distance
(MCD) for routing design. For two switchesA and B with
virtual coordinates~X = 〈x1,x2, ...,xL〉 and~Y = 〈y1,y2, ...,yL〉
respectively, the MCD ofA and B, MCD(~X,~Y), is the mini-
mum circular distance measured in theL spaces. Formally,

MCD(~X,~Y) = min
1≤i≤L

CD(xi ,yi).

Forwarding decision: The greediest routing protocol works
as follows. When a switchs receives a packet whose destina-
tion is 〈~Xt , ID〉, it first checks whether~Xt is its own coordi-
nates. If so,s forwards the packet to the server whose identifier
is ID. Otherwise,s selects a neighborv such thatv minimizes
MCD(~Xv,~Xt) to the destination, among all neighbors. The
pseudocode ofGREEDIST ROUTING ON SWITCHs is presented
by Algorithm 1 in the appendix.

For example, in the network shown in Figure 1, switch
H receives a packet whose destination host is connected to
switch C, hence the destination coordinates are~XC. H has
four neighborsA, D, I , and G. After computing the MCD
from each neighbor to the destinationC as listed in Table III,
H concludes thatI has the shortest minimal circular distance
to C and then forwards the packet toI .

We name our protocol as “greediest routing” because it
selects a neighbor that has a smallest MCD to the destination
among all neighbors in all spaces. Existing greedy routing
protocols only try to minimize distance to the destination in a
single space (Euclidean, or in other kinds).

Greediest routing on S2 topologies provides delivery guar-
antee and loop-freedom. To prove it, we first introduce two
lemmas.

Lemma 1: In a space and given a coordinatex, if a switch



s is not the switch that has the shortest circular distance tox
in the space, thens must have an adjacent switchs′ such that
CD(x,xs′)<CD(x,xs).

Lemma 2:Suppose switchs receives a packet whose desti-
nation switch ist and the coordinates are~Xt , s 6= t. Let v be the
switch that has the smallest MCD to~Xt among all neighbors
of s. ThenMCD(~Xv,~Xt)< MCD(~Xs,~Xt).

Lemma 2 states that if switchs is not the destination switch,
it must find a neighborv whose MCD is smaller thans’s to the
destination. Similar to other greedy routing protocols, when
we have such “progressive and distance-reducing” property,
we can establish the proof for delivery guarantee and loop-
freedom.

Proposition 3: Greediest routing finds a loop-free path of a
finite number of hops to a given destination on an S2 topology.

The proofs of the above lemmas and proposition are pre-
sented in the appendix.

Like other greedy routing protocols [35], [32], greediest
routing in S2 is highly scalable and easy to implement.
Each switch only needs a small routing table that stores the
coordinates of all neighbors. The forwarding decision can
be made by a fixed, small number of numerical distance
computation and comparisons. More importantly, the routing
table size only depends on the number of ports and does
not increase when the network grows. In the control plane,
decisions are made locally without link-state broadcast inthe
network wide.

1) Reduce routing path length:An obvious downside of
greedy routing is that it does not guarantee shortest routing
path. Non-optimal routing paths incur longer server-to-server
latency. More importantly, flows routed by longer paths willbe
transmitted on more links, and thus consumes more network
bandwidth [37]. To resolve this problem, we allow each switch
in S2 stores the coordinates of 2-hop neighbors. To forward
a packet, a switch first determines the switchv that has the
shortest MCD to the destination, among all 1-hop and 2-hop
neighbors. Ifv is an 1-hop neighbor, the packet is forwarded to
v. Otherwise, the packet is forwarded to an one hop neighbor
connected tov. Delivery guarantee and loop-freedom still
holds. According to our empirical results, considering 2-hop
neighbors can significantly reduce routing path lengths.

As an example, in a 250 10-port switch network, the
distribution of switch-to-switch routing path lengths ofk-hop
neighbor storage is shown in Figure 2, where the optimal
values are the shortest path lengths. Storing 2-hop neighbors
significantly reduces the routing path lengths compared with
storing 1-hop neighbor. The average routing path length of
greediest routing with only 1-hop neighbors is 5.749. Including
2-hop neighbors, the value is decreased to 5.199, which is
very close to 4.874, the average shortest path length. However,
including 3-hop neighbors does not improve the routing path
much compared with using 2-hop neighbors. Therefore, we
decide to store 2-hop neighbors for S2 routing. Although
storing 2-hop neighbors requires more state, the number of
2-hop neighbors are bounded byd2, where d is the inter-
switch port number, and this number is much lower thand2
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Fig. 2: Distribution of routing path lengths usingk-hop neighbors
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in practice. As forwarding state is independent of the network
size, S2 routing is still highly scalable.

