
ar
X

iv
:1

50
5.

05
96

0v
1

 [c
s.

C
R

]
22

 M
ay

 2
01

5

Privacy-preserving Cross-domain Routing
Optimization –A Cryptographic Approach

Qingjun Chen
Nanjing University

qingjunchen@smail.nju.edu.cn

Chen Qian
University of Kentucky

qian@cs.uky.edu

Sheng Zhong
Nanjing University

zhongsheng@nju.edu.cn

Abstract—Today’s large-scale enterprise networks, data center
networks, and wide area networks can be decomposed into
multiple administrative or geographical domains. Domainsmay
be owned by different administrative units or organizations.
Hence protecting domain information is an important con-
cern. Existing general-purpose Secure Multi-Party Computation
(SMPC) methods that preserves privacy for domains are ex-
tremely slow for cross-domain routing problems. In this paper
we present PYCRO, a cryptographic protocol specifically de-
signed for privacy-preserving cross-domain routing optimization
in Software Defined Networking (SDN) environments. PYCRO
provides two fundamental routing functions, policy-compliant
shortest path computing and bandwidth allocation, while ensur-
ing strong protection for the private information of domain s. We
rigorously prove the privacy guarantee of our protocol. We have
implemented a prototype system that runs PYCRO on servers in
a campus network. Experimental results using real ISP network
topologies show that PYCRO is very efficient in computation and
communication costs.

I. I NTRODUCTION

Large-scale enterprise networks, data center networks, and
wide area networks (WANs) may be decomposed into multiple
administrative or geographical domains [4], [22], [15], [13],
[23], [21], [1]. Multi-domain networks are deployed to inter-
connect community networks, data centers, corporation sites,
and university campuses. In a multi-domain network such as a
WAN, different domains may belong to different administrative
units with an organization or different organizations [22], [15],
[13], [21], [18], [1]. For example, a number of organizations
may own their own sub-networks, and those subnetworks
are mutually interconnected to form a multi-domain network
[1]. Hence individual domain may have security and privacy
concerns regarding revealing its domain information to other
domains.This paper focuses on multi-domain networks that
consist of a relatively small number of domains, which may
appear in current enterprise networks and WANs. We do not
consider Internet-scale multi-domain networks at this stage.

Routing optimization, such as finding policy-compliant
paths that have least routing cost or satisfy bandwidth de-
mands, plays a critical role of network management. Recent
advances of Software Defined Networking (SDN) has brought
tremendous convenience to routing optimization by separating
the control plane from routers and allowing a central controller
to make routing decisions. Using centralized optimization,
the controller can efficiently and effectively find a desired
routing path for each flow and install forwarding rules on

corresponding switches.1 Although SDN simplifies routing
optimization in a single domain, privacy-preserving cross-
domain routing optimization is still a challenging problem.
Suppose each domain has a centralized controller. The state-
of-the-art approach to route a cross-domain flow is using local
optimization for intra-domain path selection and BGP for inter-
domain routing, such as the design in Google’s SDN B4 [15]
and DISCO [21]. This approach protects the autonomy and
privacy of domains. However, it is obvious that local opti-
mization plus BGP may not find an network-wide optimized
path and can hardly provide bandwidth guarantee. Another
solution is to allow every controller to broadcast its domain
information to the entire network and maintains a network-
wide map, similar to a controller-level OSPF protocol. This
approach causes privacy and security concerns because every
domain has to expose its private information such as network
topology, link latencies, bandwidth, and routing policies. In
fact, there is no practical and privacy-preserving solution to
the most fundamental routing problem, i.e., computing shortest
paths, for multi-domain networks.

Privacy-preserving cross-domain network problems can be
modeled as secure multi-party computation (SMPC) [30],
[2], [4], [14], [16], [19]. However, general-purpose SMPC
solutions such as SEPIA [4] are extremely slow and may take
days to complete [8] [11]. Therefore, customized algorithms
are needed for the privacy-preserving cross-domain routing
problems.

In this paper, we present the first work for privacy-
preserving cross-domain routing optimization that has reason-
able efficiency in practical networks. We design and implement
a protocol named PYCRO and its extensions to provide two
fundamental routing functions, namely policy-compliant short-
est path computing and bandwidth allocation, while protecting
the private information of domains. PYCRO is executed on
SDN controllers in a distributed manner and does not rely on
any trusted third party. PYCRO is developed based on a novel
cryptographic tool called Secure-If operations.

The properties of PYCRO can be summarized as follows.

1) PYCRO can compute policy-compliant cross-domain
shortest paths and allocate bandwidth for flows while protect-
ing private information of domains. The privacy guarantee of
PYCRO is cryptographically strong.(Please see Section VIIfor
formal analysis of privacy.)

1In this work we refer all network units as “switches” for consistency to
SDN terminology.

1

http://arxiv.org/abs/1505.05960v1

2) PYCRO also preserves the autonomy and local policies
of domains. A domain can independently determine whether
and how to forward different flows and these preferences are
unknown to other domains.

3) PYCRO is efficient in both computation and communi-
cation costs.

PYCRO is the first work of privacy-preserving cross-
domain routing optimization in SDN environments. We have
implemented a prototype system that runs PYCRO on ma-
chines in a campus network. Experimental results using real
ISP network topologies show that PYCRO has reasonably good
efficiency. It spends< 30 seconds and< 700 KB messages
in computing a shortest path tree for networks consisting of
thousands of switches and links.

The rest of this paper is organized as follows. We review
the related work in Section II. In Section III, we introduce
the problem overview and background. We presenting the
PYCRO protocol in Section IV, and then introduce some
optimization techniques in Section V. We design the bandwidth
allocation protocol with our PYCRO protocol in Section VI.
In Section VII, we justify the privacy-preserving property
of PYCRO. We evaluate the performance of our protocol in
Section VIII. Finally, we conclude our paper in Section IX.

II. RELATED WORK

Privacy-preserving cross-domain routing can be modeled
as a secure multi-party computation (SMPC) problem. Yao’s
seminal work [30] introduces the first algorithm, called Yao’s
garbled circuits, to allow two parties to compute an arbitrary
function with their inputs without revealing private infor-
mation. Since then, many studies about SMPC have been
conducted [2], [4], [14], [16], [19]. In [17], a secure two-
party computation system called Fairplay is introduced and
the system implements generic secure function evaluation.
FairplayMP proposed in [2] supplements the Fairplay sys-
tem. FairplayMP is a generic system for secure multi-party
computation while Fairplay only supports secure two-party
computation. SEPIA [4] is a recently proposed SMPC system
for general inter-domain network applications. A common
limitation of these SMPC solutions is that the computation time
can be way too long for practical applications. For example,
[8] shows that it takes thousands of days to track cross-
domain connectivity of a few domains using SEPIA [4]. An
SMPC-based routing algorithm proposed to replace BGP also
experiences long execution time [11] which makes the existing
SMPC methods impractical for inter-domain routing.

