
ar
X

iv
:1

50
1.

07
58

6v
5

 [c
s.

N
I]

 6
 M

ay
 2

01
6

FAIR: Forwarding Accountability for Internet Reputability

Christos Pappas
ETH Zürich

pappasch@inf.ethz.ch

Raphael M. Reischuk
ETH Zürich

reischuk@inf.ethz.ch

Adrian Perrig
ETH Zürich

adrian.perrig@inf.ethz.ch

Abstract—This paper presents FAIR, a forwarding account-
ability mechanism that incentivizes ISPs to apply strictersecurity
policies to their customers. The Autonomous System (AS) of the
receiver specifies a traffic profile that the sender AS must adhere
to. Transit ASes on the path mark packets. In case of traffic
profile violations, the marked packets are used as a proof of
misbehavior.

FAIR introduces low bandwidth overhead and requires no
per-packet and no per-flow state for forwarding. We describe
integration with IP and demonstrate a software switch running
on commodity hardware that can switch packets at a line rate
of 120 Gbps, and can forward 140M minimum-sized packets per
second, limited by the hardware I/O subsystem.

Moreover, this paper proposes a “suspicious bit” for packet
headers — an application that builds on top of FAIR’s proofs
of misbehavior and flags packets to warn other entities in the
network.

I. I NTRODUCTION

The frequency and intensity of attacks rooted in miscon-
figured or vulnerable Internet services has increased in thelast
months: in February 2014, attackers abused misconfigured time
synchronization servers [1] to attack Cloudflare with a peakof
400 Gbps [2]. For 2014, Akamai reports a 90% increase in total
DDoS attacks and a 52% increase in average peak bandwidth
compared to the previous year [3]. Moreover, man-on-the-side
script injection attacks [4] and vulnerable web services have
been used as general-purpose attack vectors [5, 6].

These events are explained by the following observations.
First, the lack of accountability in today’s Internet facilitates
attacks with spoofed addresses, allowing attackers to evade
blocking mechanisms. Second, the architectural limitations of
today’s Internet lead to insufficiently effective DDoS defense
mechanisms. Third, ISPs have no incentive to punish their mis-
behaving customers, nor to monitor them. Typically, monitor-
ing comes with high storage and computational requirements
that yield additional costs for network operators.

In order to address these problems, the security community
has considered several solutions, which come with certain
shortcomings:source accountability schemes[7, 8] encounter
routing scalability problems and introduce prohibitive band-
width overhead;cloud-based retroactive DDoS defense ser-
vices introduce latency and are insufficiently effective, yet
prices can exceed several thousand dollars per month [9];capa-
bility schemes[10–13] introduce complexity and require per-
flow operations;extensive filtering[14–16] requires operator
vigilance and out-of-band coordination among ISPs.

Although we stand in solidarity with these proposals, this
paper takes a different approach and proposes a lightweight
scheme that incentivizes ASes to solve their security problems.
To this end, we leverageforwarding accountability. In a
nutshell, the key idea behind forwarding accountability isto
hold ASes accountable for the traffic they forward; transit ASes
embed proofs in the packets such that, in case of malicious
traffic, a destination AS can later use these proofs to show to
the transit ASes that they have indeed forwarded the malicious
traffic. We stress that transit ASes do not store any information,
but given proofs of misbehavior they can deprioritize traffic
from provably malicious ASes. This protects the victim and
increases capacity for benign traffic.

We take volumetric DDoS attacks as one possible use
case and demonstrate the virtues of forwarding accountability.
Consider the topology depicted in Figure 1 and assume web
servers, or even servers of critical infrastructures, are located
inside ASn. We assume, exactly as happened in 2014 [2], that
an attacker launches a reflection attack against the victims
by exploiting the NTP protocol running on misconfigured
servers. More precisely, the attacker fakes the victim’s source
IP address and sends NTP commands to the misconfigured
NTP servers within AS0. The NTP servers reply to the victim
with responses that are up to 200 times larger than the initial
rogue requests, overpowering the victim’s resources. With
forwarding accountability in place, the transit ASes embed
proofs in the packets that will remind them later that they
forwarded the traffic. When the victim reports the attack to
transit ASes (AS1 and AS2) by providing the proof, the transit
ASes acknowledge that they indeed forwarded the malicious
traffic. It then becomes evident that AS0 sourced the malicious
traffic, namely from the misconfigured NTP servers. AS1 can
then drop (or at least deprioritize) AS0’s traffic and thus protect
not only ASn and its servers, but also all networks between
AS0 and ASn. This approach provides benefits also in sparse
deployment, where only one transit AS accepts proofs of
misbehavior and takes action. Hence, adoption does not require
coordination among ISPs.

A cost-effective incremental deployment path is critical to
the success of any practical security scheme. ISPs’ willingness
to adopt security mechanisms is motivated by their reputation
and the competitive market environment [17], but constrained
by the additional expenses and the lack of economic incen-
tives [18]. In addition, recent Internet regulations [19] intend
to actively involve ISPs in stopping the dissemination of
malicious traffic, thus making security mechanisms a necessity
in the near future. Despite regulatory pressure for adoption of
security mechanisms, efficiency and incremental deployment
remain important properties that drive adoption.

http://arxiv.org/abs/1501.07586v5

Contributions. This paper proposes an architectural mecha-
nism, FAIR, to achieve Forwarding Accountability for Internet
Reputability. The key concept is that transit ASes embed short
cryptographic markings in the packets that will later prove
to the ASes that they forwarded these packets. In case of
malicious traffic, destination ASes can use these proofs to show
to transit ASes that they have indeed forwarded the malicious
traffic. After acknowledging the proof of misbehavior, the
transit ASes can deprioritize traffic from malicious ASes,
increasing network capacity for benign sources.

FAIR is founded on a strong threat model where source,
destination, and transit ASes can be compromised or malicious.
Moreover, FAIR has the following properties:

• low overhead for processing and bandwidth.

• no per-packet and no per-flow state for forwarding.

• simple key management with one shared key between
source and destination ASes.

• deployment compatibility with IP networks.

• complementary applicability to DDoS defense
schemes.

We have designed and implemented a software switch
performing FAIR packet marking that operates at line rate of
up to 120 Gbps; it forwards 140M minimum-sized packets per
second on a commodity machine, which is currently limited
by the hardware I/O subsystem.

With FAIR in place, we reconsider Bellovin’s April Fool
proposal of the “evil bit” [20] and propose an extension to
our proposal, the “suspicious bit”: ASes that forward traffic
from misbehaving customers mark this traffic as suspicious,
informing other entities in the network. The suspicious bit
provides a strong incentive for an AS to watch its traffic and
mark malicious traffic itself with the suspicious bit, otherwise
its upstream ISP may mark all of the AS’s traffic as suspicious,
thus, causing collateral damage to benign senders.

II. OVERVIEW OF FAIR

Before describing our assumptions and protocol details,
we first present a high-level overview of FAIR. Our proposal
combines ideas from capability systems [10–12] and traceback
mechanisms [21], yet its approach is fundamentally different:
instead of carrying capabilities, packets collect proofs that will
remind transit ASes of having forwarded these packets. In case
of malicious traffic, the destination AS sends the proofsback
to the transit ASes. Communication under FAIR proceeds in
three phases. These are depicted in Figure 1 using a line-
network topology with cooperating ASes (gray circles) and
non-cooperating ASes (black circles)1. Cooperating ASesare
ASes that support FAIR, which, however, does not imply
benign behavior.

• Phase 1 (Setup):Source and destination ASes set
up a communication channel and agree on a sending
policy that governs the aggregate traffic from the

1This is a simplified communication model, which assumes thatall flows
from the source to the destination AS follow the same AS path.We will relax
this assumption later.

AS0 AS1 AS2

1a. Initiate channel setup and policy P

1b. Complete channel setup and policy P

2. Data transmission

3. Prove misbehavior

...

Source Destination

ASn

Fig. 1: Communication under FAIR.

source AS to the destination AS over a specific AS
path. Such a policy can specify the average sending
rate, the maximum burst size, or even forbid abnormal
packet headers that are used for OS fingerprinting and
flooding attacks (e.g., Christmas tree packets [22]).

• Phase 2 (Transmission):The source sends data pack-
ets to the destination over the communication channel.
Each cooperating transit AS inscribes minimal infor-
mation in the packet headers, which serves as a proof
to itself that it has forwarded the packets.

• Phase 3 (Protest):If the destination AS detects a
policy violation, it proceeds to the protest phase and
provides the sending policy together with the data
packet headers to the transit ASes, as a proof of
misbehavior. This proof of misbehavior identifies the
adversary.

Setting up a sending policy specifies the sending properties
of the aggregate traffic from the source AS to the destination
AS. A violation implies that the source AS is compromised,
malicious, or has poor security practices. A destination AS,
depending on its security policies, can drop traffic from source
ASes that do not set up a sending policy. Transit ASes receive
the proof of misbehavior and can deprioritize inappropriate
traffic, depending on their policies. In the DDoS use case, a
destination AS establishes a traffic profile with its source ASes
and specifies the receiving rates according to its resources.
Hence, in case of an attack, the destination AS can prove to
transit ASes the sending rate violations.

A. Setup (Phase 1)

Source and destination ASes set up a channel with a send-
ing policy P for traffic from the source AS to the destination
AS. The sending policy is formally expressed by the Token
Bucket (TB) parameters [23] that the source AS should use for
traffic shaping towards the destination AS. In the TB algorithm,
a fixed-sized bucket is filled with tokens at a certain rate. A
token represents a permission to send a specific number of
bits. For a packet transmission, a number of tokens equal to the
packet size is removed from the bucket. If there are not enough
tokens, the packet either waits for more tokens (shaper) or is
discarded (policer). The TB is the formal description of the
properties of a transmission. It allows burstiness, but bounds
it, as the maximum burst size is proportional to the bucket
size.

More specifically, the destination AS specifies two param-
eters: the Committed Information Rate (CIR), i.e., the average
amount of data sent per time unit; and the Committed Burst
Size (CBS), i.e., the maximum amount of data that can be sent
(for a given time interval). The time interval (Tc) is determined
through the relationCIR = CBS/Tc. Using these values, the
sending policy is then established as follows:

i. The source AS constructs a sending policy packet and
sends it to the destination AS.

ii. Each cooperating transit AS indicates its presence on
the path. It does not interfere with the sending policy
details, nor does it keep per-policy state.

iii. The destination AS completes the sending policy by
filling in the CIR andCBS values and returns the
information to the source AS.

This is merely an example of a policy construction to
demonstrate the necessary information to prove misbehavior
in the data plane, which is our focus. For example, to handle
temporary increased traffic volumes (e.g., during popular sport
events) the source AS can renegotiate the policy’s properties
and request more bandwidth.

The setup phase can also be substituted by other future In-
ternet proposals. For example, Route Bazaar [24] uses publicly
verifiable multilateral contracts among ASes; SCION [25, 26]
provides explicit path-validation information for AS paths.