2) Impact of the space number:Proposition 3 holds for
anyL≥ 1. Therefore, greediest routing can use the coordinates
only in the firstd spaces,d< L, and apply the MCD in the first
d spaces (d-MCD) as the greedy routing metric. In an extreme
case whered = 1, greediest routing degenerates to greedy
routing on one single ring using the circular distance as the
metric. Ford< L, the links connecting adjacent switches in the
d,d+1, ...,L-th spaces are still included in routing decision.
They serve as random links that can reduce routing path length
and improve bandwidth.

For all d, 1≤ d≤ L, greedy routing usingd-MCD provides
delivery guarantee and loop-freedom. We evaluate how the
value ofd affects routing performance by showing the number
of spacesd versus the average routing path length of a typical
network topology in Figure 3. The two error bars represent the
10th and 90th percentile values. Only switch-to-switch paths
are computed. The optimal results shown in the figure are
shortest path lengths, which in average is 2.498. We find that
routing path lengths significantly reduce when the 2nd and
3rd spaces are included in greedy routing. Using more than 4
spaces, the average length is about 2.5 to 2.6, which is closeto
the optimal value. Hence greediest routing in S2 always use
as many spaces as switch port capacity allows. Commodity
switches have more than enough ports to support 5 or more
spaces.

B. Multi-path routing

Multi-path routing is essential for delivering full bandwidth
among servers in a densely connected topology and perform-
ing traffic engineering. Previous greedy routing protocolscan
hardly apply existing multi-path algorithms such as equal-cost
multi-path (ECMP) [22] andk-shortest paths [37], because
each switch lacks of global knowledge of the network topol-
ogy. Consider a potential multi-path method for greedy routing
in a single Euclidean space. For different flows to a same



destination, the source switch intentionally forwards them to
different neighbors by making not-so-greedy decisions. This
approach may result longer routing paths. In addition, these
paths will share a large proportion of overlapped links because
all flows are sent to a same direction in the Euclidean space.
Overlapped links can easily be congested. Therefore, designing
multi-path greedy routing in a single space is challenging.

Greediest routing on S2 supports multi-path routing well
due to path diversity across different spaces. Acoording to
Lemma 2, if a routing protocol reduces the MCD to the
destination at every hop, it will eventually find a loop-freepath
to the destination. Based on this property, we design a multi-
path routing protocol presented as follows. When a switchs
receives the first packet of a new flow whose destination switch
t is not s, it determines a setV of neighbors, such that for
any v ∈ V, MCD(~Xv,~Xt) < MCD(~Xs,~Xt). Then s selects one
neighborv0 in V by hashing the 5-tuple of the packet, i.e.,
source address, destination address, source port, destination
port, and protocol type. All packets of this flow will be
forwarded tov0, as they have a same hash value. Hence, packet
reordering is avoided. This mechanism only applies to the
first hop of a packet, and on the remain path the packet is
still forwarded by greediest routing. The main consideration
of such design is to restrict path lengths. According to our
observation from empirical results, multi-pathing at the first
hop already provides good path diversity. The pseudocode of
the multi-path routing protocol is presented by Algorithm 2in
the appendix.

S2 multi-path routing is also load-aware. As discussed
in [11], load-aware routing provides better throughput. We
assume a switch maintains a counter to estimate the traffic
load on each outgoing link. At the first hop, the sender can
select the links that have low traffic load. Such load-aware
selection is flow-based: all packets of a flow will be sent to
the same outgoing link as the first packet.

C. Key-based routing

Key-based routing enables direct data access without know-
ing the IP address of the server that stores the data. S2 supports
efficient key-based routing based on the principle of consistent
hashing. Only small changes are required to the greediest
routing protocol.