Recently researchers have proposed custom privacy-
preserving algorithms for different network applications. Chen
et al. [5] use Bloom filters to combine access control lists
of multiple domains and determine network reachability in a
privacy-preserving manner. Djatmikoet al. [8] propose to ap-
ply counting Bloom filters for privacy-preserving multi-domain
connectivity tracking. STRIP [12] is a privacy-preservinginter-
domain routing protocol to replace BGP and achieve fast
convergence. To our knowledge, no existing work in this
category studies the privacy-preserving cross-domain routing
optimization problem.

III. PROBLEM OVERVIEW AND BACKGROUND

In the section, we formalize the problem in this paper and
then introduce a novel cryptographic tool we will use to solve
the problem.

A. Problem Formulation

We formalize the problem to be solve in this paper as
follows.

Consider a large network that consists ofN domains:D1,
D2, . . . , DN , where each domainDi has adomain controller
Ci that makes routing decision and updates the forwarding
tables of switches in the domain. A domain controller can
access any information of its domain, including the network
topology, access control policies, link bandwidth, and authen-
ticated hosts. A domain controller can add, delete, and update
forwarding entries of switches in its domain. It communicates
with controllers in other domains via pre-established secure
channels.

For any two switchesv, v′ ∈ Di (v 6= v′), we usev ∼
v′ to denote that there is a link betweenv and v′ and we
denote its link cost byc(vv′). Clearly, eachCi should know
the topology ofDi, and should also know all the link costs
within this domain:{c(vv′)|v, v′ ∈ Di, v 6= v′}. We assume
that the intra-domain topology and the intra-domain link costs
are all private information ofCi. That is, any other domain
controller should not know anything about this topology or
these link costs. We assume different domains are managed by
different parties, such as ISPs, organizations, or departments
of a corporation. Parties do not share domain information. If a
party owns multiple physical domains, all these domains can
be considered a single logical domain in this problem.

There are some inter-domain links that connect switches
from different domains. We assume that information about an
inter-domain link is available of the two end domains, and
domains can share it with other domains. That is, for any inter-
domain link vv′ (wherev ∈ Di, v′ ∈ Dj andDi 6= Dj), all
domain controllers could know the two endpointsv andv′, and
alsoDi andDj—the domains they belong to. A switch that
is connected to switches in other domains is called agateway
switch. We assume gateway switches are publicly known.

Suppose that there are a source switchvs, which belongs
to a domainDs, and a destination switchvt, which belongs
to another domainDt. Our objective is to design a private-
preserving optimized routing solution. Specifically, we need
to design a protocol that allows each domain controllerCi to
find the forwarding tableT (v) for all v ∈ Di, where each
entry T (v)[vs, vt] is the next-hop switch ofv on the optimal
routing path from the sourcevs to destinationvt.

In this work, PYCRO focuses on two major routing opti-
mization problems.

1) Policy-compliant shortest path routing. Each link has
an associated routing cost (also known as link weight), rep-
resenting a performance metric such as hop count, latency, or
traffic load [28]. The routing object is to find a path from the
source to the destination that has the minimum sum of link
cost without violating policies of domains.

2

2) Bandwidth allocation.Bandwidth allocation has been
applied to practical traffic engineering solutions such as B4
[15]. Each flow has a bandwidth demand and link bandwidth
is allocated to different flows. When flows are competing for
bandwidth, a single flow may need multiple paths to satisfy its
bandwidth demand. The routing object is to find one or more
paths for a flow such that the flow bandwidth demand can
be satisfied. At this stage, we do not consider fairness among
flows [15].

Security and Privacy Requirements. Due to security
concerns, a switch only allows its domain controller to install,
delete, or update forwarding table entries. Domains may not
wish to reveal their information including network topology,
link bandwidth, and routing policies. In addition, a domain
should have routing autonomy to determine whether and how
to forward a given flow. This preference should also be made
confidential to other domains.

B. Cryptographic Tool

Here we introduce the cryptographic tool we will use in
this work, namely the Secure-If operation.

Secure-If operation. Our protocol depends on a crypto-
graphic technique developed by us, which we callthe Secure-
If operation. This operation allows the protocol to choose
between two optionsY and Z, based on whether a partic-
ular conditionX is satisfied. Denote bySecIf(X,Y, Z) the
Secure-If operation, and then we have

SecIf [X,Y, Z] =

{

Y, X is satisfied;

Z, otherwise.
(1)

Note that this operation is privacy preserving. It is infeasible
for anybody to decide whether the condition is satisfied or
not, i.e., which of the two options is actually chosen. For
example, suppose thatX , Y , Z are ciphertexts; consider a
condition that “X is an encrypted1”. This operation can return
a rerandomization ofY when the plaintext ofX is indeed1,
and return a rerandomization ofZ otherwise. However, nobody
can learn whether the returned value is a rerandomization of
Y or a rerandomization ofZ unless the result is decrypted. In
general, the privacy guarantee is that no knowledge about any
plaintext(s) involved is leaked to any party.

The involved conditions may be complicated and thus this
technique itself can depend on other cryptographic building
blocks. For instance, we may need to use the building block of
partial decryption. Suppose that the private key for a ciphertext
is shared among a number of parties using a secret sharing
scheme [24]. Partial decryption allows a party with a share of
the private key to partially decrypt a ciphertext. The partially
decrypted ciphertext does not leak any knowledge about the
plaintext. However, when a threshold number of parties apply
partial decryption one by one, the plaintext will finally be
revealed. Detailed implementation of Secure-If operations are
custom-built and depend on different algorithms.

Also notice that we will use a few variants of this technique
in this paper. Each of these variants is constructed in a distinct
way. Please see Section IV-D for the detailed constructions.

IV. D ESIGN OF THEPYCRO PROTOCOL

In this section, we present the PYCRO protocol with three
steps:equivalent cost graph construction, privacy-preserving
shortest path tree protocol and path establishment. In the PY-
CRO protocol, we need two homomorphic encryption systems
E() and E′(), both of which must besemantically secure.
The difference betweenE() and E′() is that E() must be
additively homomorphic, whileE′() must be multiplicative
homomorphic. Specifically, for two messagesx andy,

E(x) + E(y) = E(x + y)

E′(x) · E′(y) = E′(xy)

All E() and E′() encryption operations in this paper use a
public key whose corresponding private key is shared among
the domain controllers using(N, 2)-secret sharing. There exist
cryptosystems [9], [27], [25] that are both additively and mul-
tiplicatively homomorphic. However, we do not use them due
to efficiency considerations. We denote byD() andD′() the
corresponding decryption operations, respectively. In addition,
we allow both of them supportsre-randomization operations,
and the rerandomization operation is denoted byR() andR′().
As mentioned earlier, another main cryptographic tool we use
in the PYCRO protocol is the Secure-If operation.