B. Data Transmission (Phase 2)

We describe the data-plane operations performed by source
ASes, cooperating ASes, and destination ASes. These opera-
tions are applied to each data packet.

Source AS. The source sends data packets over the known
path. Border routers of the source AS enforce the sending pol-
icy by applying the parameters to the Token Bucket. Moreover,
they embed additional information in the packet, includinga
sequence number and a sending time. This information is used
at a later stage to construct a proof of a violation.

Transit ASes. Each egress border router of a cooperating
transit AS performs the following operations upon packet
reception:

i. The border router verifies that the source’s timestamp
in the packet is recent and does not deviate from the
local time beyond a threshold, otherwise the border
router drops the packet.

ii. The border router marks the packet, indicating that
it has “seen” the packet. The marking is crypto-
graphically protected with a message authentication
code. Since each marking is used to remind only the
corresponding AS that inscribed it, it is computed
with a secret key that is only known to the AS.
This marking is used in the third phase to remind
the corresponding AS that it indeed forwarded the
packet.

Destination AS. The destination AS monitors the communi-
cation channel and performs traffic policing to detect sending
policy violations. It stores only packet headers as they contain
the markings for the proof of misbehavior, which enables the

corresponding transit ASes to acknowledge that they indeed
forwarded the packets. If a violation is detected, the destination
uses the received packets and proves misbehavior to the transit
ASes.

C. Proving Misbehavior (Phase 3)

The goal of Phase 3 is to enable destination ASes to prov-
ably protest to other ASes. Taking action against misbehavior
is a decision that a destination AS makes according to its
interests and policies. Complaints for malicious behavioris
an offline procedure between the destination and the transit
ASes. The procedure occurs in two rounds.

First, the destination provides the sending policy and the
data packet headers to all cooperating ASes on the path. The
sending policy contains the transmission properties (CIR and
CBS) for the communication channel. The data packet headers
contain information for the actual transmission properties.
The ASes examine the evidence and acknowledge or reject
the complaint. An approved complaint means that the AS
acknowledges that it forwarded inappropriate traffic compared
to the sending policy specification. This, however, does not
mean that the source AS is malicious. For example, if a
transit AS injects packets, the source is not responsible for the
violation. The destination AS collects approved and rejected
complaints from the transit ASes.

In the second round, the destination AS sends all the col-
lected information back to the ASes. Based on this information,
the ASes on the path conclude whether the source AS is
compromised or whether there were attempts to falsely blame
an innocent source. In Section IV-A we explain situations with
malicious transit ASes.

III. T HE FAIR PROTOCOL

We make certain design choices that construct a lightweight
accountability mechanism: 1) proofs of misbehavior are car-
ried in data packets, allowing stateless forwarding for transit
ASes; 2) probabilistic detection of misbehavior introduces
minimal overhead per-packet (a few bytes), keeping bandwidth
overhead low; 3) all data-plane cryptography is symmetric,
degrading forwarding performance marginally.

A. Assumptions

• The source knows the AS-level path to the destination
and also knows which ASes on the path deploy the
mechanism. BGP update messages contain the AS-
level path in the AS-path attribute [27] and cooper-
ating ASes can advertise their support for FAIR in
their BGP announcements as a transitive attribute.

• Participating parties can obtain and authenticate the
public keys of all cooperating ASes.We leverage
RPKI [28], a PKI framework that enables entities to
authenticate resource certificates (issued by Regional
Internet Registries) that bind Autonomous System
Numbers (ASNs) to the corresponding public keys,
given the correct RPKI public root key.

• Source and destination ASes perform traffic shaping
and policing based on the Token Bucket algorithm. For

Source Timestamp

Sequence Number

MACNonce K1

16 bits

24 bits

8 bits

4 bits 4 bits

MACNonce Kn-14 bits 4 bits

.

.
.
.

Source

AS1

ASn-1

AS0

NextAS 8 bits

Integrity Check Value

Fig. 2: FAIR Packet Header.

example, Cisco’s shaping mechanisms (Generic Traf-
fic Shaping, Class-Based Shaping, Distributed Traffic
Shaping) and policing mechanisms (Committed Ac-
cess Rate, Traffic Policing) are based on the Token
Bucket [23].

Furthermore, we assume that the cryptographic mecha-
nisms are secure, i.e., cryptographic hash functions cannot be
inverted, signatures cannot be forged, and encryptions cannot
be broken.

B. Parameters

Cryptographic Operations. Source and destination ASes
establish a secret key (KSD) between them and cache the
key to avoid redundant computations. To establish the key,
they can obtain the public keys from the RPKI and use a non-
interactive Diffie-Hellman key exchange [29, 30]. Furthermore,
each transit ASi uses two local secret keys that can be changed
independently from the other ASes: one long-term key for
control-plane operations (̂Ki) and one key for data-plane
operations (Ki). These local secret keys are independent of
the communication channels that traverse the AS. Furthermore,
transit ASes keep the previous keys for at leastTm = 12 hours
to be able to verify proof that refers further to the past.

Protest Time Margin (Tm). The destination can protest right
after a violation is detected or defer the process to a later
point in time. However, we set a time margin after which
transit ASes are not obliged to examine proofs of violations,
to avoid situations where complaints refer to violations too far
in the past. The value for this parameter is agreed upon and
universally known to the cooperating ASes. There is no strict
requirement for choosing this value; we useTm = 12 hours
so that ASes have a loose time window to prove misbehavior.

Clock Deviation. We assume loose clock synchronization
between ASes and a reference clock can be set up with an
error less than 0.5 seconds; GPS can provide sub-microsecond
precision [31]. Furthermore, we assume that the end-to-end
packet latency (propagation, transmission, queuing, and pro-
cessing delay) does not exceed one second.

Reported timestamps in packets are at the granularity of
seconds, hence packets with timestamps that differ more than
three seconds from the local time at each router are dropped.
This check ensures that the timestamps in the packets are fresh
and can be used in the protest phase. The three-second margin

Fig. 3: Summary of Symbols and Notation

P [i] Policy packet information inscribed by ASi on the path.

CIR Committed Information Rate of the Token Bucket.

CBS Committed Burst Size of the Token Bucket.

fair [i] FAIR header information inserted by ASi .

PK
+
i

/PK
−

i
Public/private key pair of ASi.

KSD Shared key between source and destination.

Ki Local secret key of ASi, for data-plane operations.

K̂i Long-term secret key of ASi , for control-plane operations.

H(·) A collision-resistant hash function, SHA-3.

MACK (·) Message Authentication Code using keyK.

Signi(·) Signature of ASi with private keyPK
−

i .

Tm Protest Time Margin.

X|(m) Them Most Significant Bits ofX.

X|(m) Them Least Significant Bits ofX.

ensures that packets will not get dropped due to boundary
effects when the end-to-end latency and the clock difference
add up (one second maximum clock difference between ASes,
one second maximum end-to-end latency, and one second due
to possible boundary effects during clock transitions).

C. Protocol Operations

We describe the required operations starting with the data
plane, which realizes our notion of forwarding accountability.
Then, in the control plane, we present a low-latency channel
setup and the corresponding sending policy construction. In the
end, we show how the sending policy and the data packets are
used to prove misbehavior. Figure 3 summarizes the notation
we use throughout the paper.

1) Data Plane. First, we show the necessary information
and then the interactions between the involved entities. The
information and operations described in this section applyto
every data packet. Figure 2 shows the corresponding FAIR data
packet header.

• Source Timestamp: an indication for the time when the
packet has left the source AS. It is a 16-bit value at the
granularity of 1 second. It suffices to capture durations
up to 18 hours, hence it constrains the possible values
for the Protest Time MarginTm (we have chosen
Tm = 12 hours).

• Sequence Number: a 24-bit monotonically increasing
packet counter inserted by the source AS. The first
packet of a communication channel gets the value 0.

• Integrity Check Value (MACKSD
): an 8-bit MAC over

the payload-length field (in the network-layer header)
and the other FAIR related information inserted by the
source AS (source timestamp and sequence number).
The purpose of the MAC is to signal on-path header
modification; it is computed with the shared keyKSD .
Although the MAC length is short, we do not use the
MAC to provide integrity guarantees per packet, but
to signal misbehavior over an aggregate of packets. In
Section IV-A, we quantify the security implications
of this idea. The payload length is included in the
computation of the ICV so that the destination stores
packet headers only, not the whole packets.

• Nonce fields: a 4-bit value inserted by each AS on the
path. It functions as an indicator of having forwarded
the packet and to enable detection of replay attacks;
the values are chosen uniformly at random.

• MAC fields (MACKi
): a 4-bit MAC inserted by each

AS on the path. The input to the MAC is the in-
formation that must be integrity-protected to securely
prove a sending-rate violation in the protest phase:
the packet length in the network-layer header, the
source’s timestamp and sequence number in the FAIR
header, and the nonce field. The local secret keyKi

used to compute the MAC is maintained by each
AS independently. As described earlier, we use short
MACs to signal misbehavior over an aggregate of
packets. We will show that even a 1-bit MAC can be
used for our purpose (Section IV-A). If a subsequent
entity changes any of the previous information in the
packet, the MAC verification will fail.

• NextAS: an 8-bit pointer to the position in the FAIR
header where the next AS on the path will insert its
information. The pointer is initialized by the source
and each transit AS modifies it accordingly. The 8-bit
field suffices for inter-domain paths up to 256 hops;
the average AS-path length today is 3.9 hops (3.5
hops) for IPv4 (IPv6) [32].

The sequence numbers, timestamps, and nonces are used
to provide loose replay detection at the AS-level granularity.
Replay detection reveals such an attack in the protest phase;
the purpose is not to have the destination AS drop replayed
packets. The monotonically increasing values of the sequence
numbers together with the timestamp values are used to detect
replay attacks. Multiple occurrences of a sequence number
for the same timestamp reveal the replay. Furthermore, the
clock deviation check at each AS hop prevents an attacker
from storing and replaying the packet at a later point in time.
The random nonces inscribed by each AS provide information
about the adversary’s position on the path. Nonces localize
the adversary to a portion of the path, depending on which
nonce fields repeat and which change per replayed packet.
Furthermore, the short MAC fields serve as a misbehavior
flag (rather than as integrity guarantees per packet): a few
verification failures in the protest phase indicate misbehavior.
Sections III-D and IV-A provide further details.

Processing of Outbound Packets:The source AS creates a
FAIR packet header and fills in its information. The new packet
header is placed between the network and transport-layer
headers and is created with a sufficient length to accommodate
the information of the transit ASes; this ensures that the packet
length does not increase en route. The AS-level path is known
to the source AS, and each transit AS overwrites 1 byte of
the header. Based on the destination address in the packet
header, the border router of the source AS determines the
shared key with the destination AS, the current packet count
for this communication channel (seqno), and the output port to
forward the packet to. Procedure 1 summarizes the operations
that the source performs.