Let Ka be the key of a piece of dataa. In S2,a should be
stored ind multiple copies at different servers. In S2 key-based
routing, a set of globally known hash functionsH1,H2, ...,Hd

can be applied toKa. We useH(Ka) to represent a hash value
for Ka mapped in[0,1]. The routable address ofKa is defined
as 〈H1(Ka),H2(Ka), ...,Hd(Ka)〉. For each spacer, 1≤ r ≤ d,
the switchswhose coordinatexs,r is closest3 to Hr(Ka) among
all switches is called thehome switchof Ka in space r. Ka has
at mostd home switches in total. A replica ofa is assigned
to one of the servers connected to the home switchs.

In fact, if greediest routing in the firstd spaces cannot
make progress on switchs, thens is a home switch ofKa. S2

3Ties should be broken here. One possible approach is to select the switch
with larger coordiante.
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Fig. 5: Switch traffic load affected by control area sizes

supports key-based routing by executing greediest routingto
coordiante〈H1(Ka),H2(Ka), ...,Hd(Ka)〉 in the firstd spaces.

D. Balanced random coordinates

Purely uniform random generation of S2 coordinates will
probably result in an imbalanced coordinate distribution.Fig-
ure 6(b) shows an example coordinate distribution of 20
switches in a space. The right half of this ring has much
more switches than the left half. Some switches are close to
their neighbours while some are not. Theoretically, amongn
uniform-randomly generated coordinates, the expected value
of the minimum distance between two adjacent coordinates
is 1

n2 , while the expected value of the maximum isΘ( logn
n )

[14]. Imbalance of coordinate distribution is harmful to S2
routing in two main aspects. First, greediest routing may
intend to choose some links and cause congestion on them.
We conjecture as follows. Consider two connected switches
A andB whose coordinates are extremely close in one space.
If one of them, sayA, is the destination of a group of flows,
other switches may intend to send the flows toB if they are
unaware ofA. These flows will then be sent fromB to A and
congest the link. Second, imbalanced key-value store occurs
if switches are not evenly distributed on a ring. Previous work
about load balancing in ring spaces cannot be applied here
because they do not consider greediest routing.

We perform empirical study of the impact of coordinate
distribution to routing loads. In a typical S2 network with 250
switches andL = 4, we run greediest routing for all pairs of
switches to generate routing paths and then count the number
of distinct paths on each link. We find the top 10% links and
bottom 10% links according to the numbers of distinct paths
and denote them by heavy loaded links and light loaded links
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respectively. We plot the heavy and light loaded links in a 2D
domain as shown in Figure 4, where thex-axis is the MCD
of a link’s two endpoints and they-axis is the sum of circular
distances of a link’s two endpoints in all spaces. We find that
the frequency of heavy/light loaded links strongly dependson
the MCD of two endpoints, but has little relation to the sum of
circular distances. If the MCD is shorter, a link is more likely
to be heavy loaded. Hence it is desired to avoid two switches
that are placed very closely on a ring, trying to enlarge the
minimal circular distance for links.

We further study the the impact of coordinate distribution
to per-switch loads. We define thecontrol area of switch s
in a space as follows: Suppose switchs’s coordinate in this
space isx, s has two adjacent switches, whose coordinates
are y and z respectively. The control area ofs on the ring
is the arc between the mid-point of̂y,x and the mid-point
of x̂,z. The size of s’s control areain the space is defined
as 1

2CD(x,y) + 1
2CD(x,z). For the same network as Figure

4, we count the number of different routing paths on each
switch. We then plot this number versus the sum of logarithm
of control area sizes of each switch in Figure 5. It shows
that they are negatively related with a correlation coefficient
−0.7179. Since the sum of control area sizes of all switches is
fixed , we should make the control areas as even as possible
to maximize the sum-log values. This is also consistent to
the load-balancing requirement of key-value storage. Based
on the above observations, we present aBALANCED RAN-
DOM COORDINATE GENERATIONalgorithm: When a switchs
joins the network withn switches, in every space we select
two adjacent switches with the maximum circular distance,
whose coordinates arey and z. By the pigeonhole principle,
CD(y,z)≥ 1

n. Then we places in somewhere betweeny andz.
To avoid being too close to either ofy and z, we generate
s’s coordinatex in the space as a random number inside
(y+ 1

3n,z−
1
3n), so thatCD(x,y)≥ 1

3n andCD(x,z)≥ 1
3n. This

algorithm can be used for either incremental or deploy-as-a-
whole construction. It is guaranteed that the MCD between any
pair of switches is no less than13n. An example of balanced
random coordinates is shown in Figure 6. The pseudocode is
presented by Algorithm 3 in the appendix.