A. Equivalent Cost Graph Construction

In this subsetion, we show how to construct the equivalent
cost graph. To construct equivalent cost graph, we first show
the nodes in it and then the links in it.

As for nodes, we define a switch as asignificant nodeif
it is the source switch or a gateway switch and the nodes of
the equivalent cost graph are the significant nodes in the entire
network. We denote bySi the significant node set of domain
Di and we also denote byS the significant node set of all
domains.

As for links, for any two significant nodesv andv′ (v 6=
v′), we distinguish two cases:

Case 1:If v, v′ ∈ Si, then link v ∼ v′ is in the equivalent
cost graph.In this case, the link is calledintra-domain link
since two nodes are in the same domain. Note that a intra-
domain link does not necessarily correspond to a physical link,
and could be a multi-hop path between two switches. The path
from v to v′ is selected byDi in the best effort based on
Di’s local policies and is not necessarily the shortest path. If
a domain does not wish to forwardf , it sets the path length
as infinity or the pre-defined path length upper limit. We use
d(vv′) to denote the path length assigned byDi.

Case 2:If v ∈ Si ∧ v′ ∈ Sj ∧ Si 6= Sj ∧ v ∼ v′then link
v ∼ v′ is in the equivalent cost graph.In this case, the link
is called inter-domain link since two nodes are in different
domains. We usec(vv′) to denote the length of linkv ∼ v′.

As an example, Figure 1(a) shows the equivalent cost graph
of a network consisting of four domains, in the view of the
controllerCs of the source domainDs. The nodes of the graph
are the source switchvs and all gateway switchesv1−7.

Clearly, Cs, the controller of the source domain, knows
the connectivity information of the equivalent cost graph.

3

Ds

vt

vs

Dt

D2

D1

v2

v1

v3

v5

v4

v6

v7

(a) Equivalent cost graph of four domains:
dashed lines are intra-domain links and solid
lines are inter-domain links.

vt

vs

v2

v1

v3

v5

v4

v6

v7

link with min

alpha value

c(vsv2)=1

c(v2v3)=2

(b) An iteration of PSPT construction

vt

vs

Dt

v2

v1

v3

v5

v4

v6

v7

PSPT rooted at vs

(c) PSPT and path establishment

Figure 1. An illustration of the PYCRO protocol.

Furthermore, for links in Case 2 above,Cs also knows the
link costs in the equivalent cost graph. For links in Case 1
above that are not inDs, Cs does not know the link costs
in the equivalent cost graph, which are private informationof
different domains.

B. Privacy-preserving Shortest Path Tree Protocol

This subsection describes how the source controller com-
putes a Privacy-preserving Shortest Path Tree (PSPT) on the
equivalent cost graph rooted atvs while providing strong
protection for the private information of other domains. We
use cmax to denote the maximum link cost and assume the
length of cryptographic keys in use is much greater than the
length ofcmax.

Each domain controllerCi, except the source domain
controller Cs, encrypts all its link costs in Case 1 of the
equivalent cost graph, and sends them toCs. Specifically, for
any two switchesv and v′ in Di (Di 6= Ds), Ci computes
e(vv′) = E(d(vv′)) and sends it toCs. The source domain
controller Cs needs to encrypts all its link costs in Case
1 of the equivalent cost graph.Cs is also responsible for
encrypting the link costs in Case 2 of the equivalent cost
graph. Specifically, for anyv in Di andv′ in Dj , if there is an
inter-domain link between these two nodes, thenCi computes
e(vv′) = E(c(vv′)). For anyv, v′ ∈ Ds (v 6= v′), if there is an
intra-domain link between these two nodes, thenCi computes
e(vv′) = E(c(vv′)).

For each nodev in the equivalent cost graph, except the
source node itself,Cs computes three indicators:f(v) =
E′(2), g(v) = E(0), and h(v) = E′(φ). Here f(v) is an
encrypted indicator for nodev, indicating whether it has been
added to the shorted path tree. We use an encrypted2 to
represent “No”, and an encrypted2−1 to represent “Yes”. The
plaintext ofg(v) will be used for the length of the shortest path
from the source node tov, oncev is added to the shortest path
tree. The plaintext ofh(v) will be used to store the information
of the parent node ofv in the shortest path tree, oncev is added
to the shortest path tree. All these indicators are essential in
the computation of the shortest path tree.

For the source node,Cs computes the three indicators:
f(v) = E′(2−1), g(v) = E(0), andh(v) = E′(φ), because it
is the root of the tree. Then the source controller repeats the
two steps below for|S| − 1 iterations, whereS is the set of
nodes in the equivalent cost graph. At each iteration, a node

with the minimum distance to the root among the remaining
nodes is added to the tree.

Step 1. For each linkvv′ in the equivalent cost graph,Cs

uses a Secure-If operation (denoted asSecIf0) to compute
α(vv′). The condition here is that the plaintext off(v) is
equal to the plaintext off(v′). If this condition is satisfied,
α(vv′) = E(cmax|S| + 1); otherwise,α(vv′) = R(g(v) +
g(v′) + e(vv′))). If the condition is satisfied, it means either
v′ and v are both in the tree or neither in the tree. We just
let α(vv′) be a maximum value and do not consider it. If the
condition is not satisfied, one ofv′ andv is in the tree and the
other is not. Then the plaintext ofα(vv′) is the distance from
the node not in the tree to the root.

Step 2. For each linkvv′ in the equivalent cost graph,Cs

uses a Secure-If operation (denoted asSecIf1) to re-compute
f(v), f(v′), g(v), g(v′), h(v), h(v′). The condition is that the
plaintext ofα(vv′) is the smallest among theα values of all
links in the equivalent cost graph. The node not in the tree
that corresponds to the smallestα should be added to the tree
and its three indicators should be updated.

If the condition in Step 2 is satisfied, then we use another
Secure-If operation (denoted asSecIf2) to decide how to
update the indicators. The condition of this new Secure-If
operation is that the plaintext off(v) is equal to2, i.e., whether
the nodev is not in the tree.