Processing of Forwarding Packets:We describe the actions
that each egress border router of the cooperating ASes on the
path (ASi , 1 ≤ i < n) performs for each data packet.

Procedure 1: Processing of Outbound Packets
procedure SEND(pkt, pkt hdr , fair)

⊲ pkt refers to the whole packet
⊲ pkt hdr contains the network-layer packet header
⊲ fair [] is the FAIR header that the source creates
⊲ cnt the packet counter per communication channel
(port,KSD , cnt)← lookup(pkt hdr)
fair [0].time ← time()|(16)
fair [0].seqno ← ++cnt|(24)
fair [0].icv ← MACKSD

(pkt hdr .payload len

|| fair [0].time || fair [0].seqno)|(8)

fair.nextAS ← 0
transmit(pkt , port)

Procedure 2: Processing of Forwarding Packets
procedure FORWARD(pkt, pkt hdr , fair)

⊲ pkt refers to the whole packet
⊲ pkt hdr contains the network-layer packet header
⊲ fair [] is the FAIR header
diff ← |fair [0].time − time()|(16)|
if diff > 3 anddiff < 216 − 3 then

drop packet
fair [i].nonce ← rand()|(4)

++fair .nextAS
fair [i].mac ← MACKi

(pkt hdr .payload len || fair[0].time

|| fair[0].seqno || fair [i].nonce)|(4)

port ← lookup(pkt hdr)
trasmit(pkt , port)

i. Check the source’s timestamp in the received packet
and compare it with the local time. If the difference
is greater than 3 seconds, drop the packet, otherwise
forward the packet according to Step (ii). Step (i)
ensures that the source is not indicating false times-
tamps.

ii. Add a short nonce (4 bits) and a MAC (4 bits) at the
corresponding AS-specific position in the header.

iii. Increment thenextAS pointer.

Note that transit ASes do not need to perform destination-
based key switching since they use their local secret to mark
transit traffic. A non-cooperating AS ignores the FAIR header
and forwards the packet according to the destination address.
Procedure 2 summarizes these operations.

Processing of Inbound Packets:The destination performs the
following data-plane operations:

i. Check the timestamp, similar to transit ASes.
ii. Detect sending policy violations per established com-

munication channel. This is straightforward by using
Token Bucket as a policer, given theCIR andCBS
values.

iii. Verify MAC KSD
to ensure that the source’s informa-

tion has not been modified en route.

The destination stores the packet headers (network-layer
headers and FAIR headers) as they contain potential proofs of
misbehavior. Procedure 3 summarizes these steps.

2) Control Plane. We present a policy setup that introduces
no latency in the data plane between the communicating end
hosts of source and destination ASes. The setup is based on
two concepts. First, ASes advertise their IP prefixes through
BGP together with a default sending policy that is used until

Procedure 3: Processing of Inbound Packets
procedure RECEIVE(pkt hdr , fair)

⊲ pkt hdr contains the network-layer packet header
⊲ fair [] is the FAIR header
diff ← |fair [0].time − time()|(16)|
if diff > 3 anddiff < 216 − 3 then

drop packet
icv ← MACKSD

(pkt hdr .payload len

|| fair [0].time || fair [0].seqno)|(8)

if icv 6= fair [0].icv then
drop packet

source and destination ASes establish a new sending policy
with different properties. Second, using mostly symmetric-
key cryptography keeps the setup latency low. Specifically,
only source and destination ASes sign the sending policy
with their private keys, making the policy details provable
and non-repudiable. Transit ASes insert MACs that remind
them of being on the path of the communication channel. The
combination of the aforementioned concepts allows end hosts
to communicate without waiting for a sending policy setup and
guarantees that the latency of the setup remains low.

First, we summarize all the information that is required and
then we show how the policy is constructed.

• Current timestamp: inserted by the source AS, indicat-
ing the current time as the start for the communication
channel.

• Expiration timestamp: inserted by the destination AS,
indicating the end of the communication channel.

• Token Bucket properties:CIR and CBS values are
inserted by the destination AS and specify the sending
properties for the source (see Section II-A).

• FAIR-AS path: the source AS inserts the list of
cooperating ASes on the path to the destination, which
is known through the BGP advertisements.

• Autonomous System Numbers: each AS on the path
inserts its own ASN that serves as an identifier.

• Signatures: source and destination ASes insert a sig-
nature over the policy details.

We provide more details about how this information is used.

The source AS creates a policy packet (P) and sends it to
the destination AS.P [0] corresponds to information inserted
by the source AS andP [n] to information inserted by the
destination AS.

i. The source AS creates a policy packetP , with a
timestamp indicating the start for the communica-
tion channel. Moreover, the source inscribes its Au-
tonomous System NumberASN0 , the current time,
the cooperating ASes on the path, and signs all the
information with its private keyPK−

0 . In particular,
to avoid length-dependent security issues with signa-
tures the hash of the information is signed [33].

P [0].asn ← ASN0

P [0].time ← time()
P [0].path ← AS path

P [0].sig ← Sign0(H(P [0].asn ||P [0].time ||P [0].path))

ii. Each transit ASi , 1 ≤ i < n, indicates its presence
on the path. It adds itsASNi and inserts a MAC over
all the previous information. The MAC is computed
with a long-term local secret (̂Ki), known only to
ASi , that is used for control-plane operations.

P [i].asn ← ASNi

P [i].mac ← MAC
K̂i

(H(P [0] || · · · ||P [i − 1] ||P [i].asn))

iii. The destination AS receivesP and leverages the
RPKI to verify the signature of the source AS. If
verification succeeds, it fills in itsASNn , the expira-
tion time, and the Token Bucket values ofCIR and
CBS . The destination signs the contents of the final
sending policy and sends it back to the source AS.

P [n].asn ← ASNn

P [n].expiration ← futureTime

P [n].CIR ← CIR

P [n].CBS ← CBS

P [n].sig ← Sign
n

(H(P [0] || · · · ||P [n − 1] ||P [n].asn
||P [n].expiration ||P [n].CIR ||P [n].CBS))

iv. Source and destination ASes use the RPKI and per-
form a non-interactive Diffie-Hellman key exchange
to derive a shared key (KSD) between them.

Note that transit ASes do not store information about
the sending policy, and only indicate their presence in the
communication channel. Moreover, only cooperating ASes
indicate their presence in the communication channel. The
source AS stores the finalP for at least a period ofTm = 12
hours, as it is needed in the protest phase.

The signatures and MACs, by which each entity authen-
ticates the information of all the previous entities, protect
against path falsification attempts. A malicious entity cannot
substitute the information inscribed by previous entitieswith-
out invalidating the signatures or MACs. To avoid malicious
entities from truncating on-path ASes, the source AS inserts
the cooperating ASes on the path (P [0].path). In this way, on-
path entities cannot truncate on-path ASes, as the source has
indicated which ASes will cooperate. In addition, the source
cannot lie and remove cooperating ASes from the indicated
path, as these ASes will inscribe their information and reveal
their support. Furthermore, the two timestamps indicate the
validity period of the channel so that complaints are temporally
confined.

D. Verifying Proofs of Misbehavior

In Section II-C we describe how the information in control
and data plane is used to prove misbehavior. In this section,
we describe the operations to examine a misbehavior report.

Recall that the information in the policy contains the trans-
mission properties (CIR and CBS) for the communication
channel. The data packet headers contain information for the
actual transmission properties. The transit ASes examine the
received information as follows.

i. ASes verify the signatures of the source and desti-
nation ASes in the policy packet, by obtaining the
corresponding keys from the RPKI.

ii. ASes verify the 4-bit MAC that they inscribed in the
header. If all verifications succeed, ASes proceed with
Step (iii). MAC verification failures signal en-route
misbehavior from a subsequent AS on the path from
the source to the destination. In the next section, we
analyze scenarios with on-path malicious ASes.

iii. The ASes check conformance to the Token Bucket
properties by running Token Bucket as a policer and
by using the timestamp and payload length informa-
tion of the headers.

After the three-step procedure, the AS provides a signed
admission or rejection for the misbehavior to the reportingAS.
The destination AS collects the signed responses and sends
them back to all ASes on the communication channel.

IV. PROTOCOL ANALYSIS

This section analyzes the security and scalability properties
of FAIR.

A. Security Aspects

We analyze the security properties of short MACs and then
describe to which extent FAIR is robust under two different
threat models. We first consider a strong threat model in which
all entities can be malicious. We then consider a second threat
model that is slightly weaker, but specifically designed to
address current attacks.

• Threat Model I: Misbehavior is provable at least to the
benign cooperating ASes adjacent to the destination,
under the strong threat model in which source, transit,
and destination ASes can be malicious and collude.

• Threat Model II: Misbehavior is provable toall coop-
erating ASes on the path, under a weaker threat model
in which transit ASes are not malicious.

Our goal to present a deployable high-performance sys-
tem deals with the natural tradeoff between performance and
security: some related approaches provide stronger security
guarantees, but come at the cost of introducing considerable
overhead. See Section VII for the details on related work.

1) On the use of short MACs. Before discussing the two
threat models in detail, we evaluate the choice of short MACs.
Specifically, we argue that a very short MAC is sufficient to
provide accountability proofs in the context of flooding attacks.
There are two important points to mention: i) The role of the
MACs in the packet, as mentioned before, is only to provide
a reminder to the transit ASes that they have forwarded the
packet. In the context of flooding attacks, we care about an
aggregate of packets and the collective proof that is constructed
from this aggregate, rather than from single packets. ii) The
secret keys used by other ASes are unknown to the attacker.
This means that an attacker can at best randomly generate
MACs without a means to check their validity.

The short length of the MACs does not prevent an attacker
from generating valid MACs. However, for an 8-bit MAC, 99%

AS0 ASn. . .

Source Destination

ASi . . . ASn-1ASi+1

Fig. 4: FAIR operation with ASi being malicious.

of the generated MACs will not verify in the protest phase and
the misbehavior will thus be detected.

Taking this approach to the limit, we could use 1-bit MACs
for our purpose. An attacker would have a 50% probability to
create a valid MAC. Thus, 50% of the crafted MACs would
be invalid (compared to 99% previously) and the misbehavior
is detected because of these invalid MACs. Our choice of the
MAC lengths is based on engineering the protocol for high
forwarding performance (byte aligned packet length), as we
show in Section V-C.

2) Threat Model I. We first analyze the scenario of colluding
ASes and then two scenarios with malicious transit ASes.

AS Collusion:In this scenario, a transit AS colludes with a
malicious source AS to conceal an ongoing attack. The source
is violating the sending policy and transit ASi (Figure 4)
corrupts all the MACs of the previous ASes in the packet,
causing verification failures when the destination protests to
these ASes. Hence, the policy violation cannot be proven to
these ASes. The first complaint round is successful only to the
shaded ASes in Figure 4, as ASi cannot corrupt MACs of the
subsequent ASes on the path. This limits the effectiveness of
the proposal, however, successful complaints even to a few
transit ASes yield benefits, as they can for instance install
blocking filters closer to the source, as depicted in Figure 4.