For 10-port 250-switch networks, we calculate the greediest
routing path for every pair of switches. We show a typical
distribution of routing load (measured by the number of
distinct routing paths) on each link in Figure 7, where we rank

the links in increasing order of load. Compared with purely
random coordinates, balanced random coordinates increasethe
load on under-utilized links (before rank 300) and evidently
decrease the load on over-utilized links (after rank 600).
About 8% links of purely random coordinates have more than
300 paths on each of them, and only 1% links of balanced
random coordinates have that number. The maximum number
of distinct paths that a link is on also decreased from 470
to 350 using balanced random coordinates. Balanced random
coordinates provide better fairness among links, and thus
improve the network throughput.

Besides link fairness, we also examine the routing path
lengths using balanced random coordinates. Fig 8 shows the
distribution of switch-to-switch routing path lengths of the
same network discussed above. Balanced random coordinates
also slightly reduce the routing path lengths. The average
routing path length is decreased from 3.35 to 3.20.

V. EVALUATION

In this section, we conduct extensive experiments to eval-
uate the efficiency, scalability, fairness, and reliability of S2
topologies and routing protocols. We compare S2 with two
recently proposed data center networks, namely Small-World
data center (SWDC) [35] and Jellyfish [37].

A. Methodology

Most existing studies use custom-built simulators to evaluate
data center networks at large scale [6] [20] [13] [35] [12] [37]
[36]. We find many of them use a certain level of abstraction
for TCP, which may result in inaccurate throughput results.We
develop our own simulator4 to perform fine-grained packet-
level event-based simulation. TCP New Reno is implemented
in detail as the transportation layer protocol. We simulate
all packets in the network including ACKs, which are also
routed by greedy routing. Our switch abstraction maintains
finite shared buffers and forwarding tables.

We evaluate the following performance criteria of S2.
Bisection bandwidth describes the network capacity by

measuring the bandwidth between two equal-sized part of
a network. we calculate the empirical minimum bisection
bandwidth by randomly splitting the servers in the network
into two partitions and compute themaximum flowbetween

4We experienced very slow speed when using NS2 for data centernetworks.
We guess the existing studies do not use NS2 due to the same reason.
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the two parts. The minimum bisection bandwidth value of a
topology is computed from 50 random partitions. Each value
shown in figures is the average of 20 different topologies.

Ideal throughput characterizes a network’s raw capacity
with perfect load balancing and routing (which do not exist
in reality). A flow can be split into infinite subflows which
are sent to links without congestion. Routing paths are not
specified and flows can take any path between the source
and destination. We model it as amaximum multi-commodity
network flowproblem and solve it using the IBM CPLEX
optimizer [2]. The throughput results are calculated usinga
specific type of network traffic, called therandom permutation
traffic used by many other studies [6] [37] [36]. Random
permutation traffic model generates very little local traffic and
is considered easy to cause network congestion [6].

Practical throughput is the measured throughput of ran-
dom permutation traffic routed by proposed routing protocols
on the corresponding data center topology. It reflects how
a routing protocol can utilize the topology bandwidth. We
compare the throughput of S2 with Jellyfish and SWDC for
both single-path and multi-path routing.

Scalability. We evaluate forwarding state on switches to
characterize the data plane scalability. We measure the number
of forwarding entries for shortest-path based routing. However,
greedy routing uses distance comparison which does not rely
on forwarding entries. Therefore we measure the number of
coordinates stored. The entry-to-coordinate comparison actu-
ally gives a disadvantage to S2, because storing a coordinate
requires much less memory than storing a forwarding entry.

Routing path lengths are important for data center net-
works, because they have strong impact to both network
latency and throughput. For an S2 network, we calculate the
routing path length for every pair of source and destination
switches and show the average value.

Fairness. We evaluate throughput and completion time of
different flows.

Resiliency to network failures reflects the reliability of
the network topology and routing protocol. We evaluate the
routing path length and routing success rate under switch
failures.

SWDC allows each node to store 2-hop neighbors. The
default SWDC configuration has 6 inter-switch ports. For
SWDC configurations with more than 6 inter-switch ports, we
add random links until all ports are used. For Jellyfish, we use
the same implementation ofk-shortest path algorithm [40], [3]

as in [37].
Each result shown by a figure in this section, unless oth-

erwise mentioned, is from at least 20 production runs using
different topologies.