• When the condition is satisfied (v is not in the tree),
f(v) = E′(2−1), g(v) = R(α(vv′)), h(v) = E′(v′).
The indicators ofv′ are re-randomized.

• Otherwise, v′ is not in the tree, hencef(v′) =
E′(2−1), g(v′) = R(α(vv′)), h(v′) = E′(v). The
indicators ofv are re-randomized.

If the condition in Step 2 is not satisfied, all indicators
f(v), f(v′), g(v), g(v′), h(v), h(v′) are just re-randomized
based on the original values.

We show an example of the above iteration in Figure 1(b).
vs, v1, andv2 are already in the tree. Sincev3 is not in the
tree, we computeα(v2v3) = R(g(v2) + g(v3) + e(v2v3))) =
R(E(1) + E(0) + E(2)) = R(E(3)). Suppose the plaintext
of α(v2v3), i.e., 3, is the smallestα value. Thenv3 should be
added to the tree. The indicators ofv3 are updated as follows:
f(v3) = E′(2−1), g(v3) = R(E(3)), h(v) = E′(v2). The
indicators ofv2 are all re-randomized.

4

The detailed algorithm specification of the PSPT con-
struction protocol is not shown due to space limit. Once the
algorithm is completed, for eachv in the equivalent cost
graph,Cs actually obtains the ciphertexts ofg(v), the shortest
path length fromvs to v, and h(v), the parent ofv on
the PSPT. Figure 1(c) shows the constructed PSPT of the
network. With all theg(v) and h(v), we can construct the
path from vs to vt using the method proposed in the next
section (Section IV-C). Note that we use three types of Secure-
If operations (SecIf0, SecIf1 andSecIf2). We will describe
how they are implemented in detail in Section IV-D.

C. Path Establishment

After running the PSPT construction protocol, each domain
controller knows all its significant nodes’ values ofg and h
from Cs. Using the values, we can construct the pathP from
vt back tovs step by step (e.g., firstvt, and then the parent
of vt, and then the parent of the parent ofvt, until the source
vs).

After finishing computing the shortest path tree,Cs then
partially decrypts eachg(v) and eachh(v), and sends the
partial decrypted ciphertexts to the domain controller of node
v. The domain controller ofv also applies partial decryption,
and thus obtains the plaintexts ofg(v) and h(v), i.e., dg(v)
anddh(v). SinceE() uses(N, 2)-secret sharing, the encrypted
indicators can be decrypted by partial decryption of two
domains.

For any destinationvt, the shortest path and corresponding
forwarding table entries are constructed using Algorithm 1
with all plaintext indicatorsdg() anddh().

If vt is not a significant node, the domain controllerCt

of vt compares all the significant nodes in its domain, for
the sums of their distances fromvs and to vt. Suppose the
significant node with the smallest distance sum isv. Then
the intra-domain path fromv to vt is chosen as part of the
shortest path fromvs to vt, and the forwarding table entries
for destinationvt in this part of path are computed and installed
accordingly. The forwarding table entries in the other parts of
the path are computed in a way similar tovt being a significant
node presented below.

If vt is a significant node, the domain controller ofvt
decides what to do based on the type of link betweenvt’s
parentdh(vt) on the shortest path tree andvt in the equivalent
cost graph.

• If the link represents an intra-domain path, i.e.,dh(vt)
is another significant node in the destination domain,
the intra-domain path betweendh(vt) andvt is picked
as part of the shortest path fromvs to vt. The forward-
ing table entries for destinationvt in the destination
domain are installed byCt accordingly.

• If the link is an inter-domain link, the link is added
directly as part of the shortest path fromvs to vt.
Ct then sends a message to the domain controller of
dh(vt) and asks it to install a corresponding forward-
ing table entry at switchdh(vt).

Next, the domain controller of the predecessor of the des-
tination domain on the selected shortest path computes the

forwarding table entries similarly. This process is repeated until
the source switch is reached and all forwarding table entries
for destinationvt have been computed.

For the example of Figure 1(c), the destination controller
Ct selectsv6 as part of the optimal path fromvs to vt. It
then installs forwarding entries on switches betweenvt andv6
and also notifiesC1 to install a forwarding table entry atv4,
specifying that packets fromvs to vt should be forwarded to
v6 by v4. The routing path can be established by repeating this
process.

Algorithm 1 presents the pseudocode of the path establish-
ment protocol in Section IV-C.

Algorithm 1 Path Establishment Protocol
Input: All significant nodes’g andh;

Source nodevs and destination nodevt;
Output: The shortest pathP from vs to vt

1: Cs computes partial decryptionPD(g(v)) and
PD′(h(v)), and then sends them toC, the controller of
v.

2: C partially decryptsPD(g(v)) andPD′(h(v)) and gets
the plaintext ofg(v) andh(v): dg(v) anddh(v).

3: vt = vt
4: if vt 6∈ S then
5: Let St be the significant node set ofDt

6: vmin = −1, dmin =∞
7: for all v ∈ St do
8: if dg(v) + d(vvt) < dmin then
9: dmin = dg(v) + d(vvt), vmin = v

10: end if
11: end for
12: Add the intra-domain path fromvmin to vt to P .
13: Let vt = vmin

14: end if
15: Now we construct the path fromvs to vt.
16: while vt 6= vs do
17: if dh(vt) ∈ St {dh(vt) ∼ vt is an intra-domain link}

then
18: Add the intra-domain path fromdh(vt) to vt to P .
19: end if
20: if dh(vt) 6∈ St {dh(vt) ∼ vt is an inter-domain link}

then
21: Add dh(vt) ∼ vt to P .
22: end if
23: Let vt = dh(vt)
24: end while

D. Implementation of Secure-If Operations

In this section, we will introduce the implementation of
the three Secure-If operations used in the PSPT construction
protocol.

First, we present a sketch of the Secure-If operation (See
Algorithm 2). Each Secure-If operation needs to construct
three parameters(t0, t1, t2) and a condition satisfied valuex
as input.t0 is a condition whilet1 andt2 are two options. The
output of Secure-If ist1 when condition is satisfied (t0 = x);
otherwise, the output ist2. Such operation is achieved by an
interactive process between two controllers, sayCs and Ci.
Cs first applies partial decryption tot0 and sends the result

5

Algorithm 2 Secure-If Operation Sketch
Input:

x: value when condition is satisfied;
(t0, t1, t2): three parameters.

1: Cs randomly choose a domain controllerCi.
2: Cs computesPD(t0) and sends(PD(t0), t1, t2) to Ci.
{PD() is partial decryption operation}

3: Upon receiving(PD(t0), t1, t2), Ci do partial decryption
on PD(t0) and gets the plaintextdt0 of t0.