The above scenario presents the worst case, in which a
transit AS corrupts all previous MACs. If ASi does not corrupt
all the previous MACs, complaining is more effective since
more ASes would acknowledge the attack.Notice that the
complaint is accepted at least by the benign cooperating ASes
adjacent to the destination.Hence, collusion with multiple
ASes does not provide additional benefits to the source, as
the effectiveness of the proposal depends only on the position
of the malicious AS that is closer to the destination.

Packet Replay:In this scenario, we assume that a malicious
transit AS forwards a packet multiple times to increase traffic
and thus to blame an innocent source AS.

A packet replay is indicated through multiple occurrences
of the same sequence numbers for a given timestamp. Further-
more, the clock deviation check does not allow an adversary
to store packets and replay at a later time. The 24-bit sequence
number suffices for more than16 · 106 packets and the mono-
tonically increasing values render multiple occurrences per
timestamp suspicious. For example, a communication channel
with aCIR value of 1 Gbps has an average packet-sending rate
of 325 kpps for the average packet length of 413 bytes [34].
For an attack where each packet is replayed twice, there are on
average106 packets that belong to each slot of 1 second, but
the 24-bit field suffices for more than16 · 106 packets. Under
normal operation each sequence number would show up only
once, but multiple occurrences indicate a replay.

A high-sending-rate policy that uses up the available nonce
space in the slot of 3 seconds would possibly allow an attacker
to replay packets, but this is very unlikely: For the average
packet size of 413 bytes it would require a communication
channel of 17 Gbps for this to happen, which is an unrealistic
value for a single channel. If such throughput values become
reality in the future, increasing the sequence number length
will solve the problem. For instance, 32 bits suffice for over4
billion packets.

The nonce fields are used for detecting the adversary’s
location on the path: If ASi (Figure 4) replays packets, then
the combinations of sequence number and nonce field of only
the first i− 1 ASes occur multiple times. In other words, the
location of the attacker can only be between ASi and ASi+1.
The reason is twofold. First, non-cooperating ASes between
ASi and ASi+1 might replay packets. Second, the attacker (ASi)
might inscribe nonces in a way that puts the blame on the next
AS (ASi+1). Hence, the localization cannot identify the attack
to a specific entity, but all ASes after the replaying AS become
aware of the approximate location of the attack and can take
action.

Note that we use sequence numbers and nonce fields to
detect replay attacks in the protest phase, rather than to drop
replayed data-plane traffic.

Packet Injection:In this attack, a transit AS attempts to craft
fraudulent packets and inject them into the network. This
attack is prevented thanks to the MACs inserted by the source
and the transit ASes. Assuming that the adversary has not
obtained the local secrets of the other entities, its probability of
inserting only valid MACs is negligible, as discussed before.
The verification failures of inserted invalid MACs will reveal
the attack.

If AS i (Figure 4) injects traffic, the subsequent ASes on
the path insert their MACs as usual. These MACs will verify
in the protest phase and hence the shaded ASes in Figure 4
acknowledge the violation, exactly as in the packet replay
attack.

3) Threat Model II. Attacks usually originate from malicious
or vulnerable end hosts inside the source AS; transit ASes
usually have no incentive to collude with other ASes, nor
to engage in malicious conduct, such as packet replay. The
forwarding proof thus remains intact during transit andall
cooperating ASes on the path from the source to the destination
acknowledge the attacks.

Other Attacks. Here we describe some protocol manipulation
attacks that are specific to FAIR. Since the destination usesthe
received packets as a proof of an attack, the source can craft
timestamps in the packet, which together with the aggregate
traffic size do not violate the policy. The clock deviation check
protects against this, but allows the source to shift timestamps
by one second, only once though. More specifically, the source
can send excessive traffic in the slot of one second by putting
the timestamp of the next second in some packets. In this
way the maximum burst size violation for one time interval
is not detected, but it restricts the traffic for the subsequent
intervals, as it must be lower to conform to the policy’s
CBS value for the next intervals. A sending rate that exceeds
the CIR value over any multiple of the time interval cannot

Trace 1 Trace 2 Trace 3

Trace rate (Gbps) 1.63 3.72 3.57
IPv4 pkt. (bytes) 747 (99.95%) 920 (99.96%) 736 (99.88%)
IPv6 pkt. (bytes) 130 (0.05%) 342 (0.04%) 155 (0.12%)
BW overhead 1.71% 1.39% 1.74%

Fig. 5: Bandwidth overhead of FAIR for three backbone-link
traces. The reported sizes are mean values and the parentheses
show the percentage of traffic for each IP version.

be concealed. The Token Bucket properties in combination
with the clock deviation check also protect from a coward
attack [35]; in a coward attack the attacker scales down the
intensity temporarily to avoid detection.

Another general attack against accountability frameworks
consists in falsely blaming benign entities. A malicious desti-
nation can try to convince transit ASes by providing multiple
times the same packets as evidence of increased traffic. This
is a variation of a replay attack and the sequence number
and nonce fields prevent it. Crafting the timestamps will
cause MAC verification failures and the transit ASes will not
acknowledge the proof.

B. Scalability

We examine the scalability properties of FAIR in terms of
bandwidth and storage overhead. Concerning the processing
overhead, we provide a detailed evaluation in Section V.

1) Bandwidth Overhead. Our proposal comes at the cost
of increased packet size. The source AS inscribes a constant
amount of 7 bytes/packet and each transit AS adds another
1 byte. We envision a FAIR integration with the IP protocol
and this would require two additional bytes per packet only in
the case of IPv6 traffic (more details, also on IPv4, follow in
Section V). To put this overhead into context, we analyze three
1-hour packet traces of OC-192 backbone links obtained from
CAIDA [34]. We take a pessimistic approach on the AS-path
length to quantify the overhead and assume it to be 5 hops.2

Based on the number of packets in IPv4 and IPv6 and their
ratio on the link, we calculate the link’s overall bandwidth
overhead. Figure 5 shows the properties of the traffic on the
link and the overall overhead: the bandwidth overhead does not
exceed 2%. This estimation assumes that the AS-path length
is independent of the packet length distribution.

2) Storage Overhead.To provide a scalable framework, our
goal is to reduce the amount of state stored at the forwarding
devices of cooperating ASes. Source and transit ASes do
not need to store data-plane related information. The source
stores one policy packet and a shared keyKSD (16 bytes)
per communication channel. The total number of ASes in
the Internet is less than 50,000 [36], which means minimal
overhead (800 kB) even if there is a communication channel
with every other AS.

Furthermore, the transit ASes store only local secret keys
(independent of any communication channel). As noted in
Section IV-A, there is no strict requirement on the frequency
of changing keys, however, the previous keys are kept to verify
MACs that were computed earlier. According to the protocol,

2RIPE Labs report an average length of 3.9 hops for IPv4 and 3.5hops for
IPv6 [32].

a cooperating AS accepts and examines incoming proofs up
to a period ofTm = 12 hours in the past. Hence, the storage
overhead depends on the frequency with which the AS changes
its keys within the12-hour frame. For example, a transit AS
that changes its local keys (Ki, K̂i) every minute requires a
storage capacity of 250 kB for the12-hour period.

The most significant storage overhead occurs for the des-
tination AS when storing data packet headers as a proof of
source misbehavior. The destination can provide the proof to
the transit ASes up to 12 hours after it received the packets.
For a destination AS that stores the IP and FAIR packet
headers of the 1-hour link traces in Figure 5, the storage
requirement is 30.2, 56, and 67.3 GB, respectively. For this
calculation, we assume again an AS-path length of 5 hops
and took into consideration the different overhead of the IPv6
header (40 bytes) and the IPv4 header (20 bytes), on top of
the FAIR header overhead.

Note that the considerable storage overhead is shifted to
the destination AS since it is in the destination’s interestto
be protected from flooding attacks; thus having forwarding
ASes store the packets would distribute the storage overhead
in an unfair manner. Moreover, to further decrease the over-
head, destination ASes store only packet headers. Also, the
destination can choose when to protest about a violation,
hence it does not have to store headers for 12 hours and
can regulate the storage requirement. In addition, ASes can
store compressed proofs of misbehavior only for the violated
time periods instead of storing the whole set of packets of the
communication channel.

V. I MPLEMENTATION AND EVALUATION

We describe our protocol in the context of today’s Internet,
implement a software switch prototype, and evaluate perfor-
mance on a server and a desktop machine.

A. Integration with IP

We analyze the deployment of FAIR with IP. IPv6 allows a
straightforward and elegant implementation by using Extension
Headers (EHs) [37]. IPv6 Extension Headers encode optional
IP-layer information in headers that are placed after the regular
IPv6 header. They make the protocol extensible by allowing
support for security, mobility, and other services.

The IPv6 specification [37] defines some default EHs
for additional network-layer services and leaves space for
new EHs. To implement FAIR, we define a new EH that
is processed only by egress border routers of cooperating
ASes. According to the specification, the Hop-by-Hop EH is
the only EH thatmust be processed by all network devices,
whereas other EHs are inspected only by devices configured
for certain services. This feature allows ISPs to adopt FAIRin
an incrementally deployable fashion without breaking legacy
IPv6 traffic. Figure 6 shows a regular IPv6 header together
with the FAIR extension. The FAIR EH is placed after the
regular IPv6 header or after the Hop-by-Hop EH (if present),
as the IPv6 specification commands. TheNext Header field
(whether in the regular header or in a preceding EH) points to
the start of the FAIR EH. The content of our EH is what
Section III describes and Figure 2 depicts. To make FAIR
compatible with IPv6, two additional fields are required: a

Version Traffic Class Flow Label

Hop LimitPayload Length Next Header = FAIR

Source IPv6 Address

Destination IPv6 Address

FAIR Extension Header

Payload

Next Header = UL

Upper Layer (UL) Header

Header Length

Fig. 6: IPv6 packet with FAIR Extension Header.

pointer (8 bits) that points to the next EH or to an Upper
Layer (UL) protocol, and aHeader Length field (8 bits)
that indicates the length of the EH. This translates into an
additional overhead of 2 bytes.

Extension Headers are considered an intrinsic part of IPv6
and the way they are processed by network devices can harm
forwarding performance. However, IPv6 provides an elegant
deployment path due to EHs. This feature is not supported by
IPv4 and a workaround for IPv4 is necessary.

IPv4 has inherent limitations with regard to extensibility
which complicates deployment. The FAIR header can be
implemented as a “shim” layer between the IPv4 header and
the transport protocol. The border routers of source ASes insert
the FAIR header after the IPv4 header; border routers of transit
ASes locate and process the FAIR header, as it starts 20 bytes
after the IPv4 header; and the border routers of destination
ASes store and remove the FAIR header before forwarding
the packet to the destination host. Shim-layer approaches
typically cause problems due to middleboxes in the source
and/or destination ASes [38]. However, note that the FAIR
header is not visible inside those domains, alleviating such
concerns.

