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Freeing The IP Internet Architecture
from Fixed IP Addresses

Spencer Sevilla, J.J. Garcia-Luna-Aceves
{spencer, jj}@soe.ucsc.edu
UC Santa Cruz, Santa Cruz, CA

Abstract—The IP Internet architecture is such that appli-
cations must bind fixed IP addresses and ports before any
other operations can be executed. These early bindings cause
bottlenecks, reliability issues, and force applications and pro-
tocols to manage complex lower-layer issues. This poses a big
challenge to the future of the IP Internet, given the large and
growing numbers of nomadic Internet users, the shift in Internet
usage from centralized servers to peer-to-peer content sharing,
and the popularity of service replication and virtualization. To
address these issues, we introduce and evaluate HIDRA (Hidden
Identifiers for Demultiplexing and Resolution Architecture), a
novel architecture that creates indirection between layers of any
network stack. HIDRA enables sockets and protocols to evolve
with the IP Internet by hiding all mobility, multihoming, and
multiplexing issues from applications, does not induce significant
overhead in the protocol stack, preserves backwards compatibil-
ity with today’s Internet and applications, and does not require
or preclude any additional identifiers or protocols to be used in
the protocol stack.

I. INTRODUCTION

The design of the protocol stack of the IP Internet relies
heavily upon applications and protocols early-binding the
identifiers used by lower layers. For example, applications
must bind a fixed IP address and port, which are identifiers
at the network and transport layers, before the application can
send or receive a message. In turn, TCP itself binds a pair of
fixed IP addresses before it sets up a connection or transmits
information. In addition to these explicit bindings managed by
the operating system, applications typically manage several
other implicit bindings, such as mapping a host name to a
set of fixed IP addresses through the Domain Name System
(DNS), or mapping an application-layer service to its corre-
sponding port number.

Requiring higher layers to bind lower-layer identifiers cre-
ates significant problems today, and inhibits further Internet
evolution tomorrow. By the very definition of binding, an
identifier bound by a higher layer cannot subsequently be mod-
ified without breaking said binding. For example, requiring a
higher layer to bind a network-layer address fundamentally
inhibits network address mobility and multihoming, and also
implicitly binds the network-layer protocol specified (e.g.,
IPv4). The same problem exists at the transport layer, where
requiring applications to bind a port number (typically known
to the application a priori) inhibits dynamically assigning or
changing ports at either end of the connection.

We observe that the root of the problem in the two cases
above comes from overloading the meanings of identifiers.

Semantically, there is an important difference between an IP
address and a host, just as there is a difference between a port
number and a service, yet Internet applications today have no
way of expressing this difference. These problems are well-
understood, and have led to a vast set of prior work, which
Section III summarizes. This summary includes works that
isolate and target particular problems (e.g., maintaining a TCP
connection across address changes), as well as proposals for
both dirty- and clean-slate redesigns of the network stack.

Building on this point, we also observe that all approaches
proposed or implemented to date rely on a layered design
that assumes the internal use of what we call open identifiers.
Open identifiers are transparent values used by communicating
parties to name or locate an entity or resource. In contrast to
open identifiers, our own recent prior work [1], [2] introduced
the architectural concept of a hidden identifier, which is an
opaque, meaningless value to be used used internally by a
communicating entity instead of an open identifier. Section II
provides a discussion of how hidden identifiers differ from and
relate to open identifiers.

We have provided simple proofs-of-concept implementa-
tions of the concept of hidden identifiers [1], [2]. This paper
extends this prior work into a robust, three-part network
architecture we call HIDRA (Hidden Identifiers for Demulti-
plexing and Resolution Architecture). In addition to significant
architectural enhancements and a complete implementation,
we created an ecosystem of peripheral tools and applications,
and used these tools to provide a much more extensive set of
evaluations on the implemented architecture itself.

Section IV describes the necessary modifications to inte-
grate hidden identifiers into any protocol stack, Section V
describes the necessary modifications to network applications
and the socket API, and Section VI describes how control
processes map hidden identifiers to open identifiers, and use
this mapping to express a rich set of semantic bindings and
policies. Section VII provides implementation details and ex-
perimental results collected on several real-world applications
and networks, and Section VIII concludes the paper.

II. HIDDEN AND OPEN IDENTIFIERS

As we survey below, a remarkable similarity of all prior
work on communication-protocol architectures is that it re-
lies heavily on layered designs that use what we call open
identifiers. Open identifiers are transparent values that encode
meaning, are propagated over a network, and are used to name



or address' a network entity. Because of these characteristics,
open identifiers

o Are visible to other network stack layers as well as the
end systems or intermediate systems that employ them.

¢ Are unique and unambiguous within a scope.

« Do not change once bound.

Examples of open identifiers include MAC and IP addresses;
port numbers; DNS hostnames; and service, host, or content
identifiers.

We recently introduced the notion of a hidden identifiers [1],
[2], which are opaque values that explicitly encode no meaning
and are not propagated among end systems or intermediate
systems (hosts or routers) operating in a network. A hidden
identifier is mapped to one or more hidden or open identifiers
via a table maintained in the operating system, masks the
true value(s) and format(s) of the mapped identifier, and is
used internally by a layer or application in place of an open
identifier.