4: Ci sends

{

R(t1) if dt0 == x

R(t2) otherwise
back toCs.

5: Cs gets the result.

PD(t0), together witht1 andt2, to any other domain controller
Ci. ThenCi can fully decryptt0 and get the plaintextdt0 as the
threshold of secret sharing is2. Ci verifies whetherdt0 is equal
to x and replies one oft1 and t2 (with re-randomization) to
Cs. With the Secure-If operation sketch, we need to show the
construction of(t0, t1, t2) andx when we introduce a Secure-
If operation.

The PSPT construction uses three Secure-If operations
(SecIf0, SecIf1, and SecIf2). As the Secure-If operation
SecIf2 is used inSecIf1, our decryption is in the order of
SecIf0, SecIf2, andSecIf1.

Construction of SecIf0

x in SecIf0 is 1 and(t0, t1, t2) are constructed as follow.

With probability 1
2 , Cs computest0 = (f(v)

f(v′))
r, wherer

is a randomly picked exponent2; t1 = E(cmax|S|+ 1); t2 =
R(g(v)+g(v′)+e(vv′)). In this case iff(v) is equal tof(v′),
t0 = 1 = x, hence the function ofSecIf0 can be achieved.

With the remaining probability12 , Cs computest0 =
(1
f(v)f(v′))

r, where r is a randomly picked exponent;t1 =

R(g(v) + g(v′) + e(vv′)); t2 = E(cmax|S| + 1). In this case
if f(v) is not equal tof(v′), t0 = 1

2∗1/2 = 1 = x, hence the
function ofSecIf0 can also be achieved.

The reason for that we use an uncertain calculation is to
protect privacy. If we only apply the first case, any attackerthat
decryptst0 and findst0 = x can determine thatf(v) = f(v′).
However, in the current implementation, even if an attacker
knowst0 = x, it cannot guess whetherf(v) = f(v′) asf(v) =
f(v′) andf(v) 6= f(v′) have equal probability.

Construction of SecIf2

x in SecIf2 is 2 and(t0, t1, t2) are constructed as follow.

With probability 1
2 , Cs computes t0 = R(f(v)).

Let t1, t2 be E′(2−1), R′(f(v)) for the SecIf2 of f(v);
R(α(vv′)), R(g(v)) for g(v); E′(v′), R′(h(v)) for h(v);
R′(f(v′)), E′(2−1) for f(v′); R(g(v′)), R(α(vv′)) for g(v′);
R′(h(v′)), E′(v) for h(v′).

With the remaining probability1
2 , t0 = R(1

f(v)) and
the above values oft1 and t2 are swapped, i.e.,t1, t2 be
R′(f(v)), E′(2−1) for f(v) and so on;

2Assume the plaintext space and the ciphertext space are boththe same
cyclic group. The value ofr needs to be picked uniformly at random from
between0 and the order of the group minus1, including the two endpoints.

Construction of SecIf1

Here we show the construction ofx and (t0, t1, t2) in
SecIf1. We first introduce a comparison protocol calledosc
which is necessary inSecIf1.

The comparison protocol is designed by us based on the
secure comparison protocol proposed in [20]. The protocol
in [20] takes two ciphertexts ofE() as input, and outputs
another ciphertext ofE(). The output isE(1) if the first
input’s plaintext is greater than or equal to the second input’s;
otherwise, the output isE(−1). Based on this comparison
protocol, we design a new comparison protocol which can
distinguish not only two edges with differentα but also two
edges with the sameα by comparing their indexes. Denote the
original comparison operation bysc(). Assume that the two
edges’α values area and b and their indexes areaidx and
bidx.

The protocol we designed,osc(a, aidx, b, bidx), is actually
a Secure-If operation. Itsx is 1 and(t0, t1, t2) are constructed
as the following paragraph. Withx, (t0, t1, t2) and Secure-If
operation sketch, we get the new protocolosc.

First we computeθ = sc(a, b) + sc(b, a) − E(1). If a 6=
b, θ is E(−1); Otherwiseθ is E(1). With probability 1

2 , Cs

computest0 = θ; t1 is E(1) if aidx < bidx; Otherwiset1
is E(−1); t2 = sc(b, a). With probability 1

2 , Cs computes
t0 = −θ; t1 = sc(b, a); t2 is E(1) if aidx < bidx; Otherwise
t2 is E(−1).

With the secure comparison,Cs can compare eachα value
(exceptα(vv′) itself) with α(vv′). Denote byβi the output of
the protocol. Suppose that there areζ such outputs in total.Cs

computesγ =
∑

i βi, and uses the secure comparison protocol
again, to compareγ with E(ζ). Let ǫ be the output. Withǫ,
we can easily constructt0, t1, t2 of SecIf1.

The construction ofSecIf1 is shown in Algorithm 3.

Algorithm 3 Construction ofSecIf1
Output: x and (t0, t1, t2).

1: Denote bym the total link number in the equivalent cost
graph.{the link number is equal to the number of allα
values.}

2: Assume the index ofα(vv′) is k.
3: γ = E(0),ζ = m− 1
4: for i = 1 to m do
5: Assume theith link is v1 ∼ v2.
6: if k 6= i{v1 ∼ v2 6= v ∼ v′} then
7: γ = γ + osc(α(vv′), k, α(v1v2), i).
8: end if
9: end for

10: ǫ = osc(γ,E(ζ)).
11: Let ta be the result ofSecIf2.
12: Let tb be :

tb =< R′(f(v)), R(g(v)), R′(h(v)),
R′(f(v′)), R(g(v′)), R′(h(v′)) >

13: Cs computes:
{

t0 = ǫ, t1 = ta, t2 = tb;with probability 1
2 ,

t0 = −ǫ, t1 = tb, t2 = ta;with probability 1
2

14: x = 1.
15: Cs getsx and (t0, t1, t2).

6

V. PROTOCOL OPTIMIZATION

In this section, we introduce two optimization methods of
PYCRO. The first method reduces the number of shortest path
tree computing for different flows. The second method reduces
the computing time of each shortest path tree, called PYCRO
with Candidate Recommendation (PYCRO-CR). Combining
these two, the efficiency of PYCRO can be significantly
improved.

A. Shared Shortest Path Tree

For all flows transmitted from a domainDs, it is highly
possible that another domain will treat these flows or a large
subset of these flows using the same access and routing policy.
We define anequal-flow groupG as a group of flows from the
same domain such that for all flows inG, any other domain
D will treat them using the same access and routing policy
and hence provide the same paths between any two gateways
of D. Therefore all flows inG can use a number of shared
shortest path trees.