B. Software Switch Prototype

To test the practicality of our proposal, we implement the
required functionality in software. We recognize a resurgence
of interest in software switches thanks to their flexibility
and programmability at low procurement and operational
costs [39–41]. Furthermore, recent advances in the software-
switching field demonstrate that these advantages do not come
at the cost of performance, which has traditionally been the
Achilles’ heel of software switches. We use the Intel Data
Plane Development Kit (DPDK) [42] as the packet I/O engine
and take advantage of the Intel AES-NI [43].

The Intel DPDK is a high-performance packet I/O engine
that provides flexibility and programmability, allowing packet
processing in user space. DPDK uses polling to avoid the
overhead of unnecessary interrupts. It provides optimized
Network Interface Card (NIC) drivers that map packet buffers
directly in user space to avoid redundant memory accesses
(zero copy). We choose DPDK for our development platform
as it efficiently performs packet I/O and allows us to focus on
the FAIR EH processing.

The Intel AES-NI is a recent instruction set that uses
hardware support to speed up encryption and decryption of

AES operations. Intel reports a performance of 2.01 Cycles
Per Byte (CPB) for a 16-byte block AES encryption on an
Intel Westmere running at 2.67 GHz [43].

We describe the implementation of the necessary compo-
nents for FAIR. To construct the required MACs, we use the
Cipher Block Chaining mode (CBC-MAC) with AES as the
underlying block cipher. The CBC-MAC encryption of a plain-
text block depends on the encryption of the previous block; the
output is the final block. The value for the Initialization Vector
(IV) is 0. The size of both input blocks and the output block
is 128 bits (16 bytes). The input length to the CBC-MAC is
fixed and independent of the AS path length3. Also, the input
fits in one block (less than 16 bytes). Furthermore, the input
length of the MACs in the control plane is fixed as well. We
use 128-bit encryption keys and keep only the required number
of bits from the output, as specified in Section III.

The source AS of the outgoing traffic has to look up the
shared key with the destination (KSD) and the current packet
count for the communication channel, as it is used for the
sequence number (seqno). The source uses the shared key with
the destination in order to compute the MAC. To implement
these functionalities at line rate, we extend the Forwarding
Information Base (FIB) to contain not only the egress interface,
but also the shared symmetric key with the destination and the
current value for the sequence number.

This increases the size of the FIB, but it still fits in
todays SRAM caches, avoiding access to the substantially
slower DRAM. The size of the extended FIB for today’s
IPv4 BGP routing table sizes is around 12 MB [45] and for
IPv6 around 1 MB [45], which is lower than SRAM sizes
even on commodity hardware, as we show in our evaluation.
In addition, the increase in length for each FIB entry does
not degrade forwarding performance since each FIB entry
fits into the typical cache line of 64 bytes. Even in case of
IPv6 addresses, where each entry requires 36 bytes (16-byte
destination address, 16-byte symmetric key, 3-byte sequence
number, and 1-byte output interface).

To generate randomness for the nonce and to mark fields at
line rate, we need an efficient pseudorandom number generator
(PRNG). We implement a thread-safe, multicore version of
the Linear Congruential Generator (LCG) that meets our
performance requirements. Modern CPUs come with Digital
RNG (DRNG) hardware implementations [46] that can speed
up this process significantly [47]. Unfortunately, our CPUslack
this feature. Furthermore, each CPU core has an AES hardware
unit. We assign each core to handle one port, taking advantage
of the processing power of today’s multicore systems. For the
timestamp, we use the least significant bits (LSB) of the Unix
time.

We bring these components together on two different
machines: a commodity server and a low-end desktop. The
server has a non-uniform memory access (NUMA) architecture
with two Intel Xeon E5-2680 CPUs that communicate over two
QPI links. Moreover, each NUMA node is equipped with four
banks of 16 GB DDR3 RAM. In total, we have 6 dual-port
10 GbE NICs (PCIe Gen2 x8) that can provide a maximum
capacity of 120 Gbps. The total cost of this setup is around

3CBC-MAC is insecure for variable-length messages [44].

Item Model Name Qty Unit price
Board Intel S2600GZ (2 sockets) 1 $670
CPU Intel Xeon E5-2680 (8 cores, 2.7 GHz) 2 $1,727
RAM Kingston DDR3 4 GB (1,333 MHz) 8 $38
NICs Intel 82599EB X520-DA2 10 GbE 6 $450

Fig. 7: Specification of utilized Server Hardware.

Item Model Name Qty Unit price
CPU Intel Core i5-3470S (4 cores, 2.9 GHz) 1 $170
RAM Hynix DDR3 4 GB (1,600 MHz) 1 $45
NICs Intel 82599EB X520-DA2 10 GbE 1 $450

Fig. 8: Specification of utilized Desktop Hardware.

$7, 000. Figure 7 summarizes the hardware specification of the
server machine.

The desktop machine is a Lenovo ThinkCentre Edge
3494AZG with an Intel Core i5-3470S CPU with one dual-
port 10 GbE NIC (PCIe Gen2 x8) and a total cost of $1, 200.
Figure 8 shows the hardware specification of the desktop
machine.

C. Switch Prototype Evaluation

We evaluate the switching performance of both machines
and demonstrate that the EH processing incurs minimal com-
putational overhead even for low-end hardware.

In the experiments, we emulate traffic flows originated by
a source AS and evaluate the performance of a FAIR-enabled
border router. We evaluate the worst case, and thus we use IPv6
that is slower than IPv4 because the Forwarding Information
Base (FIB) entry is longer than for IPv4; we have observed the
same forwarding performance also for IPv4 traffic. Moreover,
we specify random destination addresses for the generated
flows, eliminating spatiotemporal locality for cache accesses.
Using random destination addresses captures any performance
degradation due to key switching with different destination
ASes. To generate traffic, we use Spirent SPT-N4U-220 as
our packet generator. The table lookup is performed by an
implementation of DIR-24-8-BASIC [48] for IPv6 addresses.
We generate the FIB from a BGP routing table snapshot
(November 2014) from RIPE RIS, with 18k unique IPv6
prefixes [45].

First, we evaluate the performance of a single 10G port
for three packet sizes; then we enable all ports. Finally, we
evaluate performance with all ports enabled and for varying
packet sizes. All the experiments are conducted on the server
and the desktop platforms.

1) Single-port experiment.First, we test the switching per-
formance of one port for three packet sizes: 68, 128, and 1024
bytes. Minimum-sized packets, 68 bytes, translate to a higher
packet rate and are the worst case for the EH processing. The
minimum length for IPv6 packets with the FAIR EH is 68
bytes (instead of 64) due to the additional information. Figure 9
shows the switching performance for the server and the desktop
platform.

The highest packet rates for the three packet sizes are
14.20 Mpps, 8.45 Mpps, and 1.20 Mpps on a 10 GbE link;

68 B 128 B 1024 B 68 B 128 B 1024 B

T
h

ro
u

g
h

p
u

t
(M

p
p

s
)

0

2

4

6

8

10

12

14

16
 IPv6 baseline

 FAIR
Line rate

96% 95%

100% 100%

100% 100%

96% 95%

100% 100%

100% 100%

Server Desktop

0

2

4

6

8

10

12

14

16

Fig. 9: Switching performance of the server and the desktop
for one port activated, and 68, 128, and 1024-byte packets.

we refer to these values as the line-rate performance. The
baseline for the experiments is the switching performance of
legacy IPv6 traffic (only table lookup and forwarding). The
figure shows that the EH processing degrades performance
by only 1% for minimum-sized packets on both machines.
The figure also shows the line-rate performance (blue line)
and the minimal baseline degradation due to the table lookup
and the high packet rate for the 68-byte case. For the longer
packet sizes, the switching performance reaches the line rate
on both machines. The single-port experiment demonstrates
that switching performance is close to optimal for one port,
even on low-end hardware. Next, we increase the switching
load.

2) All-ports experiment. To demonstrate that the FAIR EH
processing scales for increasing packet rates, we activateall
ports; each port is served by a different CPU core. Again we
use the same three packet sizes. Figure 10 shows the results.

We use a different scale in the figure for the two machines,
since they accommodate a different number of ports. The
packet line rates for the server (12 ports) and the three
packet sizes are 170.4 Mpps, 101.4 Mpps, and 14.4 Mpps,
respectively. The packet line rates for the desktop (2 ports)
and the three packet sizes are 28.40 Mpps, 16.90 Mpps, and
2.40 Mpps, respectively. We see that throughput scales for
multiple ports and FAIR switches at baseline performance
for the three packet sizes, on both machines. The experiment
demonstrates how switching performance scales for increasing
packet rates, even for the low-end hardware. However, we
notice a higher baseline degradation for 68-byte packets: in
the one-port experiment, the switching performance was at
96% of the line rate, whereas now it is around 80%. The
explanation is that our I/O subsystem hits a bottleneck when
both ports of a NIC receive packets at the maximum packet
rate. The bottleneck exists irrespective of FAIR: the PCIe Gen2
x8 interface of our NICs cannot sustain this packet rate when
both ports are active. The packet rate of each port is capped
at 11.55 Mpps. Cuckooswitch [39] uses the same NICs and
reports the same limitation.

3) CPU as the bottleneck.To bypass the I/O bottleneck and
stress the limits of the CPU, we assign the traffic from two
ports of different NICs to one core; this makes the CPU the
throughput bottleneck. For minimum-sized packets, the CPU
handles 21.62 Mpps out of the maximum 28.40 Mpps. Hence,
one CPU core can process traffic from more than one 10 GbE
port that receives packets at the maximum packet rate.

68 B 128 B 1024 B 68B 128 B 1024 B

T
h

ro
u

g
h

p
u

t
(M

p
p

s
)

0

40

80

120

160

200
 IPv6 baseline

 FAIR
Line rate

30

24

18

12

6

0

Server Desktop

81% 81%

100% 100%

83% 83%

100% 100%

100% 100%100% 100%

Fig. 10: Switching performance of the server and the desktop
for all ports activated, and 68, 128, and 1024-byte packets.

0 200 400 600 800 1000 1200 1400 1600

20

40

60

80

100

120

Packet Size (bytes)

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

Server

Desktop

Fig. 11: Switching performance for all ports.

Next, we show that for increasing packet sizes, FAIR
saturates line-rate bandwidth and achieves 120 Gbps and
20 Gbps for the server and desktop respectively. Figure 11
shows the throughput for 68, 128, 256, 512, 1024, and 1518-
byte packets. We omit the line-rate line; for all measurements
— except the 68 byte packet — it is identical to the drawn
lines. Hence, as we increase the packet size and the packet
rate drops, IPv6 baseline and FAIR performance is at 100%
line rate.