B. Bisection bandwidth

We compare the minimum bisection bandwidth of S2,
Jellyfish, SWDC, and FatTree. For fair comparison, we use
two FatTree networks as benchmarks, a 3456-server 720-
switch (24-port) FatTree and a 27648-server 2880 switch (48-
port) FatTree. Note that FatTree can only be built in fixed sizes
with specific numbers of ports. The ratio of server number
to switch number in above two configurations are 4.8:1 and
12.8:1 respectively. For experiments of S2 and Jellyfish, we
fix the server-to-switch ratio in these two values and vary
the number of switches. In Figure 9, We show the bisection
bandwidth of S2, FatTree, and Jellyfish, in the two server-
to-switch ratios. The isolated diamond and square markers
represent the minimum bisection bandwidth of FatTree. Both
S2 and Jellyfish are free to support arbitrary number of
servers and switches. They have identical bisection bandwidth
according to our results. When using the same number of
switches as FatTree (732 and 2880), both S2 and Jellyfish
provide substantially higher bisection bandwidth than FatTree.
SWDC only uses a fixed 1:1 server-to-switch ratio and 6-
port switches as presented in the SWDC paper [35]. In such
configuration, S2, SWDC, and Jellyfish have similar bisection
bandwidth. However it is not clear whether SWDC can support
incremental growth.

C. Ideal throughput

We model the computation of ideal throughput as a max-
imum multi-commodity network flow problem: each flow is
a commodity without hard demand. We need to find a flow
assignment that maximizes network throughput while satisfy-
ing capacity constraints on all links and flow conservation.
Each flow can be split into an infinite number of subflows
and assigned to different paths. We solve it through linear
programming using the IBM CPLEX optimizer [2] and then
calculate the maximized network throughput. We show the
throughput versus the number of servers of a typical 10-port
125-switch network in Figure 10. When the server number
is smaller than 320, the total throughput increases with the
server number. After that the network throughput decreases
because inter-switch ports are taken to support more servers.
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S2 is marginally worse than Jellyfish, which has been shown
to have clearly higher throughput than FatTree with the same
network equipments [37].

D. Scalability

We consider each coordinate as an entry and compare
the number of entries in forwarding tables. In practice, a
coordinate requires much less space than a forwarding entry.
Even though we give such a disadvantage to S2, S2 still shows
huge lead in data plane scalability. Figure 11 shows the average
and maximum forwarding table sizes of S2 and Jellyfish in
networks with 10 inter-switch ports. The number of entries
of S2 is no more than 500 and doest not increase when the
network grows. The average and maximum forwarding entry
numbers of Jellyfish in MPLS implementation [37] are much
higher. Note the curve of Jellyfish looks like linear but it is
in fact Θ(N logN). When N is in a relatively small range,
the curve ofΘ(N logN) is close to linear. Using the SWDC
configuration, the forwarding state of SWDC 3D is identical
to that of S2, and those of SWDC 1D and 2D are smaller.

From our experiments on a Dell Minitower with an Intel
Core I7-4770 processor and 16GB memory, we also find that
it takes hours to compute all pair 8-shortest paths for Jellyfish
with more than 500 switches. Hence it is difficult for switches
to computek-shortest paths of a large network in a way similar
to link-state routing.

E. Practical throughput

We conduct experiments to measure the practical throughput
of S2, SWDC, and Jellyfish for both single-path and multi-path
routing.For multi-path routing, the sender splits a flow into k
subflows and sends them using S2 multi-path routing. Packets
of the same subflow are forwarded via the same path. Since the
multi-path routing protocol of SWDC is not clearly designed
in [35], we use a multi-path method similar to that of S2.

In Figure 12 we show the network throughput (normalized
to 100) of S2, SWDC, and Jellyfish of a 12-port 250-switch
network with 550 servers, using routing with 1, 2, 4, and
8 paths per flow. S2 and Jellyfish have similar network
throughput. Using 2-path and 4-path routing, S2 has slightly
higher throughput than Jellyfish, while Jellyfish has slightly
higher throughput than S2 for 1-path and 8-path. Both S2 and
Jellyfish overperform SWDC in throughput by about 50%. We
find that multi-path routing improves the throughput of SWDC
very little. We conjecture that multi-path greedy routing of
SWDC may suffer from shared congestion on some links,

since greedy routing paths to a same destination may easily
contain shared links in a single space.