A source domain withk gateway switches maintainsk
shared shortest path trees for each equal-flow group. Each
of the trees is rooted at a gateway switch. To compute each
shared shortest path tree, the nodes of the equivalent cost graph
include gateway switches (significant nodes) of all domains.
Correspondingly, when constructing links in the equivalent cost
graph, for any two significant nodesv and v′ (v 6= v′), we
distinguish two cases:

• Case 1:v and v′ belong to the same domain, then
there is a link in the equivalent cost graph between
those two nodes, and the cost of this link isd(vv′),
which is only known to the domain ofv andv′.

• Case 2:v andv′ belong to different domains, If there
is an inter-domain link betweenv and v′, then there
is a link in the equivalent cost graph between those
two nodes, and the cost of this link isc(vv′). If there
is no such inter-domain link then there is no link in
the equivalent cost graph between these two nodes.

Then the algorithm in Section IV-B can be run to build each
shared shortest path tree.

When the source controller receives a flow query from
the sourcevs to destinationvt. For each gateway switchvi
in the source domain, the source controllerCs computes the
encrypted distance fromvs to vi plus the distance fromvi to a
gatewayw in the destination domain on the shared tree rooted
at vi. Thus for anyw, there arek potential paths fromvs to
w. Suppose the destination domain hask′ gateways. ThenCs

simply sends allk · k′ path lengths, with partial encryption,
to the destination controllerCt. Ct can determine the shortest
path from vs to vt and install forwarding entries using the
method similar to that in Section IV-C.

For example in Figure 1(a), bothDs and Dt have two
gateways. Hence for a group of flows fromDs, Ds can
maintains two PSPTs rooted atv1 andv2. There are at most
2 × 2 = 4 shortest paths betweenDs and Dt, andDs can
select one of them for each flow. Due to space limit, we do
not present further details of path selection and forwarding
entry installation in other domains.

B. PYCRO with Candidate Recommendation

The complexity of the shortest path tree algorithm pre-
sented in Section IV-B is mainly due to the number of calls
of Secure-If operations to select the smallestα(vv′) among
the α values of all links in the equivalent cost graph and the
inefficiency of the secure comparison operation. To reduce the
number of calls of Secure-If operations, we propose to use
candidate recommendation to let the other domain recommend
potential nodes that may have the smallestα value(i.e.,the
smallestα value in its domain). As for the inefficiency of the
secure comparison operation, we replace it with the Damgard-
Geisler-Kroigard (DGK) secure comparison protocol, a more
efficient protocol proposed in [7].3 Unlike the secure compari-
son we used in Section IV-B, the input and output of the DGK
protocol are plaintexts. Suppose there are two partiesA and
B. A has a numbera andB has a numberb. A andB can
run the DGK protocol to comparea and b without revealing
a(b) to partyB(A).

After constructing the equivalent cost graph and adding the
source nodevs into the shortest path tree withg(vs) = E(0).
The source domain controllerCs broadcastsvs andg(vs) to all
other domain controllers. Then, the domains repeat the three
interactive steps below for|S| − 1 times:

Step 1. Each domainDi finds its significant node that is
not in the shortest path tree and the path length to the root is
the shortest inDi. Di also records the node’s parent and its
path length. We call the node selected byDi a candidate node
vi. Besides, a domain controllerC0 (specified by the source
controller Cs) sends the informationg(v0) and h(v0) of its
candidate nodev0 to Cs.

Step 2. The source controllerCs should then find out the
candidate node whose path length tovs is the shortest.Cs

temporarily setsv0 as the shortest-distance nodeu ← v0.
For each candidate nodevi exceptv0: Controller Cs sends
a message includingg(u) to vi’s controllerCi. Ci then runs
DGK secure comparison protocol to compareg(u) and the path
length of candidate nodevi. Once the DGK protocol finishes,
Ci tells Cs the result of the comparison. According to the
result, if the plaintext ofg(u) is less than that ofg(vi), Ci

then updatesu← vi.

Step 3. After the two steps above, the controllerCs get the
shortest-distance nodeu. Next, Cs requests the controller of
u’s domain for the information ofg(u) and h(u) and addu
into the shortest path tree under its parent.Cs broadcasts the
new shortest path tree with encrypted distance informationto
the other domains.

After |S| − 1 iterations of the above loop,Cs finishes the
computing of the shortest path tree.

VI. BANDWIDTH ALLOCATION

Bandwidth allocation has been applied to practical traffic
engineering solutions such as B4 [15]. We solves a relatively
simple version of the bandwidth allocation problem. Before
we define the problem, we introduce some preliminaries.

3Using DGK, we make a small sacrifice of privacy for efficiency.However,
it’s worth since only a little information is revealed.

7

Besides the link cost, every linkvv′ also has a bandwidth
b(v, v′). b(v, v′) represents the maximum bandwidth that link
vv′ can provide. And the definition of the cost of a flow on a
path is:

Definition 1: Given a pathp from nodev to nodev′ whose
length islp, if a flow f consumes bandwidthbf on p, then the
cost off on p is is c(f, p) = bf · lp.

A flow f has a bandwidth demandqf . However as link
bandwidth is limited, it may need multiple paths to satisfy a
flow’s bandwidth demand [15]. We assume a flow can be split
to multiple subflows to be transmitted on different paths. And
the cost off is defined as:

Definition 2: The cost off for bandwidth allocation is the
sum of path costΣbf · lP for p ∈ P whereP is the set of
paths thatf is split on.

Given Definition 1 and Definition 2,we define theBand-
width Allocationproblem as follows:

Definition 3: Bandwidth Allocation:for any flow f with
bandwidth demandqf , we should findk paths such that the
sum of allocated bandwidth of these paths tof is no less than
the bandwidth demandqf and the routing cost off should be
minimized.

We design a bandwidth allocation protocol of PYCRO,
named PYCRO-BA, works in the following steps:

Step 1. During the construction of the equivalent cost
graph, each domain controller assigns an available bandwidth
b(v, v′) amount between two significant nodesv andv′, which
is also encrypted by a homomorphic encryption system.

Step 2. The source controller creates the shortest path tree
and finds the shortest pathp from the sourcevs to destination
vt using the protocol presented earlier.

Step 3. The source controller determines the available
bandwidthbp on the shortest path, which is the minimum value
of b(v, v′) for all links (v, v′) on the paths. This process is
similar to the previous protocol to determine the minimum
cost candidate. We skip the protocol details here and have
implemented them in the experiments.

Step 4. Ifbp is smaller than the bandwidth demandq, Cs

computes a residual demandq − bp and find another path to
satisfy the demand.