VI. PROTECTION FROMDDOS ATTACKS

FAIR, as an accountability framework, does not provide
active protection from attacks, as it does not enforce specific
behavior when an attack is detected. This section describes
a more radical application of FAIR that enforces and pushes
higher security standards to the edge of the Internet. Further-
more, the section illustrates how FAIR can be combined with
active defense mechanisms.

A. Suspicious Bit

The April Fool’s proposal of the “evil bit” [20] describes
a security mechanism from an idealist’s point of view: data
packets carry a security flag – theevil bit – to indicate
malicious intent; the flag is set by the malicious senders
themselves.

We propose a more realistic security mechanism, thesuspi-
ciousbit that is set by transit ASes to indicate suspicious traf-
fic. With such a mechanism in place, the traffic itself becomes
the indicator of possibly malicious behavior and incentivizes
transit ASes to take action. For instance, an AS can drop or
deprioritize suspicious traffic in case of congestion, ensuring
better service for its benign customers. In addition, flagging
traffic due to an attack on one victim provides protection to
other potential victims as well.

ASi . . .AS0

AS

AS1 AS2

AS

ASn

Fig. 12: The suspicious bit identifies traffic from a portion of
the network with poor security practices.

An immediate question is how ISPs distinguish benign
from suspicious ASes in order to flag their traffic. We leverage
FAIR as a building block to address this question. FAIR’s
initial sending policy negotiation provides a clear line for
detection of misbehavior; the FAIR header in the data packets
provides the corresponding accountable proofs of misbehavior.

Another question is how ISPs are incentivized to flag their
misbehaving customers. The answer to this question lies in the
competitive environment in the Internet ecosystem. Recallthat
FAIR’s accountable proof of misbehavior is received by all on-
path ASes. If an ISP does not flag its provably malicious transit
traffic, then the next AS on the path will flagall of the traffic of
the previous AS. We believe that the threat of collateral damage
and the harsh competitive Internet market pushes ISPs to
mark their customers’ traffic. If innocent customers experience
packet drop because of their ISPs’ poor security practices,they
have an incentive to switch to a more reliable ISP, if possible.

We emphasize that ISPs do not have to drop suspicious
traffic right away for two reasons. First, the suspicious bit
indicates only that the traffic is suspicious (not necessarily
malicious) and thus gives incentives to take action under
certain conditions (e.g., drop it in case of congestion). Second,
under the strong threat model, an adversary could set the bit
for legitimate traffic to make another ISP drop the traffic.
Consequently, setting the suspicious bit for legitimate traffic
would not be a useful attack strategy. In addition, today’s
Internet is opaque to loss anyway [49], and hence the adversary
can directly drop the traffic and evade detection.

We demonstrate the suspicious bit application by means of
Figure 12. The illustrated network topology shows malicious
AS0 violating the sending policy negotiated with benign ASn.
AS1 is the ISP of the malicious AS0 and other benign ASes. It
hence provides transit to more than a single customer. Assume
that AS1 has received a proof of misbehavior for AS0: ASn

has reported malicious traffic to AS1. In the ideal case, AS1
would mark traffic from AS0 as suspicious, warning other
entities in the network. If, however, AS1 does not mark the
suspicious traffic, then AS2 will mark all the traffic from AS1
as suspicious.

This overstatement, however, means that also traffic from
the benign customers of AS1 gets flagged as suspicious,
which will lead to collateral damage if a downstream ISP
decides to drop traffic. By flagging traffic, AS2 informs other
entities in the network (shaded part) that some portion of the
network (dashed part) might be misbehaving. This practice will
incentivize AS1 to behave correctly and to flag the traffic of
its misbehaving clients, thereby protecting its benign clients.

As a consequence, the stub ASes are pushed to deal with
their internal security issues (e.g., botnets inside an AS or
misconfigured services) to protect the innocent flows from
being dropped.

Forwarding with the Suspicious Bit:We show the infor-
mation and data structures when forwarding traffic under the
SB application.

• Suspicious Bit (sb): the SB flag, used to mark a packet
as suspicious, is the most significant bit of thenextAS
pointer in the FAIR header. This means that routers
will check and update the 7 least significant bits of the
pointer, which suffice to encode AS-paths of length up
to 128 hops.

• Suspicious Sources (sus sources): set of addresses for
which the AS has acknowledged the violation.

• Suspicious Ports (sus ports): set of the switch’s ports
that receive traffic from an insecure part of the net-
work. We refer remaining ports of the switch as non-
suspicious.

In the following, we describe how this information is used
to realize the suspicious bit application. Note that the SB
does not enforce a specific action, hence the transit AS can
forward, drop, or delay traffic based on its traffic engineering
and security policies. Procedure 4 provides the pseudocodefor
traffic forwarding with the suspicious bit.

• If incoming traffic arrives at a non-suspicious port:
◦ if the SB is set then forward/drop/delay traffic.
◦ if the SB is not set and the source address

belongs to the suspicious sources then add the
port to the suspicious ports. Set the SB and
forward/drop/delay traffic.

• If incoming traffic arrives at a suspicious port:
◦ if the SB is set, remove the incoming port from

the suspicious ports. In this way if previous
ASes that did not flag traffic start flagging,
their whole traffic is not flagged as suspicious
anymore. Then forward the traffic.

◦ if the SB is not set, then set the SB. Then
forward/drop/delay.

B. Active Defense

We describe how forwarding accountability serves as a
building block for active DDoS defense. Transit ISPs can
simply drop traffic from malicious ASes, providing a primitive
DDoS defense. However, accountable proof of misbehavior
can be combined seamlessly with more sophisticated protec-
tion schemes.

Filtering defense proposals (e.g., StopIt [14], AITF [15],
and Pushback [16]) demonstrate the effectiveness of a dis-
tributed and cooperative approach to control certain traffic
flows by asking upstream routers to install filters. These
approaches assume that upstream routers are willing to install
such filters. However, at the inter-domain level this is a strong
assumption.

ISPs are harsh competitors and are mutually distrusted
entities. In addition, ISPs earn revenue by forwarding traffic,

Procedure 4: Forwarding packets in the SB application
procedure FORWARD(pkt hdr , fair , port in)

⊲ pkt hdr contains the network-layer packet header
⊲ fair is the FAIR header
⊲ port in is the ingress port of the packet
if port in 6∈ sus ports then

if fair .sb then forward/drop/delay traffic
else

if pkt hdr .src addr ∈ sus sources then
sus ports ← sus ports ∪ {port in}
fair .sb ← 1
forward/drop/delay traffic

else
forward traffic

else
if fair .sb then

sus ports ← sus ports − {port in}
forward traffic

else
fair .sb ← 1
forward/drop/delay traffic

regardless of the intent of the traffic. Furthermore, filtering
resources at forwarding devices are limited and should be
used cautiously. Hence, spending filtering resources for targets
outside the AS boundaries is an assumption that does not hold.
StopIt [14] recognizes this fact for inter-domain filteringre-
quests and leverages shared keys to authenticate such requests.
However, no filtering proposal obtains proof of misbehaviorin
order to install such filters. Malicious ASes could try to exhaust
filtering resources of other ASes.

FAIR allows an AS to provide misbehavior proof to other
ASes and convince them to install filters. Furthermore, ac-
countability can lead to novel contractual regimes and SLAs
that formally describe cooperative mechanisms to address the
flooding attacks.

We discuss the deployment and operation of FAIR. The
prominent advantage of FAIR is founded on the fact that
collateral damage can be leveraged to push ISPs to enforce
higher security standards, e.g., to deal with internal security
threats such as botnets or vulnerable components. Collateral
damage mainly stems from today’s Internet architecture, and
specifically from its lack of accountability. In particular, in
distributed attacks, the misbehaving source end hosts cannot
be identified.

FAIR identifies such malicious sources at the AS granular-
ity with the consequence that also innocent flows get classified
as malicious. Clearly, harming innocent flows is undesirable,
but provable AS misbehavior gives incentives for ISPs to take
action against such malicious traffic (e.g., deprioritize or drop
it). This holds the whole AS accountable for misbehavior
and puts it under pressure to deal with its security issues,
rather than delegating flooding protection to the victim. Hence,
provable misbehavior turns collateral damage on its head by
using innocent flows as a way to pressure ASes to deal with
their security issues.

C. Deployment Path

FAIR is deployable in the context of today’s Internet as it
does not require architectural changes. More precisely, FAIR
is compatible with today’s protocols and especially with IPv6
extension headers, which were designed for deploying novel

protocols. The introduced overhead, although not negligible, is
within reach of today’s processing and networking capabilities.
In addition, given that source and destination ASes set up a
sending policy, the destination can protest and prove misbe-
havior even if only one transit AS supports FAIR. Thus, ASes
can deploy FAIR independently without global coordination.

On the downside, forwarding devices on the data path
will need to support additional processing mechanisms, which
translate to upgrades and costs. Furthermore, the considerable
storage overhead for destination ASes can further increase
operational costs. Finally, the requirement for a policy con-
struction that defines the characteristics of the transmission
constitutes a deviation from today’s communication model.

D. Operational Assumptions

In the high-level overview of FAIR (Section II), we pre-
sented a router-level communication model between the source
and destination AS in which we assumed that all traffic flows
originated by the source AS follow the same AS-level path
towards the destination. We relax this assumption of a line
topology, as this model does not reflect reality: each border
router decides independently on the next AS hop. Moreover,
the interaction of inter-domain routing and intra-domain traffic
engineering (e.g., load balancing) leads to different AS-level
paths between the source and destination ASes. Therefore, in
FAIR, a communication channel is identified by the AS path
and not by the source-destination AS tuple.

Furthermore, two ASes can peer at multiple Points of Pres-
ence. Consequently, the source AS might have to coordinate
the sending rates if there are multiple peering points with the
next AS. Readily available approaches deal with such traffic
engineering tasks: Segment Routing Centralized Egress Peer
Engineering developed by Cisco [50] and Intelligent Route
Service Control Point solutions [51] are such examples.

Routing instability that forces source and destination to
reestablish a communication channel over a new path is not
a notable concern. Studies show that the majority of network
routes are stable from tens of minutes to days [52, 53]. Despite
ISPs’ traffic engineering and the existence of short-lived routes,
long-lived routes are used 96% of the time [52].

Furthermore, today’s border routers are not required to
perform cryptographic operations on data-plane traffic. How-
ever, the recent advances in cryptographic engines, such as
Intel AES-NI [43], allow efficient cryptographic operations
even for commodity machines, as we have demonstrated in
Section V-C.

Moreover, schemes that increase the packet length (the
border router of the source AS adds the FAIR header) need
to take into account correct MTU discovery. In case a large
packet requires fragmentation, the border router of the source
AS can respond with an MTU size small enough, so that the
FAIR header can be added without concerns.