Figure 1 provides a simple comparison between open and
hidden identifiers. Figure 1(a) illustrates the Internet protocol
stack today, in which TCP must work directly with open iden-
tifiers (the values ipl and ip2). In contrast, Figure 1(b) shows
how TCP would operate using hidden identifiers (the values
hidX and hidY) without any knowledge of the corresponding
open identifiers.

TCP_ | sendto: {ip2, port} recvfrom:{ip1,port}
IP__| sendto: {ip2} recvfrom:{ip1}

——»
6ip1 ip2 @
(@)

sendto: {hidX, port} recvfrom: {hidY, port}
—f—=(map hidX>ip2) == (mapip1->hidY)
sendto: {ip2} recvfrom: {ip1}

—_——»
@im ip2 @
(b)

Fig. 1. Open and hidden identifiers

Given that hidden identifiers are not propagated over a
network, they must be translated to open identifiers through
some process before protocols that rely on them can exchange
any messages. For this mapping process to work correctly
and support communication, the state of the higher layer
must be maintained across lower-layer changes. Thus, hidden
identifiers may only multiplex lower-layer open identifiers that
are equivalent from the perspective of the higher layer. To
this point, we note that the state of the higher layer includes
any identifiers that it binds. As a result, this requirement
ensures that the identifiers used by the higher layer are scoped
correctly, and can therefore be resolved unambiguously by the
higher layer.

In this context, we use “name” and “address” interchangeably, since as
[3] points out, an “address” is just the “name” of a lower-level entity.

A. File Descriptors

While hidden identifiers have not been used in any previous
communication protocol architecture, they are not new to
operating system design. In particular, the design of hidden
identifiers very closely resembles that of file descriptors, which
were originally used in UNIX to provide a standard filesystem
interface for applications that did not depend on either the
physical location of the file or the underlying addressing
scheme.

Before the introduction of file descriptors, applications were
written for specific hardware profiles. This was a major road-
block to innovation, because even minor changes in the un-
derlying filesystem (e.g., moving a file or altering the storage
hardware) broke every application. This problem is analogous
to the state of network programming today, where changes
in network addresses disrupt connectivity, and changes in
network protocols require applications to be rewritten.

B. Characteristics and Benefits of Hidden Identifiers

It is important to stress that hidden identifiers on their
own do not introduce any new control messages, layers, or
bindings into the stack. Building on this point, we also stress
that hidden identifiers are simply a new way for end systems
and intermediate systems to internally represent the binding
process between layers, and are never sent over the wire. By
definition, any identifier that propagates among systems over
the network is an open identifier.

These points are crucial, because the importance of hidden
identifiers is not just what they add into to the stack, but what
they explicitly do not add. By leaving existing protocols intact,
restricting changes to take place within systems, and leaving
the data plane unmodified, hidden identifiers provide a solution
whereby tremendous flexibility can be injected into the existing
communication protocol stack without requiring a new layer
or protocol to be deployed! In this manner, hidden identifiers
provide a counterargument to the work by Balakrishnan et
al. [4], who claimed that the only way to break the binding
between two layers was to introduce an additional layer of
identifiers between them.

By breaking these bindings, hidden identifiers enable solu-
tions to a wide range of problems to emerge and be deployed
using the existing communication protocol stack. For example,
network address mobility and multihoming can be attained
without disrupting transport protocols, because they can oper-
ate using what amounts to an unchanging virtual address that is
mapped to actual addresses at the network layer. By the same
token, applications can enjoy the services of different protocol
stacks used sequentially or concurrently, and a protocol can
benefit from the services provided by multiple lower-layer
protocols. These type of advantages are further discussed in
Section VII.

Hidden identifiers enable a seamless approach to the evolu-
tion of the Internet. While the TCP/IP stack is here to stay for
some time, it does not preclude the goals of future network
architectures. The goals of the alternate identifier bindings and
layers proposed in those future network architectures can be



accomplished through a combination of signaling protocols
that identify and locate desired network resources, identifier
multiplexing at end hosts, and using either standard TCP and
UDP or a new transport protocol in the data plane.

Hidden identifiers dramatically reduce the ossification of
the current protocol stack. By enforcing a clean separation be-
tween layers, hidden identifiers provide a mechanism whereby
individual layers of the stack can be modified, replaced,
or removed entirely without requiring modifications to other
layers. This is crucial for future evolution, because it turns the
current stack into a modular, evolvable environment wherein
changes to one layer do not disrupt the rest of the stack.

III. RELATED WORK AND MOTIVATION

Work on the binding of names, addresses, and routes to one
another goes back several decades, and due to space limitations
we mention only a small fraction of that work. Watson [5]
provides an excellent summary of early work on the subject,
and Shoch [6] provided one of the most cited characterizations
of these concepts: “the name of a resource indicates what we
seek, an address indicates where it is, and a route tells how
to get there.” Interestingly, although these characterizations of
bindings among names, addresses, and routes do not advocate
how they should be carried out, all prior work that implements
these bindings uses open identifiers at both end systems and
intermediate relays.

A. The Identifier/Locator Split

The challenge of supporting mobility in IP networks has
been a primary research motivator for decades, and is fueled
by the observation that IP addresses are used to both identify
hosts and locate them in the network. A vast amount of prior
work exists, including several surveys of this work [7], [8],
[9], [10], [11], [12] and efforts [7], [13], [14] that compare
these solutions with respect to a network architecture.