Step 5.Cs deletes all links ofp from the equivalent cost
graph, and repeats Steps 2-4 to find more paths until the
bandwidth demand is satisfied.

The above bandwidth allocation protocol requires multi-
ple calls of the shortest path tree protocol. To improve its
efficiency, Cs may find multiple disjoint paths to different
gateways of the destination domain and suggest these paths
to the destination controllerCt. If Ct can also find multiple
disjoint paths from different gateways tovt, multiple paths
can be established by a single call of the shortest path tree
protocol. We plan to develop more sophisticated protocol to
optimize this process in future work.

VII. PRIVACY ANALYSIS OF PYCRO

We analyze the privacy-preserving property of PYCRO in
a standard cryptographic model, the semihonest model [10],

which is widely used in the literature (e.g., [29] and [3]).
In this model, all involved parties are assumed to follow
the protocol faithfully, although they may attempt to violate
privacy using the information they obtain. Note that such
an assumption is acceptable in our scenario of cross-domain
routing, because domain controllers usually have long-term
relationship with each other. Despite their curiosity about
others’ private information, it is uncommon for them to deviate
from the protocol just in order to violate others’ privacy.

The main result we get as shown in Proposition 4 below,
is that PYCRO only leaks to each domain controller its
significant nodes’ distances from the source node and parents
nodes in the shortest path tree. We stress that this leaked
distance information is about a small number of pairs of nodes
only. Any other information, including distances between other
pairs of nodes, are protected by PYCRO. Furthermore, our
protection is cryptographically strong, i.e., no partial knowl-
edge about the protected information is leaked by PYCRO.
In contrast, the performance cost we pay for the privacy
protection is very reasonable. The execution time varies among
different topologies, from seconds to tens of seconds (please
see Section VIII for details).

Proposition 4: PYCRO is weakly privacy preserving in the
semihonest model, in the sense that it reveals to each domain
controller no more than its significant nodes’ distances from
the source node and parent nodes in the shortest path tree.

The basic idea of our proof is to demonstrate a probabilistic
polynomial-time simulator according to the definition and
proof methodologies of cryptographic protocols discussedin
[10].

Proof Sketch:Due to limit of space, we only provide a proof
sketch. Some details are skipped.

Our proof is established by demonstrating a probabilistic
polynomial-time simulator according to the definition and
proof methodologies of cryptographic protocols discussedin
[10].

For each domain controllerCi, we construct a simulator for
its view, which takes as input its significant nodes’ distances
from the source node and parent nodes in the shortest path
tree. All coin flips in the view can be easily simulated, and
thus we focus on generating simulated messages below.

If Ci 6= Cs, the simulator simulates the messages received
from Cs for each of its significant node, using two ciphertexts.
The first ciphertext is an encrypted distance of the significant
node from the source node, where the cryptosystem used is
E() and the key used isCi’s own public key. The second
ciphertext is an encrypted identity of the significant node’s
parent node in the shortest path tree, where the cryptosystem
used isE′() and the key used is stillCi’s public key.

For C1, we add the following simulated messages. In the
Secure-If operationSecIf0, the messages fromCs is simulated
using three ciphertexts. The first of these three is underE′(),
with the plaintext being1 with probability 1

2 , or a uniformly
random number with probability12 . The remaining two are
encryptions of random plaintexts underE(). The public key
used for encryption of all these three isC1’s own public key.

8

For the Secure-If operationSecIf1 andSecIf2, the simu-
lator goes as follows. ForSecIf2, the messages fromCs are
simulated using8 random ciphertexts underE′() and4 random
ciphertexts underE(), and also another ciphertext underE′()
with the plaintext being2 or 1

2 , each with probability12 , where
the public key used for encryption isC1’s own public key. For
SecIf1, in addition to simulating the received messages in the
executions of secure comparison, the simulator simulates the
earlier round of message fromCs using three ciphertexts under
E(), with the first being an encrypted1 or encrypted−1, each
with probability 1

2 , where the public key used for encryption
is C1’s own public key. The remaining two ciphertexts are
randomly generated. The simulator simulates the later round
of message fromCs using8 random ciphertexts underE′() and
4 random ciphertexts underE(), and also another ciphertext
underE() being an encrypted1 or encrypted−1, each with
probability 1

2 , where the public key used for encryption isC1’s
own public key.

For Cs, the simulator goes as follows. First, it simulates
the first round messages from other domain controllers using
random ciphertexts. For each pair of significant nodes in any
other domain, there should be a random ciphertext under the
cryptosystemE(). Then the simulator proceeds to simulate
the message received fromC1 in the Secure-If operation
SecIf0. This should again be a random ciphertext under the
cryptosystemE().

The Secure-If operationSecIf1 and SecIf2 are more
complicated. ForSecIf2, the messages fromC1 can be
simulated by using4 random ciphertexts under cryptosystem
E′() and 2 random ciphertexts under cryptosystemE(). For
SecIf1, in addition to simulating the received messages in
the executions of secure comparison, the simulator simulates
the earlier message fromC1 using a random ciphertext, being
E(1) with probability 1

2 and E(−1) with probability 1
2 .

The final messages fromC1 are simulated using4 random
ciphertexts underE′() and2 random ciphertexts underE().

✷

VIII. P ERFORMANCEEVALUATION

The most significant concern of a privacy-preserving pro-
tocol is its computation and communication efficiency. In this
section, we conduct experiments to evaluate the efficiency of
PYCRO protocols. We have implemented a prototype system
on seven Dell PowerEdge R720 servers with Linux operation
systems. All servers are connected via a campus network.
Each machine runs a program to emulate a controller. If the
controller number is larger than seven, we may run multiple
threads on a single machine. We configure the controller
placement such that two neighboring controllers are in different
machines. In all experiments, cryptographical operationsare
implemented using the Crypto++ library [6].

We use the router-level topologies of seven real ISP net-
works collected by the Rocketfuel project [26]. The detailed
information of the seven networks can be found in Table I
and networks are identified as I to VII. Based on topology
analysis, we set a number of routers as gateways. Based on
the seven networks, we construct 30 multi-domain topologies
in six groups as shown in Table II. For example, topologies
1 to 5 are constructed using the same domains I and II, but
have different number of gateways and inter-domain links in

Table I. INFORMATION OF THE SEVENROCKETFUEL TOPOLOGIES

Network ID Network name # routers # links # gateways

I AS 1221 318 758 231

II AS 1239 604 2268 242

III AS 1755 172 381 61

IV AS 2914 960 2821 507

V AS 3257 240 404 89

VI AS 3967 201 434 110

VII AS 7018 631 2078 246

Table II. INFORMATION OF MULTI-DOMAIN TOPOLOGIES.