In fact, SWDC has three variants (1D Ring, 2D Torus, and
3D Hex Torus) and special configuration (inter-switch port
number is 6 and one server per switch). Hence we conduct
experiments to compare S2 with all three SWDC networks in
the SWDC configuration. Figure 13 shows that even under the
S2 configuration, S2 provides higher throughput than all three
types of SWDC especially when multi-pathing is used. We
only show SWDC 2D in remaining results, as it is a middle
course of all three types.

Flow completion time: We evaluate both all-flow and per-
flow completion time of data transmission. Figure 14 shows
the time to complete transmitting all flows in the same set
of experiments as in Figure 12. Each flow transmits 16 MB
data. S2 takes the least time (0.863 second) to finish all
flows. SWDC 2D and 3D also finish all transmissions within
1 second, but use longer time than S2.

F. Fairness among flows

We demonstrate that S2 provides fairness among flows in
the following two aspects.

Throughput fairness: We evaluate the throughput fairness
of S2. For the experiments conducted for Figure 12, we show
the distribution of per-flow throughput in Figure 15 where
the x-axis is the rank of a flow. It shows that S2 provides
better fairness than SWDC and more than 75% of S2 flows can
achieve the maximum throughput. Measured by the fairness
index proposed by Jainet al. [24], S2 and SWDC 2D have
fairness value 0.995741 and 0.989277 respectively, both are
very high.

Completion time fairness: We take a representative pro-
duction run and plot the cumulative distribution of per-flow
completion time in Figure 16. We found that S2 using 8-
path routing provides both fast completion and fairness among
flows – most flows finish in 0.2 - 0.4 second. S2 single-path
completes flows more slowly, but still similar to SWDC 8-path
routing. Clearly, SWDC single-path has the worst performance
in completion time as well as fairness among flows. Jellyfish
has similar results as S2, which is not plotted to make the
figures clear.

G. Routing Path Length

Figure 17 shows the average routing path length of S2,
SWDC, and Jellyfish by varying the number of switches (12-
port). We find that the average path length of S2 is clearly
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shorter than that of SWDC, and very close to that of Jellyfish,
which uses shortest path routing. For 800-switch networks,
the 90th percentile value is 8 for SWDC and 6 for S2 and
Jellyfish. The 10th percentile values is 2 for all S2 and Jellyfish
networks, and 3 for all SWDC networks with more than 500
switches. We do not plot the 10th and 90th values in the figure
because they make the figure too crowded. Results show that
greediest routing in multiple spaces produces much smaller
path lengths than greedy routing in a single space.

H. Failure Resiliency

In this set of experiments, we measure the routing perfor-
mance of S2, SWDC, and Jellyfish, under switch link failures
(a switch failure can be modeled as multiple link failures).We
show the routing success rate versus the fraction of failed links
in Figure 18. S2 is very reliable under link failures. When 20%
links fail, the routing success rate is higher than 0.85. SWDC
and Jellyfish perform clearly worse than S2. When 20% links
fail, the routing success rate of SWDC is 0.70 and that of
Jellyfish is 0.59. S2 uses greedy routing in multiple spaces,
hence it is less likely to encounter local minimum under link
failure compared to SWDC. Jellyfish has the worst resiliency
because it uses pre-computed paths.

VI. D ISCUSSION

A. Data center network wiring

Labor and wiring expenses consume a significant part of
financial budget of building a data center. S2 can be deployed
with cabling optimization to reduce the cost. In an S2 topology,
the majority of cables are inter-switch ones. Thus we propose
to locate the switches physically close to each other so that
to reduce cable lengths as well as manual labor. Compared
to FatTree, S2 requires less network switches to obtain a cer-
tain bisection bandwidth. Therefore the energy consumption,
infrastructure and labor cost can be reduced accordingly.

Benefits of coordinates: It is possible to accommodate
the switches of an S2 network inside several standard racks.
These racks can be put close to each other and we suggest to
use aggregate cable bundles to connect them. The coordinates
provides a way to reduce inter-rack cables which also helps
to arrange the links in order. A virtual space can be divided
into several quadrants and we may allocate switches to racks
based on corresponding quadrants. For inner-rack cables, a
unique method provided by the nature of coordinates, is using
a patch panel that arranges the links in order according to the
coordinates. For inter-rack cables, coordinates make it possible
to build aggregate bundle wires that are similar to flexible flat
cables.