Certain works [15], [16], [17], [18] support address mo-
bility and multihoming entirely within the network layer by
providing “shims” that accomplish the identifier/locator split
by mapping one identifier (presented to higher layers) to
another identifier used for actual network routing. However,
these proposals fragment the address space and often introduce
triangle routing.

Transport layer approaches [19], [20], [21], [22], [23] pro-
pose adapting TCP to coordinate address handoffs, or propose
connection multiplexing above the transport layer [24], [25],
[26]. These approaches generally ignore the semantics of
identifiers and locators, and simply rely on an end-to-end
signaling protocol that enables hosts to update addresses as
they move in the network.

Other proposals [20], [23], [25], [27], [28], [29] observe that
applications typically identify a host through DNS resolution,
rather than its IP address. As a result, these works approach
the identifier/locator split by arguing for either a socket API
or TCP implementation based on hostnames, as opposed to
network addresses. A number of proposals [4], [24], [30],
[31] advocate a similar model based on cryptographic host

identifiers in place of hostnames. Unfortunately, these models
generally break backwards compatibility. Additionally, they
require agreement on, standardization, and widespread deploy-
ment of new identity protocols.

Another popular approach is to deploy an entirely separate
set of identifiers on top of the physical network, either directly
at the network layer [32], [33], [34], [35], [36] or application
layer [37], [38], [39], [40], [41]. However, all of these ap-
proaches require some degree of encapsulation, and certain
network-layer solutions also require custom hardware support
in routers and switches. Meanwhile, application-layer ap-
proaches incur the significant overhead of propagating overlay
network identifiers, either by flooding reachability information
or using some form of distributed hash table (DHT). All of
these approaches incur significant control message churn when
nodes enter or exit the network.

We argue that the root of the identifier/locator problem lies
in the design decision to propagate open identifiers across
layers: the IP layer uses addresses exclusively for location, and
it is only higher layers of the stack that semantically equate an
IP address to a host. Additionally, we observe the exact same
problem at the transport layer, wherein the application layer
semantically equates port numbers (e.g., 80) with particular
application services (e.g., HTTP).

These problems are the natural consequence of allowing
higher layers to bind an open identifier of a lower layer.
When open identifiers are exposed to higher layers, they
are inevitably ascribed additional semantic meaning by these
higher layers, and these additional semantic bindings restrict
the lower layer from properly managing its identifiers. This
point is underscored by the ability of the system to dynam-
ically select and modify network components that are not
bound by higher layers; such components include the interface
chosen for transmission and the network-layer route between
two hosts.

B. Future Network Architectures

Many of the so called “future network architectures” [4],
[28], [30], [41], [42], [43], [44], [45] propose introducing
one or more new layers of open identifiers as a way of
eliminating the naming and addressing problems in the current
Internet architecture. FII [28], [45] and Plutarch [46] propose
an Internet framework that allows for incremental deployment
through heterogeneity between different network domains, and
the layered naming architecture [4] and Serval [43] both
propose a Service Identity (SID) layer between the network
and transport layers.

Other architectures [14], [47], [48], [49], [50] explore the
concept of recursion between layers of the stack. This model
views each layer as providing an abstract interprocess com-
munication (IPC) service to the layer directly above it, and
thus views the entire stack as a recursive series of services
that perform both transport and routing tasks, as opposed to a
model where the entire stack constitutes one distributed IPC
service for applications.



Unfortunately, these future network architectures come at a
very large adoption price: they require the redesign of network
applications and operating systems, and generally also require
the replacement of all intermediate hardware (routers and
switches).

IV. THE HIDRA PROTOCOL STACK

Figure 2 illustrates how HIDRA can be organized into three
closely-related and interworking components, detailed in this
and the following two sections.

This section describes the core design of how the protocol
stack uses hidden identifiers between protocol layers, and
how this process works when sending or receiving datagrams.
Section V describes how network applications use peripheral
functions to create an identifier that exactly represents the
network resource they desire, and use this identifier to com-
municate through a protocol-agnostic socket API. Section VI
explains how the mapping of hidden to open identifiers is
created, maintained, and updated through control processes
to reflect the original semantic binding requested by the
application.

Network Applications

so%

Fig. 2. HIDRA overview

A. HID, TID, and NID Semantics

For successful communication, an end system or intermedi-
ate system must be able to map the bound hidden identifiers it
uses internally to the open identifiers needed by the protocol
stack. In particular, HIDRA employs three sets of hidden
identifiers: Network Identifiers (NID), Transport Identifiers
(TID), and Host Identifiers (HID). Figure 3 provides examples
and illustrates the position of these three identifiers in the
protocol stack, and shows how all three hidden identifiers are
maintained and multiplexed through tables.

Open Value | Open Value
{tid2, hid2} NULL
{tid2, hid1} NULL

1: sendmsg(msg, nid_1)| Application / NID
nid_1
2:resolve nid_1—{tid_2, hid_2}

nid_2
3:resolve tid_2—TCP80[ TiDTable | [T
tid_1 UDP53

4: tcp_sendmsg(msg, 80, hid_2)

Open Value | Open Value
NULL

tid_2 TCP80 TCP8080

5: resolve hid_2—>17.178.96.59 HID Table |_HID__{ Open Value | Open Value
hid_1 ] 192.168.1.1 | 127.0.0.1
6:ip_sendmsg(msg, 17.178.96.59)|  Network hid_2 [17.178.96.59 NULL

Fig. 3. HIDRA protocol stack

A HID is a hidden identifier that sits between the transport
and network layers, and maps to one or more network-
layer open identifiers (i.e., IP addresses). Since the HID must
preserve the state and scope of the transport layer, a single HID
may multiplex across different network identifiers owned by

the same host, but may nor multiplex across different hosts. In
this context, a “host” can refer to a physical computer, a virtual
machine, or any such entity that maintains a transport-layer
state. Additionally, HID multiplexing across hosts can still
work if the transport-layer state is correspondingly migrated
from one host to another. However, we leave such an approach
to future work.