E. Security Concerns

In this paper, we focused on the security properties of the
accountability framework and not on other security aspects
(such as source accountability or flooding attacks on the
channel setup). Source address spoofing is a well-known and

studied problem with best current security practices (BCP
38/84 [54, 55]) that should be followed by administrators.
Denial-of-Capability (DoC) attacks – flooding the request
channel of capability defense systems – have been demon-
strated along with proposals for defense [11, 12], which can
be used as protection from flooding the FAIR setup channel.
We stress that our key ideas are compatible with other future
Internet proposals that address natively the aforementioned
security concerns [25, 26].

VII. R ELATED WORK

We describe some major accountability and DDoS defense
schemes; comprehensive surveys about DDoS defense can be
found in Zargar et al. [56] and in Mirkovic et al. [57].

Accountability mechanisms are building blocks to hinder
DDoS attacks, rather than active defense mechanisms. For
example,AIP [7] is a network architecture based on account-
ability, with a two-level flat addressing structure that allows for
using self-certifying addresses (the hash of the corresponding
public keys). IPA [58] is a more lightweight approach that
binds an IP prefix to the public key of an AS by leveraging the
DNSSEC infrastructure. The secured bindings are piggybacked
in BGP messages and get distributed in a protocol-compliant
and incrementally-deployed way.Passport [8] is a network-
layer source authentication system that authenticates thesource
of a packet to the granularity of the origin AS. Symmetric
key cryptography is used and packets are checked only at
administrative boundaries. Using accountable source addresses
as a building block, additional defense schemes are proposed.
For example, a shut-off protocol is proposed [7], where a host
can instruct the network interface of an attacker to stop packet
transmission. However, this pushes DDoS defense to the hosts,
assuming that all hosts recognize such a shut-off protocol.

Simon et al. propose AS-based accountability as a cost-
effective DDoS defense [59]. Moreover, the authors propose
an evil bit in the packet headers. The proposal works for a
group of participating ASes, assuming pairwise and transitive
trust between them. The evil bit is set whenever traffic enters
from outside the island of the participating ASes. However,the
inferred threat model is weak, since a single compromised AS
inside the group of participating ASes limits the effectiveness
of the proposal. In addition, the system introduces considerable
upgrades in terms of infrastructure and requires new Customer
Relationship Management (CRM) systems.

Other accountability schemes used for debugging and
forensics introduce prohibitive overhead for deployment in the
data plane. SNP [60], PeerReview [61], and NetReview [62]
keep detailed logs of exchanged messages and introduce
substantial overhead in terms of processing, storage, and
bandwidth.

An alternative approach to identify the source of an attack
is to identify the path(s) traversed by malicious traffic. In
IP traceback [21], downstream routers probabilistically mark
packets with partial path information. The victims combine
the partial path information in the packets to reconstruct the
path(s) to the source(s) of the attack. The proposal yields
high computational overhead for path reconstruction at the
victims and a high false positive rate even for small scale
DDoS attacks [63]. In addition, IP traceback operates under

a weak threat model, in which downstream routers need to
be trusted. Incremental proposals optimize the computational
overhead and operate under a stronger threat model that
includes malicious routers [63].Hop-Count Filtering [64] is
a host-based approach that discards spoofed DDoS traffic. The
main idea is that the only IP header information that cannot be
influenced by an attacker is the TTL field. Hence, spoofed IP
packets will most probably have inconsistent hop-count values
with the IP addresses being spoofed. FAIR borrows ideas from
these schemes, as the packets contain proofs of misbehavior
if the source violates the acknowledged traffic profile. The
destination then sends the proofsback to the corresponding
ASes to prove the misbehavior.

There are two main approaches foractivedefenses against
DDoS attacks: capabilities and filtering. Capability propos-
als [10–12, 65] let the destination explicitly authorize traffic
that it desires to receive. Our approach is inspired by capability
schemes — not for proving traffic legitimacy, but for collecting
and providing proofs to each transit AS on the path. The first
challenge for a victim is to distinguish between malicious and
benign traffic sources [65]. Benign traffic sources get short-
term authorizations – capabilities – from the destinationsand
put them into the packets, so that the legitimacy of traffic
can be verified. Capability proposals introduce considerable
complexity and are susceptible to DoC attacks [10]. To ad-
dress DoC,TVA [11] tags each packet with the identifier
of the ingress point to an AS and fair-queues packets at
each router according to this identifier.Portcullis [12] uses
puzzles (computational proofs of work) to provide fair sharing
of the request channel.NetFence [66] is a hybrid system
and introduces a secure congestion policy feedback combined
with elements from capability-based systems. Most capability
proposals assume a mechanism that distinguishes malicious
from benign traffic and the effectiveness of these proposalsis,
at most, as good as this assumed mechanism. In FAIR, we use
a traffic profile that draws a clear line between malicious and
benign behavior, and use the proofs in the packets to push the
edge ASes to address their security problems.

The second class of active DDoS defense mechanisms,
filtering proposals, relies on stopping malicious flows in the
network before reaching the victim.StopIt [14] uses a closed-
control and open-service architecture to defend from attacks
that prevent filter installation. End hosts can send StopIt
requests only to their access routers and each AS has a StopIt
server that handles StopIt requests.AITF [15] installs filters in
routers as close as possible to the attacking sources, rather than
in backbone routers.Pushback[16] detects a malicious traffic
aggregate and controls it at a single router and in a cooperative
manner by asking upstream providers to stop the malicious
aggregate. Such filtering schemes assume cooperation among
ISPs and that ISPs are willing to provide some of their filtering
resources to protect remote victims. However, this is an unreal-
istic assumption in today’s competitive Internet ecosystem and
we consider the accountable proof of misbehavior as a way to
convince ISPs to install filters. Alternatively, such proofcan
lead to new contracts among ISPs with regard to security.

VIII. C ONCLUSION

This paper has presented FAIR, an attempt to answer the
question on how to incentivize ISPs to adopt stricter security

policies and thereby to secure the insecure edge of the Internet
where most of today’s security problems are rooted.

FAIR leverages forwarding accountability to prove to tran-
sit ISPs on the path from the source to the destination that they
have forwarded (malicious) traffic. Using FAIR’s accountable
proof of misbehavior, we have presented an application –
the suspicious bit – that incentivizes ISPs to mark traffic
from their suspicious customers as such and thereby inform
other entities in the network. FAIR comes with less than 2%
bandwidth overhead and without any storage overhead for the
transit ISPs. Furthermore, FAIR is incrementally deployable in
today’s Internet, and it gives incentives for early adoption.

We have implemented a FAIR software switch that pro-
cesses packets at the line rate of 120 Gbps, and forwards 140M
minimum-sized packets per second.

REFERENCES

[1] J. Czyz, M. Kallitsis, M. Gharaibeh, C. Papadopoulos, M.Bailey, and
M. Karir, “Taming the 800 Pound Gorilla: The Rise and Declineof
NTP DDoS Attacks,” inProceedings of the 2014 Internet Measurement
Conference, 2014.

[2] “DDoS Attack Hits 400 Gbit/s, Breaks Record,” ”http://ubm.io/
1HOGEpr”, 2014.

[3] “Q4 2014 State of the Internet Security Report,” ”http://bit.ly/
1QIBg9H”, May 2015.

[4] “China’s Man-on-the-Side Attack on GitHub,” ”http://bit.ly/1EnxqMU”,
Mar. 2015.

[5] “Dissection of ’itsoknoproblembro’, the DDoS tool thatshook the
banking world,” ”http://bit.ly/1HOGCO5”, Jan. 2013.

[6] “Millions of websites hit by Drupal hack attack,” ”http://bbc.in/
1DtMJQd”, Oct. 2014.

[7] D. G. Andersen, H. Balakrishnan, N. Feamster, T. Koponen, D. Moon,
and S. Shenker, “Accountable Internet Protocol (AIP),” inProceedings
of the ACM SIGCOMM Conference on Data Communication, 2008.

[8] X. Liu, A. Li, X. Yang, and D. Wetherall, “Passport: Secure and
Adoptable Source Authentication,” inProceedings of the 5th USENIX
Symposium on Networked Systems Design and Implementation, 2008.

[9] “Cloudflare Features and Pricing,” ”https://www.cloudflare.com/plans”,
2015.

[10] A. Yaar, A. Perrig, and D. Song, “SIFF: A Stateless Internet Flow Filter
to Mitigate DDoS Flooding Attacks,” inProceedings of the 25th IEEE
Symposium on Security and Privacy, 2004.

[11] X. Yang, D. Wetherall, and T. Anderson, “A DoS-limitingNetwork
Architecture,” in Proceedings of the ACM SIGCOMM Conference on
Data Communication, 2005.

[12] B. Parno, D. Wendlandt, E. Shi, A. Perrig, B. Maggs, and Y.-C.
Hu, “Portcullis: Protecting Connection Setup from Denial-of-capability
Attacks,” in Proceedings of the ACM SIGCOMM Conference on Data
Communication, 2007.

[13] T. Anderson, T. Roscoe, and D. Wetherall, “Preventing Internet Denial-
of-Service with Capabilities,”SIGCOMM Computer Communication
Review, Jan. 2004.

[14] X. Liu, X. Yang, and Y. Lu, “To Filter or to Authorize: Network-layer
DoS Defense Against Multimillion-node Botnets,” inProceedings of
the ACM SIGCOMM Conference on Data Communication, 2008.

[15] K. Argyraki and D. R. Cheriton, “Active Internet TrafficFiltering:
Real-time Response to Denial-of-service Attacks,” inProceedings of
the USENIX Annual Technical Conference, 2005.

[16] R. Mahajan, S. M. Bellovin, S. Floyd, J. Ioannidis, V. Paxson, and
S. Shenker, “Controlling High Bandwidth Aggregates in the Network,”
SIGCOMM Computer Communication Review, Jul. 2002.

[17] “Routing Resilience Manifesto,” ”https://www.routingmanifesto.org/”,
May 2015.

[18] P. Gill, M. Schapira, and S. Goldberg, “A Survey of Interdomain
Routing Policies,”SIGCOMM Computer Communication Review, Dec.
2013.

[19] Federal Communications Commission, “Open Internet Order,” ”http://
www.fcc.gov/openinternet”, Feb. 2015.

[20] S. Bellovin, “The Security Flag in the IPv4 Header,” RFC3514
(Informational), Internet Engineering Task Force, Apr. 2003.

[21] S. Savage, D. Wetherall, A. Karlin, and T. Anderson, “Practical
Network Support for IP Traceback,” inProceedings of the ACM
SIGCOMM Conference on Data Communication, 2000.

[22] “Nmap Network Scanning,” ”http://bit.ly/1DPn4BK”, May 2015.

[23] Cisco, “Cisco Policing and Shaping Overview,” ”http://bit.ly/
1HOHr9V”, May 2015.