Hamedazimiet al. [21] proposed to use free-space optical
communication in data center networks by putting mirrors
and lens on switch racks and the ceiling of data center to
reflect beams. Coordinates provide a unique way to locate the
switches, and make it able to have these beams neatly ordered.

B. Resiliency to network dynamics

Shortest path based approaches employ either distributed
protocols (e.g., OSPF) or SDN to accommodate to network
dynamics and re-compute shortest paths, which takes time and
control traffic to converge. On the other hand, S2 is more
robust to network dynamics as shown in Figure 18 because
switches make routing decisions locally and do not need to
re-install forwarding entries.

C. Direct server connection

Although S2 is proposed to interconnect ToR switches, we
may also use the S2 topology to connect servers directly and
forward packets use S2 routing protocols. Similar approaches
are also discussed in CamCube [4] and SWDC [35]. There are
mainly two key advantages to use this topology. First, greedy
routing on a server-centric topology can effectively implement
custom routing protocols to satisfy different application-level
requirements. This service is called symbiotic routing [4].
Second, hardware acceleration such as GPUs and NetFPGA
can be used for packet switching to improve routing latency
and bandwidth [35].

D. Switch heterogeneity

S2 can be constructed with switches of different port num-
bers. The multiple ring topology requires each switch should
have at least 2L inter-switch ports. According to Figure 3 and



other experimental results, five spaces are enough to provide
good network performance. It is reasonable to assume that
every switch in the network has at least 10 inter-switch ports.
Switches with less ports may carry fewer servers to maintain
the required inter-switch port number.

E. Possible implementation approaches

We may use open source hardware and software to im-
plement S2’s routing logic such as NetFPGA. S2’s routing
logic only includes simple arithmetic computation and numer-
ical comparison and hence can be prototyped in low cost.
Besides, S2 can also be implemented by software defined
networking such as OpenFlow [29]. According to Devoflow
[30], OpenFlow forwarding rules can be extended with local
routing decisions, which forward flows that do not require
vetting by the controller. Hence the SDN controller can simply
specify the greediest routing algorithm in location actions of
switches. Compared to shortest path routing, S2 has two major
advantages to improve the SDN scalability. First, it reduces
the communication cost between switches and the controller.
Second there is no need to maintain a central controller that
responds to all route queries of the network. Instead, multiple
independent controllers can be used for a large network, each
of which is responsible to switches in a local area. Such load
distribution can effectively mitigate the scalability problem of
a central controller [25] [7].

VII. C ONCLUSION

The key technical novelty of this paper is in proposing
a novel data center network architecture that achieves all
of the three key properties: high-bandwidth, flexibility, and
routing scalability. The significance of this paper in termsof
impact lies in that greediest routing of S2 is the first greedy
routing protocol to enable high-throughput multi-path routing.
We conduct extensive experiments to compare S2 with two
recently proposed data center networks, SWDC and Jellyfish.
Our results show that S2 achieves the best of both worlds.
Compared to SWDC, S2 provides shorter routing paths and
higher throughput. Compared to Jellyfish, S2 demonstrates
significant lead in scalability while provides likewise high
throughput and bisectional bandwidth. We expect greedy
routing using multiple spaces may also be applied to other
large-scale network environments due to its scalability and
efficiency.
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APPENDIX

Proof of Lemma 1.
Proof:

(1) Let p be the switch closest tox among all switches in the
space.
(2) The ring of this space is divided byxs and x into two
arcs.At least one this two has length no greater than1

2. Let it
be x̃s,x with lengthL(x̃s,x). We haveCD(xs,x) = L(x̃s,x)≤ 1

2.
(3) If p is on x̃s,x, let the arc betweens and p on x̃s,x be
x̄s,xp.
(3.1) If s has an adjacent switchq whose coordinate is on
x̄s,xp, thenL(x̄q,x)< L(x̃s,x)≤ 1