A TID is a hidden identifier that sits above the transport
layer and maps to one or more transport layer open identifiers
(i.e., ports). Given that transport-layer identifiers are scoped
to a particular host, TIDs are scoped to a particular HID for
table storage and multiplexing. As it is the case with an HID,
a single TID may multiplex across open identifiers just as
long as the corresponding application-layer state is preserved.
This enables application-layer services (i.e., a HTTP server)
to dynamically bind and migrate ports.

From the perspective of the socket API, replacing a network
address with a HID and a port with a TID masks the open
values of these identifiers from the application using them.
However, simply allowing applications to bind a {TID, HID}
tuple as we have proposed in our prior work [2] is still
problematic, because such a tuple still implies and requires
certain restrictions of the underlying networking stack im-
plementation. These restrictions are: (a) the existence of a
transport and a network layer that use open identifiers; (b)
the lack of any other such identifying layers (e.g., layers that
identify services, hosts, or content); and (c) the need by the
underlying network stack to use exactly two hidden identifiers.
Furthermore, binding a socket to a {TID, HID} tuple ensures
that the application is bound to exactly one TID and HID.

We address the above restrictions with the use of NIDs. A
NID is a hidden identifier used by applications with the socket
API. The NID is agnostic to any specific protocol stack or
protocol, and is designed to mask all network stack logistics
from the application. Thus, the NID can be multiplexed to one
or more {TID, HID} tuples, a traditional {IP, port} tuple, a
Bluetooth identifier, another NID, or any other such value, in-
cluding but not limited to a set of one or more identifiers used
by a future network architecture. How applications acquire and
interact with NIDs is the subject of Section V.

For organizational simplicity, in the remainder of this sec-
tion we explicitly assume that the application has already
obtained a NID that multiplexes to a valid TID and HID, and
that the TID and HID correspond to valid open identifiers. The
following two sections elaborate on how both of these points
are achieved and maintained.

B. Connecting, Sending, and Receiving Messages

Steps 1-6 of Figure 3 illustrate how an application sends a
message or connects to a NID.

First, the application passes a NID to the socket API
instead of the traditional {IP, port} tuple (Step 1). The system
multiplexes the NID to a {TID, HID} tuple (Step 2), translates
the TID an open identifier (Step 3), then passes the message
to the appropriate transport protocol. The transport protocol
processes the message and creates a datagram addressed to



the HID (Step 4). When the transport protocol is finished, the
HID is translated to a open network address (Step 5), and the
network layer processes the packet normally (Step 6).

The same steps are taken whenever data are sent to the
socket, regardless of whether the application calls sendmsg()
to send a datagram to a NID, connect() to open a stream, or
send() to send data to an established stream.

Applications bind a local identifier and receive messages
through the inverse of the above steps. After the network layer
is done processing a packet destined for the host, the source
network address is multiplexed to a HID. If no entry exists in
the HID table, as can be the case for an incoming connection
to a server, a new HID is generated. The transport layer then
processes the packet and multiplexes the port to a TID. The
resulting {TID, HID} tuple is mapped to a NID, and then the
message is queued for delivery to the appropriate socket.

C. Transport-Layer Changes

As illustrated in Figure 3, the transport layer still uses its
own open identifier, but replaces the open network identifier
with a HID. Thus, transport-layer protocols must be modified
to index connections using HIDs instead of open identifiers.
This modification takes place in two different ways. First, the
foreign network address is replaced by a HID when storing
or looking up connections. Second, the local network address
is effectively removed from the lookup tuple. This is needed
because, by definition, all packets received by the transport
layer are destined to the local host, and a HID referring to the
local host would necessarily be the same across local network
addresses. When exposed to different layers or bound to NIDs,
the local host is denoted as HID O.

These changes are all that is necessary to ensure successful
protocol operation and datagram delivery. However, if the HID
is multiplexing across multiple network addresses and routes,
datagrams from the same HID may arrive out of order; this is
known to negatively affect the performance of certain transport
protocols, such as TCP. We address this problem through the
inclusion of a small buffer that sits between the HID table and
TCP to re-order packets when necessary.’

V. APPLICATION-LAYER INTERFACE

A key goal of HIDRA is that network applications be
made as simple as possible. Instead of managing several
implicit and explicit identifier bindings, as is the case today,
HIDRA applications interact with network resources through
two cleanly defined steps. First, they use a peripheral function
to identify the network resource they desire and map it to
a NID. Second, they use this NID to send and receive data
through the socket API as in Section IV. This dramatically
reduces application complexity, because all other logistical
concerns, including the resolution and binding of hidden and
open identifiers, are hidden from applications and are managed
by the operating system.