[24] I. Castro, A. Panda, B. Raghavan, S. Shenker, and S. Gorinsky,
“Route Bazaar: Automatic Interdomain Contract Negotiation,” in 15th
Workshop on Hot Topics in Operating Systems (HotOS XV), 2015.

[25] D. Barrera, R. M. Reischuk, P. Szalachowski, and A. Perrig, “SCION
Five Years Later: Revisiting Scalability, Control, and Isolation on Next-
Generation Networks,”arXiv/1508.01651, Aug. 2015.

[26] X. Zhang, H.-C. Hsiao, G. Hasker, H. Chan, A. Perrig, andD. G.
Andersen, “SCION: Scalability, Control, and Isolation on Next-
Generation Networks,” inProceedings of the 31st IEEE Symposium on
Security and Privacy, 2011.

[27] Y. Rekhter, T. Li, and S. Hares, “A Border Gateway Protocol 4
(BGP-4),” RFC 4271 (Draft Standard), Internet EngineeringTask
Force, Jan. 2006.

[28] ARIN, “Resource Public Key Infrastructure,” ”http://bit.ly/1EJCQoT”.

[29] A. Aziz and M. Patterson, “Design and Implementation ofSKIP,” in
Proceedings of INET, 1995.

[30] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS)
Protocol Version 1.2,” RFC 5246 (Proposed Standard), Internet
Engineering Task Force, Aug. 2008.

[31] P. H. Dana, “Global Positioning System (GPS) Time Dissemination
for Real-time Applications,”Real-Time Syst., Jan. 1997.

[32] RIPE Labs, “Update on AS Path Lengths Over Time,” ”https://labs.ripe.
net/Members/mirjam/update-on-as-path-lengths-over-time”.

[33] J.-S. Coron, “On the Exact Security of Full Domain Hash,” in
Proceedings of the 20th Conference on Advances in Cryptology, 2000.

[34] “CAIDA: Center for Applied Internet Data Analysis,” ”http://www.
caida.org”.

[35] B. Liu, J. T. Chiang, J. J. Haas, and Y.-C. Hu, “Coward attacks
in vehicular networks,”Mobile Computing. Communications Review,
Dec. 2010.

[36] “CIDR Report for July,” ”http://www.cidr-report.org/as2.0/”, jul 2014.

[37] S. Deering and R. Hinden, “Internet Protocol, Version 6(IPv6)
Specification,” RFC 2460 (Draft Standard), Internet Engineering Task
Force, Dec. 1998.

[38] G. Detal, B. Hesmans, O. Bonaventure, Y. Vanaubel, and B. Donnet,
“Revealing Middlebox Interference with Tracebox,” inProceedings of
the 13th ACM Internet Measurement Conference, 2013.

[39] D. Zhou, B. Fan, H. Lim, M. Kaminsky, and D. G. Andersen, “Scalable,
High Performance Ethernet Forwarding with CuckooSwitch,”in
Proceedings of the 9th ACM Conference on emerging Network
EXperiments and Technologies, 2013.

http://ubm.io/1HOGEpr
http://ubm.io/1HOGEpr
http://bit.ly/1QIBg9H
http://bit.ly/1QIBg9H
http://bit.ly/1EnxqMU
http://bit.ly/1HOGCO5
http://bbc.in/1DtMJQd
http://bbc.in/1DtMJQd
https://www.cloudflare.com/plans
https://www.routingmanifesto.org/
http://www.fcc.gov/openinternet
http://www.fcc.gov/openinternet
http://bit.ly/1DPn4BK
http://bit.ly/1HOHr9V
http://bit.ly/1HOHr9V
http://bit.ly/1EJCQoT
https://labs.ripe.net/Members/mirjam/update-on-as-path-lengths-over-time
https://labs.ripe.net/Members/mirjam/update-on-as-path-lengths-over-time
http://www.caida.org
http://www.caida.org
http://www.cidr-report.org/as2.0/

[40] S. Han, K. Jang, K. Park, and S. Moon, “PacketShader: A GPU-
accelerated Software Router,” inProceedings of the ACM SIGCOMM
2010 Conference, 2010.

[41] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall, G.Iannaccone,
A. Knies, M. Manesh, and S. Ratnasamy, “RouteBricks: Exploiting
Parallelism to Scale Software Routers,” inProceedings of the ACM
SIGOPS 22Nd Symposium on Operating Systems Principles, 2009.

[42] “Data Plane Development Kit,” ”http://dpdk.org”.

[43] S. Gueron, “Intel Advanced Encryption Standard (AES) New Instruc-
tion Set,” ”https://software.intel.com/sites/default/files/article/165683/
aes-wp-2012-09-22-v01.pdf”, Mar. 2010.

[44] M. Bellare, J. Kilian, and P. Rogaway, “The Security of the Cipher
Block Chaining Message Authentication Code,”J. Comput. Syst. Sci.,
Dec. 2000.

[45] RIPE, “Routing Information Service Raw Data,” ”http://www.ripe.net/
data-tools/stats/ris/ris-raw-data”, May 2015.

[46] “Intel Digital Random Number Generator (DRNG) Software Implemen-
tation,” ”http://intel.ly/1HOHBOh”, jul 2014.

[47] “Performance Impact of Intel Secure Key on openSSL,” ”http://intel.ly/
1EJA2Ib”, jul 2014.

[48] P. Gupta, S. Lin, and N. McKeown, “Routing Lookups in Hardware at
Memory Access Speeds,” inProceedings of the 17th IEEE Conference
on Computer Communications, Mar. 1998.

[49] K. Argyraki, P. Maniatis, O. Irzak, S. Ashish, and S. Shenker, “Loss
and Delay Accountability for the Internet,” inProceedings of the 15th
IEEE International Conference on Network Protocols, Oct. 2007.

[50] “Segment Routing,” ”http://www.segment-routing.net/”, 2015.

[51] J. Van der Merwe, A. Cepleanu, K. D’Souza, B. Freeman,
A. Greenberg, D. Knight, R. McMillan, D. Moloney, J. Mulligan,
H. Nguyen, M. Nguyen, A. Ramarajan, S. Saad, M. Satterlee,
T. Spencer, D. Toll, and S. Zelingher, “Dynamic Connectivity
Management with an Intelligent Route Service Control Point,”
in Proceedings of the SIGCOMM Workshop on Internet Network
Management, 2006.

[52] I. Cunha, R. Teixeira, and C. Diot, “Measuring and Characterizing
End-to-end Route Dynamics in the Presence of Load Balancing,”
in Proceedings of the 12th Conference on Passive and Active
Measurement, 2011.

[53] M. S. Kang, S. B. Lee, and V. D. Gligor, “The Crossfire Attack,” in
Proceedings of the 33rd IEEE Symposium on Security and Privacy,
2013.

[54] P. Ferguson and D. Senie, “Network Ingress Filtering: Defeating
Denial of Service Attacks which employ IP Source Address Spoofing,”
RFC 2827 (Best Current Practice), Internet Engineering Task Force,
May 2000.

[55] F. Baker and P. Savola, “Ingress Filtering for Multihomed Networks,”
RFC 3704 (Best Current Practice), Internet Engineering Task Force,
Mar. 2004.

[56] S. Zargar, J. Joshi, and D. Tipper, “A Survey of Defense Mechanisms
Against Distributed Denial of Service (DDoS) Flooding Attacks,”
Communications Surveys Tutorials, apr 2013.

[57] J. Mirkovic, S. Dietrich, D. Dittrich, and P. Reiher,Internet Denial of
Service: Attack and Defense Mechanisms (Radia Perlman Computer
Networking and Security). Upper Saddle River, NJ, USA: Prentice
Hall PTR, 2004.

[58] A. Li, X. Liu, and X. Yang, “Bootstrapping Accountability in the
Internet We Have,” inProceedings of the 8th USENIX Symposium on
Networked Systems Design and Implementation, 2011.

[59] D. R. Simon, S. Agarwal, and D. A. Maltz, “As-based Accountability
as a Cost-effective DDoS Defense,” inProceedings of the 1st Workshop
on Hot Topics in Understanding Botnets, 2007.

[60] W. Zhou, Q. Fei, A. Narayan, A. Haeberlen, B. T. Loo, and M. Sherr,
“Secure Network Provenance,” inProceedings of the 23rd ACM
Symposium on Operating Systems Principles, 2011.

[61] A. Haeberlen, P. Kouznetsov, and P. Druschel, “PeerReview: Practical
Accountability for Distributed Systems,” inProceedings of the 21st
ACM Symposium on Operating Systems Principles, 2007.

[62] A. Haeberlen, I. Avramopoulos, J. Rexford, and P. Druschel,
“NetReview: Detecting when Interdomain Routing Goes Wrong,” in
Proceedings of the 6th USENIX Symposium on Networked Systems
Design and Implementation, 2009.

[63] D. X. Song and A. Perrig, “Advanced and Authenticated Marking
Schemes for IP Traceback,” inProceedings of the 20th IEEE Conference
on Computer Communications, 2001.

[64] C. Jin, H. Wang, and K. G. Shin, “Hop-count Filtering: AnEffective
Defense Against Spoofed DDoS Traffic,” inProceedings of the 10th
ACM Conference on Computer and Communication Security, 2003.

[65] M. Natu and J. Mirkovic, “Fine-grained Capabilities for Flooding
DDoS Defense Using Client Reputations,” inProceedings of the 2007
Workshop on Large Scale Attack Defense, 2007.

[66] X. Liu, X. Yang, and Y. Xia, “NetFence: Preventing Internet Denial
of Service from Inside out,” inProceedings of the ACM SIGCOMM
Conference on Data Communication, 2010.

http://dpdk.org
https://software.intel.com/sites/default/files/article/165683/aes-wp-2012-09-22-v01.pdf
https://software.intel.com/sites/default/files/article/165683/aes-wp-2012-09-22-v01.pdf
http://www.ripe.net/data-tools/stats/ris/ris-raw-data
http://www.ripe.net/data-tools/stats/ris/ris-raw-data
http://intel.ly/1HOHBOh
http://intel.ly/1EJA2Ib
http://intel.ly/1EJA2Ib
http://www.segment-routing.net/

	I Introduction
	II Overview of FAIR
	II-A Setup (Phase 1)
	II-B Data Transmission (Phase 2)
	II-C Proving Misbehavior (Phase 3)

	III The FAIR Protocol
	III-A Assumptions
	III-B Parameters
	III-C Protocol Operations
	III-D Verifying Proofs of Misbehavior

	IV Protocol Analysis
	IV-A Security Aspects
	IV-B Scalability

	V Implementation and Evaluation
	V-A Integration with IP
	V-B Software Switch Prototype
	V-C Switch Prototype Evaluation

	VI Protection from DDoS Attacks
	VI-A Suspicious Bit
	VI-B Active Defense
	VI-C Deployment Path
	VI-D Operational Assumptions
	VI-E Security Concerns

	VII Related Work
	VIII Conclusion
	References