2. HenceCD(q,x)= L(x̄q,x)<
L(x̃s,x) =CD(xs,x).
(3.2) If s has no adjacent switch on̄xs,xp, p is x’s adjacent
switch. Henceshas an adjacent switchp such thatCD(x,xp)<
CD(x,xs). (4) If p is not onx̃s,x, we have an arċxs,x,xp. For
the arcx̄,xp on ẋs,x,xp, we haveL(x̄,xp)< L(x̃s,x). (Assume
to the contrary ifL(x̄,xp) ≥ L(x̃s,x). Then we cannot have
CD(x,xp)<CD(x,xs). There is contradiction.)
(4.1) If s has an adjacent switchq whose coordinate is
on ẋs,x,xp, then L(x̄q,x) < L(x̃s,x) ≤ 1

2. HenceCD(q,x) =
L(x̄q,x)< L(x̃s,x) =CD(xs,x).
(4.2) If s has no adjacent switch oṅxs,x,xp, p is x’s ad-
jacent switch. Hences has an adjacent switchp such that
CD(x,xp)<CD(x,xs).
(5) Combining (3) and (4),s always has an adjacent switchs′

such thatCD(x,xs′)<CD(x,xs).

Proof of Lemma 2.
Proof:

(1) Suppose the minimum circular distance betweens and
t is defined by their circular distance in thejth space, i.e.
CD(xt j ,xs j) = MCDL(~Xs,~Xt).
(2) In the jth space,t is the switch with the shortest circular
distance toxt j , which is CD(xt j ,xt j ) = 0. Sinces is not t,
s is not the switch with the shortest circular distance toxt j

,because any two coordinates are different.
(3) Based on Lemma 1,s has an adjacent switchs′ such that
CD(xt j ,xs′ j)<CD(xt j ,xs j).
(4) MCDL(~Xs′ ,~Xt) ≤ CD(xt j ,xs′ j) < CD(xt j ,xs j) =

MCDL(~Xs,~Xt).
(5) Since v is the switch that has the shortest MCD to~Xt

among all neighbors ofs, we have
MCDL(~Xv,~Xt)≤MCDL(~Xs′ ,~Xt)< MCDL(~Xs,~Xt).

Proof of Proposition 3.
Proof:

(1)Suppose switchs receives a packet whose destination

switch is t. If s= t, the destination host is one of the servers
connected tos. The packet can be delivered.
(2) If s 6= t, according to Lemma 2,s will find a neighbor
v such thatMCDL(~Xv,~Xt) < MCDL(~Xs,~Xt), and forward the
packet tov.
(3) The MCD from the current switch to the destination
coordinates strictly reduces at each hop. Greediest routing
keeps making progress. Therefore, there is no routing loop.
Since the number of switches is finite, the packet will be
delivered tot.

ALGORITHM 1. GREEDIEST ROUTING ON SWITCHs

input: Coordinates of all neighbors,
destination addresses〈~Xt , ID〉.

1 if ~Xs = ~Xt

2 then h← the server connected tos, with identifier ID
3 Forward the packet toh
4 return ;
5 ComputeMCDL(~Xv,~Xt) for all s’s neighbor switchv
6 Find v0 such thatMCDL(~Xv0,~Xt) is the smallest
7 Forward the packet tov0

ALGORITHM 2. MULTI -PATH ROUTING ON SWITCHs

input: Coordinates of all neighbors,,
destination addresses〈~Xt , ID〉

1 if ~Xs = ~Xt

2 then h← the server connected tos, with identifier ID;
3 Forward the packet toh;
4 return ;
5 if the packet is not from a server connected tos
6 then Perform greediest routing;
7 return
8 V← /0;
9 for each neighborv of s

10 if MCDL(~Xv,~Xt)< MCDL(~Xs,~Xt) then V←V ∪{v}
11 Selectv0 from V by hashing the source and destination

addresses and ports;
12 Forward the packet tov0.

ALGORITHM 3. BALANCED RANDOM COORDINATE GENERATION

input: Currentn coordiantesx1,x2, ...,xn in a circular space
output: One new coordiantexnew

1 if n= 0 then return RandomNumber(0,1)
2 if n= 1
3 then a← x1,b← x1+1
4 else find xr1,xr2 amongx1,x2, ...,xn such that

xr1 < xr2 andCD(xr1,xr2) is the smallest.
5 if xr2− xr1 <

1
2

6 then a← xr1,b← xr2

7 else a← xr2,b← xr1+1
8 t←RandomNumber(a+ 1

3n,b−
1
3n)

9 if t > 1 then t← t−1
10 return t
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