2We acknowledge that this problem is significant, and can be addressed
in several different ways. For the sake of scope, we leave further discussion
of this problem to future work that compares and contrasts these different
approaches with respect to a hidden-identifier architecture.

®
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Fig. 4. Peripheral function for DNS resolution

A. Acquiring a Network Identifier

For successful communication to occur in this paradigm,
applications must acquire a NID that is bound to their de-
sired network resource. HIDRA applications accomplish this
through the use of peripheral functions, which embody the
interface between the application and the hidden identifier
control processes.

Peripheral functions take as input one or more identifiers
that unambiguously indicate the network resource desired by
the application. The peripheral function then resolves this set
of identifiers as necessary, populates and binds the appropriate
hidden-identifier tables, and returns a NID to the application.

struct sockaddr_hidra sa;

sa.nid = http_resolver(”host.com”);
sock = socket(AF_HIDRA, SOCK_STREAM, 0);
connect(sock, sa, sizeof(sa));

/* reqgular socket communication here */

Fig. 5. HIDRA example application

Figures 4 and 5 provides an example of how a basic periph-
eral function could support an HTTP client. The application
provides a DNS hostname as input (Step 1), and in turn the
peripheral function resolves the hostname to a set of addresses
(Step 2), populates the appropriate hidden-identifier tables
(Step 3), and returns a corresponding NID to the application
(Step 4). Subsequently, the application connects a socket to
the NID (Step 5), and the network stack uses the previously
populated tables to multiplex hidden to open identifiers as
necessary (Step 6).

This design represents a departure from traditional network
applications, in that while peripheral functions are often em-
ployed by applications to resolve network identifiers, HIDRA
requires such functions as there exists no other way to obtain
a NID. However, this requirement frees the application from
managing any other network-related concerns, such as storing
and parsing IP addresses returned by a DNS resolver.

Importantly, this design separates the process of binding
meaning to identifiers from the process of using these iden-
tifiers in the stack. This separation enables the same data-
path and protocols (i.e., TCP/IP) to support a rich set of
identifiers bound to different semantic meanings! Though
Figure 4 illustrates how a peripheral function can bind a NID
to a DNS hostname, different peripheral functions could bind
a NID to a service identifier, cryptographic identity, or even a
content ID!



B. Existing Semantic Mappings

Semantically, the simplest way to assign meaning to a
hidden identifier is to create a one-to-one mapping with an
open identifier. Table I outlines a set of peripheral functions
that provide this basic service, which enables applications to
semantically bind raw IP addresses and ports, just as in the
current TCP/IP stack.

These helper functions highlight the important difference
between an application binding an open identifier because it
is exactly what the application desires semantically (i.e., a
network utility that explicitly wishes to test the reachability of
a particular IPv4 address) or binding an open identifier because
the architecture provides no other way for the application to
express what is actually desired.

Comments

Creates a TCP TID
Creates a UDP TID
Creates an IPv4 HID
Creates an IPv6 HID

Function
generate_tid_tcp(portno)
generate_tid_udp(portno)
generate_hid_ipv4(ip_addr)
generate_hid_ipv6(ip6_addr)
TABLE I
PERIPHERAL FUNCTIONS

C. Future Semantic Mappings

In addition to the semantic bindings that exist today, hidden
identifiers can also be semantically bound to a wide range
of identifiers proposed by the future Internet architectures
referenced in Section III.

Endpoint-centric architectures that support host mobility
across network addresses map very well to the HID table.
HIDRA can support such an architecture by implementing a
directory service or discovery protocol that maps the identifier
to a set of network addresses and binds them to an HID.

Alternately, service-centric architectures focus on applica-
tion mobility and replication across multiple hosts. While these
architectures generally call for the introduction of one or more
new naming layers to uniquely identify these services as they
move, we note that the primary function of these layers is
not to add end-to-end or intermediate functionality, but rather
to mask mobility through the use of an unchanging identifier.
This distinction is crucial, because hidden identifiers achieve
the same goal by using a peripheral function to locate the
service initially, and then sending control messages as the
service migrates.

Because multiple peripheral functions may coexist with
each other, HIDRA can support several diverse approaches to
endpoint- and service-centricity simultaneously! This enables
different approaches to evolve over time, without requiring sig-
nificant modifications to applications or requiring agreement or
consensus on a particular protocol or identifier format. Further-
more, it also enables endpoint-centric applications to use an
endpoint-centric architecture, and service-centric applications
a service-centric architecture, in the same system!

D. Using a Network Identifier

As mentioned in Section IV-A, using NIDs also provides a
layer of abstraction that masks the underlying network stack
implementation from the application. Thus, depending on the
particular network resource requested, as well as the current
state of network connectivity, a NID could be multiplexed to
a wide range of network identifiers.

This design provides two important benefits for HIDRA-
based applications: First, it enables the system to manage
network identifiers in a way that completely masks them from
the application. Second, this support enables the deployment
of future identifiers, protocols, and stacks in a way that
does not require modification or updates to existing network
applications. For example, a new network-layer protocol could
be implemented simply by updating the peripheral function
in Figure 4 to support it. After this update, the application
in Figure 5 would immediately start taking advantage of this
protocol without the need for any modification.

In addition to these points, the use of NIDs provides a layer
of indirection that can multiplex across TID and HID tuples.
This provides architectural support for application and service
mobility as mentioned in Section V-C, whereby changing
the {TID, HID} tuple enables an application to persist a
communication session across multiple hosts. Moreover, this
allows the same application to be reached at all available
network address and port tuples, regardless of the protocols
or identifiers used.

VI. HIDRA CONTROL PROCESSES

HIDRA intentionally splits the multiplexing of hidden iden-
tifiers in the data path (described in Section IV) from the tasks
of populating and maintaining these values in their respective
tables. This architectural split enables two key benefits.

First, diverse control processes that create and modify the
bindings between hidden and open identifiers can coexist and
even work together to aggregate many different forms of
information. Second, these control processes can coordinate
with the peripheral functions mentioned in Section V to
support and maintain the semantic bindings requested by the
application.

A. Primitive Table Interface

Control processes interact with the NID, TID, and HID
tables through the table-management interface illustrated in
Table II. While these functions and their implementation are
largely self-evident, the purpose of the bottommost function,
set_policy, is more abstract. In those cases in which a hidden
identifier maps to more than one open identifier, control
processes use set_policy to specify how the system should
select an open identifier when sending data. Such policies
include round-robin, always choosing a particular address or
subnet when available, or weighting certain addresses more
than others.



Comments

returns the hidden ID

delete a hidden ID

add open ID to a hidden ID’s set
remove open ID from a hidden ID’s set
set ID muxing policy

TABLE I
HIDDEN-IDENTIFIER TABLE FUNCTIONS

ID Function
create_id(family, addr)
delete_id(id)
add_oid(id, open_id)
remove_oid(id, open_id)
set_policy(id, policy)

B. Mechanism and Policy

The table management interface is intentionally kept prim-
itive; this choice stems from the system design principle
of separating mechanism from policy. In addition to being
good engineering practice, this split keeps the table-interface
operations simple and fast, and enables control policies to
swiftly be designed, deployed, and automatically integrated
into the existing data path.

This roadmap for deployment provides an attractive “third
way” when contrasted with the two standard approaches of
(a) breaking compatibility by injecting a new layer into the
network stack, or (b) injecting additional complexity within a
layer by overloading open identifiers or encoding a mapping
between them. Rather, with HIDRA, complex and diverse
semantic bindings and policies can be simply represented
using the functions in Table II. For example, current proposals
for identifier mobility or multiplexing generally employ either
an end-to-end or a publish-subscribe architecture, yet either
architecture can be adapted to HIDRA by modifying them to
exist as separate application processes that create and receive
control messages, and then express the meaning of these
messages through the functions in Table II.

Implementing control signaling this way enables different
approaches to coexist and even integrate with each other!
For example, publish-subscribe architectures [29], [30], [51],
[52] must generally provide some mechanism to ensure
that already-established connections are updated as identifiers
move. However, given that hidden-identifier tables provide a
unifying point for different control processes, such a goal
could be accomplished through an entirely separate end-to-
end signaling protocol.

VII. EVALUATION AND CASE STUDIES

We implemented HIDRA as a Loadable Kernel Module
(LKM) for Linux 3.13.x.> Our kernel module consists of a
basic HIDRA socket API, NID, TID, and HID tables, as well
as the table-management interface described in Section VI.

Additionally, we implemented several different peripheral
functions to provide robust functionality for HIDRA applica-
tions; these functions include one that maps DNS host names
to HIDs, one that maps service-protocol names to TIDs, and
one that maps a cryptographic “shared secret” known by an
application to a particular TID and HID. Finally, we used
these tools to run a series of “case studies” that underscore

3Linux 3.13.x was chosen because it is the base distribution for Ubuntu
14.04 LTS, Mint 17, and the current distribution of Raspbian
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and evaluate the flexibility, performance, and modularity of
the HIDRA protocol stack, in terms of (a) writing HIDRA ap-
plications and control processes, (b) porting existing network
applications, and (c) supporting new networking paradigms.

A. Data-Plane Address and Host Multiplexing

For our first case study, we wrote a HIDRA netcat ap-
plication, called nc-hidra, which supports both stream- and
datagram-based communication. We deployed this application
across one laptop and two Raspberry Pis as shown in Figure 6,
and registered the set of network addresses of each computer
at a local DNS server. We then configured the hidden-identifier
tables at Host 1, such that an individual NID (used by nc-hidra)
indexed two HIDs (referring to Hosts 2 and 3, respectively),
and the HID referring to Host 2 indexed both of its network
addresses. Finally, we connected a webcam to Host 1, and
used nc-hidra to send datagrams from this webcam to this
NID. At time T1, we disconnected Host 2 from the 802.11
ad-hoc network, and at time T2 we disconnected Host 2 from
the ethernet network.

With this configuration in place, we compared the perfor-
mance of nc-hidra to unmodified nc, as well as nc-2, which
we modified to be more resilient in the face of disruptions
by storing all resolved network addresses for a host and
reconnecting if possible. Figure 7 illustrates the performance
of all three versions of nc, measured both in throughput
received and total lines of application code.

At time T1, standard nc fails, but nc-2 shows that ex-
tra application code can mitigate this failure with minimal
disruption. However, because each host has a different local
DNS entry, even nc-2 is unable to multiplex across hosts and
mitigate the complete disconnect seen at time T2. In contrast,
nc-hidra uses HID multiplexing to mitigate the first discon-
nection without any loss in throughput, and NID multiplexing
to mitigate the second disconnection just as easily.
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B. Adapting Non-HIDRA Applications

In addition to being the only version of the application to
persist across all forms of identifier changes, Figure 7 also
reveals that nc-hidra requires the least lines of code! This is
because all network-related handling is baked into the system
itself, as opposed to the network application.

Exploring this point further, we adapted several traditional
network applications to use HIDRA and measured the lines of
code changed and the total number of lines of code. Our results
are shown in Table III, and show that adapting traditional
applications to use HIDRA can be accomplished with minimal
changes, which typically required between 45 minutes and one
hour. In addition, these results also show that in all cases, the
HIDRA application is simpler and requires fewer lines of code
overall.

Program | Lines Changed | Time Needed | Total Difference
nc 135 0:45 -91
iperf 333 1:15 -288
tftp 119 0:55 =73
TABLE III

LINES OF CODE

C. Legacy Application Support

Building on the above study, we also explored what is pos-
sible when the source code of an application cannot be made
HIDRA-aware. This may be the case for many proprietary
applications, especially those that are not frequently updated
or those that have been completely abandoned.

To support these applications, we wrote a simple tunneling
proxy application, which we call hidratunnel. hidratunnel sup-
ports datagram- and stream-based communication, both client-
and server-mode, and works by tunneling a locally-bound
INET socket to a foreign-bound HIDRA socket. Thus, by
redirecting the unmodified traffic from the application through
hidratunnel, the local connection is mapped to a HIDRA NID,
and correspondingly receives all the benefits of the HIDRA
protocol stack.

After developing hidratunnel, we deployed it with unmod-
ified Firefox on Host 1, unmodified Apache on Host 2, and
then timed a IMB HTTP file transfer 4 separate times: once
over regular IP, once with hidratunnel at either side, and
once with hidratunnel at both sides. Figure 8 provides these

T 2
Time Elapsed

Fig. 9. Link bundling
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UbDP TCP uDP TCP
write write recv recv

Fig. 10. Multiplexing overhead

results, which show that hidratunnel does not incur significant
overhead when compared to an un-tunneled connection.

D. Virtual Link Bundling

We evaluated the case in which a HID multiplexes to multi-
ple network addresses by cycling through each address in turn,
similar to round-robin link-bundling. Notably, because each
foreign host has a separate HID and set of network addresses,
we found that this enables a unique form of virtual link-
bundling wherein different connections can take advantage of
different sets of links and addresses.

We explored the performance of this link-bundling effect by
connecting Host 1 and Host 2 with three separate links, Eth-
ernet, WiFi, and USB, and using hidra-iperf to measure UDP
throughput between the two hosts. To isolate and examine the
effect of the bundling itself, we used wondershaper to restrict
bandwidth on each link to 256Kbps.

Our throughput test started only using WiFi, and we con-
nected the machines by Ethernet and USB at times T1 and
T2, respectively. The results, shown in Figure 9, illustrate that
our approach to link bundling takes full advantage of all links,
does not introduce significant overhead, and effectively triples
the throughput in this experiment.

E. Multiplexing Overhead

The per-datagram identifier multiplexing in HIDRA nat-
urally incurs some performance overhead. To measure this
overhead, we ran hidra-iperf over the loopback interface - this
test effectively measures the performance and speed of the
network stack itself. We tested three different socket API calls:
write() requires the socket to have already been connected,
sendmsg() requires an unconnected socket (therefore TCP does
not support it), and recv() supports both states.

The results of our tests are summarized in Figure 10,
and show that across all experiments the difference between
HIDRA and IPv4 was consistently small, typically within 10
percent of the base stack. More importantly, the speed of the
HIDRA protocol stack is still much higher than most network
links, so it does not constitute a bottleneck when compared to
other parts of the network.

F. Network Address Mobility

The control processes in Sections VII-A to VII-E populate
all necessary hidden identifier mappings at the beginning of the



160

25

140

_ (communication) N
1 > IP1 P2

20

>, 120 4] o e N .
. (@) w * 0 o9
2 (Network Mobility: IP2-IP3) g 100 Qs : .
Y e cummes v 0’y
: o g e
ICMP: {IP2 =~ IP3} o 10 =
= 60 o - e ee ¢
3 IP1 IP3 o c mae
>
20 » u >
(communication)
4 < > e n ANNARNNARuNR0
IP1 IP3 e, 0
HH A A A SN NNNNNNNN S M0 0 n
S © 6 8 S o c oo oo o o o o o 0 20 40 60 80 100 120 140 160 180

numHIDs/num
Fig. 11. hid_update ICMP signaling

Fig. 12. HIDs/Cons PDF

experiment, and do not subsequently modify these mappings
except to delete invalid entries in Section VII-A. However,
HIDRA control processes can also support mobility by adding,
removing, or updating hidden identifier mappings as a host
moves throughout the network.
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To support network mobility, we created a simple control
process called hid_update that runs in a host and monitors
the state of the network. Whenever the host adds, removes,
or changes network addresses, hid_update sends an ICMP
message to all foreign hosts currently communicating with
the local host in order to alert them to the change; this is
illustrated in Steps 2 and 3 of Figure 11. In turn, when a
host receives such a message as in Step 3, it updates its
local hidden identifier tables to reflect this change, and this
update is reflected in all subsequent communication (Step 4).
Finally, any retransmission of misdelivered in-flight datagrams
is left to the transport protocol. Having written and deployed
hid_update, we then analyzed and evaluated it with respect
to several mobility protocols, which we loosely divide into
Transport Layer or Network Layer approaches.

1) Connections and Hosts: Most end-to-end mobility solu-
tions today are implemented in TCP, and as a result are exe-
cuted on a per-connection basis. This introduces a scalability
factor, because a mobile host with N active TCP connections
must repeat the same migration process /N times. In contrast,
given that HID tables are kept at each host, HIDRA mobility
signaling can be done on a per-host basis.

0

3
ons Active Connections

Fig. 13. Connections vs hosts

To explore the relationship between hosts and connections,
we wrote a small traffic analyzing tool that logs both the
number of active connections and number of unique foreign
addresses every five minutes. We ran this tool across several
different network clients as they performed normal network
activity. With these results, Figure 12 provides a histogram
showing that the average value of %’é{)ﬁf is roughly i (with
mean p = 0.242, and variance o = 0.04).

Figure 13 provides a scatter-plot of the collected data points
themselves. This plot reveals that, while the observed mean
numbers are 37.2 connections and 8.5 hosts, the number of
hosts grows much more slowly than the number of connec-
tions. At the rightmost part of the plot, we find 165 connec-
tions across only 14 hosts! From these plots, we conclude
that numHIDs can be approximated by inumCons, but
for purposes of scalability, this comparison should really be
considered as an upper-bound on numH I Ds.

2) Transport Layer Mobility: Most TCP mobility solutions
signal network address mobility with a three way handshake
that either migrates the initial connection (MP-TCP, TCP-R)
or establishes a new connection bound to the same socket
(M-TCP). Equations 1-3 quantify the number of end-to-end
messages sent or received by an end host when it migrates
from one network address to another.

Costyrp—rop = numCons + (3 * numCons) (1)
Costrcp—ry—rop = (3* numCons)  (2)
Costhid_update = (2* numHIDs)  (3)

Figure 14 compares the scalability of Equations 1-3 as
measured against the number of active connections at the
mobile host. This comparison clearly shows that hid_update
incurs less control-message overhead per handoff and scales
much better than all other TCP-centric mobility solutions,
saving approximately 90-100 messages per handoff if the
average number of connections is assumed!

3) Network-Layer Mobility: While pure network-layer so-
lutions have the benefit of masking mobility to all higher
layers, they typically introduce issues such as triangle-routing,
address space fragmentation, routing table growth, and ad-
ditional points of failure. In addition to these issues, the
need to deploy solutions at intermediate routers, switches,
and middleboxes has resulted in such solutions being deemed



untenable, and prompted a subsequent move towards end-host
solutions enacted at or above the transport layer [7].

hid_update follows this trend of coordinating mobility at
end hosts, rather than network entities. However, while hid_
update is an end-host solution, it is not necessarily end-fo-end:
fundamentally, ICMP messages are still just network-layer
communication, and this point enables us to achieve some of
the advantages of network-layer proposals. For example, one
of the top challenges facing any TCP-based mobility solution
is middlebox traversal. While hid_update has no problems
traversing middleboxes it may not even have to: if mobility
occurs behind a hid_update-aware middlebox performing NAT,
the middlebox may simply process the ICMP packet and
update its own tables accordingly!

This example illustrates just one of the benefits that are
possible by coordinating mobility out-of-band instead of bak-
ing mobility into TCP. For the sake of scope, we leave an
extensive evaluation of hid_update and comparison with other
mobility protocols to future work. However, we do point out
that hid_update can achieve the same goals and benefits of
Mobile IP without incurring triangle-routing in the data plane,
splitting the IP address space, or requiring changes to network
routers or switches. Additionally, we note that hid_update is
just one piece of HIDRA, and does not preclude integration
with other protocols or proposals to manage, populate, and
update identifiers.

VIII. CONCLUSIONS AND FUTURE WORK

We introduced HIDRA, the first network architecture that
splits the semantics and syntax of identifiers used to denote
resources or locations. We discussed the theoretical and prac-
tical benefits that hidden identifiers provide when used at
the interface between layers of the protocol stack, and also
explained the restrictions placed on them, including where they
can be multiplexed and how they must be maintained at end-
hosts. We have shown how HIDRA enables the TCP/IP stack
to support alternate semantic identifiers when possible, and
how it enables alternate network architectures to emerge to
address those cases where TCP/IP is unable to support such
identifiers.

We implemented HIDRA as a Linux kernel module, and
evaluated it along several performance metrics. We showed
how HIDRA divorces network applications from necessary
control processes, and how this split enables simple network
applications to take advantage of a wide range of network
features. Moreover, we showed how this split enables control
processes to be standardized and integrated into the system
without requiring application integration. Finally, we con-
firmed that none of these processes or multiplexing incur
significant system overhead, and showed how in many cases
HIDRA out-performs existing approaches.

Through the use of indirection, HIDRA represents an im-
portant first step towards breaking the current reliance on the
TCP/IP stack by enabling more diverse identifier meanings
as well as incremental evolution between layers of the stack.
Moving forward, HIDRA lays the foundation for a wide

range of future work on topics such as mobility and mul-
tihoming in hidden-identifier architectures, hidden-identifier-
centric transport layer protocols, and targeted works on how to
support specific future network architectures through a hidden
identifier paradigm.
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