Topo ID # domains domains # inter-d links # gateways
1− 5 2 I,II 10− 100 21− 165
6− 10 3 I to III 10− 100 21− 158
11− 15 4 IV to VII 10− 100 21− 177
16− 20 5 I,III,V to VII 10− 100 21− 174
21− 25 6 I to VI 10− 100 21− 177
26− 30 7 I to VII 10− 100 21− 185

an increasing order. Gateways are randomly selected from the
gateways routers of the Rocketfuel networks.

Computation cost. We first conduct experiments to con-
struct shortest path trees on every topology. For each topology,
we randomly select 20 nodes and construct a shortest path tree
for each of them. By computing time, we mean the average
execution time of the protocol for one shortest path tree. We
find that the computing times for different nodes in a same
topology vary very little. It is because the execution time
mainly depends on the number of domains, number of inter-
domain links, and number of gateways. Figure 2 shows the
average execution time of PYCRO on different topologies.
The deviations are too small to be shown in the figure. We
find that, for topologies consisting of the same domains (e.g.,
topologies 1-5), the execution time increases linearly with the
number of inter-domain links and number of gateways. By
comparing topologies of different domains, the execution time
also increases linearly with the number of domains. In general
PYCRO is very efficient: it takes a short time to compute a
shortest path tree on a topology with thousands of switches
and links in a privacy-preserving manner. Since a shortest path
tree can be shared with multiple paths and the response to a
path query takes much less time. Specially, if we have got a
shortest path tree rooted atvs, the paths that start fromvs to
any destination can be constructed easily and quickly using
the Algorithm 1.

We then conduct experiments to evaluate the execution time
of the bandwidth allocation protocol. We assign every link
a random capacity from1 to 5. In each experiment, we set
the bandwidth demand as 20 and find multiple paths between
the sender and destination to satisfy the bandwidth demand.
This bandwidth demand can be considered as the aggregated
demand of all flows in the sender switch. For each topology
we perform 20 runs and compute the average. The results
are shown in Figure 3. We find that there is no strict linear
dependency of the execution time and number of inter-domain
links, because more inter-domain links also make it easier to
find multiple disjoint paths at a shortest path tree.

Communication cost. We then show the communication
cost of PYCRO in the average size of all messages per domain
and plot the results in Figures 4 and 5. We observe that the

9

1 6 11 16 21 26
0

10

20

30

40

Topology ID

A
ve

ra
ge

 c
om

pu
tin

g
tim

e
(s

)

Figure 2. Average execution time
of PYCRO

1 6 11 16 21 26
0

50

100

150

Topology ID

A
ve

ra
ge

 c
om

pu
tin

g
tim

e
(s

)

Figure 3. Average execution time
of PYCRO bandwidth allocation

1 6 11 16 21 26
0

200

400

600

800

Topology ID

A
ve

ra
ge

 c
om

m
un

ic
at

io
n

co
st

 (
K

B
)

Figure 4. Communication cost of
PYCRO

1 6 11 16 21 26
0

200

400

600

800

1000

1200

1400

Topology ID

A
ve

ra
ge

 c
om

m
un

ic
at

io
n

co
st

 (
K

B
)

Figure 5. Communication cost of
PYCRO bandwidth allocation

communication cost also increases with the number of do-
mains, number of inter-domain links, and number of gateways.
Each domain spends less than 700 KB to compute a shortest
path tree and less than 1 MB to allocate bandwidth for the
largest topology. For other topologies the communication cost
is much less. In general, PYCRO is communication efficient.

Comparison with other solutions. It is hard to find an
existing work achieving the same objectives as PYCRO. It is
non-trivial to apply existing secure multi-party computation
such as Fairplay [17] and SEPIA [4] to the problems of this
paper.

A cross-domain privacy-preserving protocol for quantifying
network reachability is proposed in [5]. From their experi-
mental results, we find that about400 or 550 seconds offline
computation cost, about5 or 25 seconds online computation
cost and about450 or 2100 KB communication cost are needed
for every party on average in their synthetic data. In our
experiments of optimized protocol of PYCRO, even the biggest
network requires only32.3/7 = 4.61 seconds and687.78/7 =
98.25 KB for each domain in average. In [17], a full-fledged
system called Fairplay that implements generic secure function
evaluation is introduced. Their experimental results showthat
it takes1.41 second to make a comparison. In our optimized
protocol,(|S|−1)(n−1) comparison operations are needed in
total, where|S| is the significant node number (from tens to
hundreds) andn is the domain number(from2 to 7). Hence,
if we apply Fairplay to our protocol, the average comparison
operation time of each domain is1.41(|S|−1)(n−1) seconds.
For a case|S| = 185 andn = 7, the average comparison time
of each domain is222.38 seconds while the average time that
PYCRO consumes in each domain is4.61 seconds.

In summary, PYCRO can improve the time and bandwidth
efficiency by an order of magnitude for cross-domain routing
optimization, compared to existing solutions.

IX. CONCLUSION

In this paper we present PYCRO, the first privacy-
preserving cross-domain routing optimization protocol inSDN
environments. We develop a new cryptographic tool named the
Secure-If operation and apply it with homomorphic encryption
to compute the shortest cross-domain paths without revealing
private information. PYCRO also provides bandwidth allo-
cation, a fundamental traffic engineering solution. We have
implemented PYCRO in a prototype system and performed
real experiments to demonstrate its efficiency. Experimental
results show that PYCRO can improve the time and bandwidth
efficiency by an order of magnitude compared to general-
purpose solutions. In future we will design more complex
routing optimization functions based on PYCRO. We believe

our study may lead to useful discussion of the same problem
for the Internet.

REFERENCES

[1] SDN architecture. Technical report, Open Networking Foundation,
Version 1.0, 2014.

[2] A. Ben-David, N. Nisan, and B. Pinkas. Fairplaymp: a system for secure
multi-party computation. InProc. of ACM CCS, 2008.

[3] J. Brickell and V. Shmatikov. Privacy-Preserving GraphAlgorithms in
the Semi-honest Model. InProceedings of ASIACRYPT, 2005.

[4] M. Burkhart, M. Strasser, D. Many, and X. Dimitropoulos.Sepia:
Privacy-preserving aggregation of multi-domain network events and
statistics. InUSENIX Security, 2010.

[5] F. Chen, B. Bruhadeshwar, and A. X. Liu. Privacy-preserving cross-
domain network reachability quantification. InProc. of IEEE ICNP,
2011.

[6] W. Dai. Crypto++ library. 2010.
[7] I. Damgard, M. Geisler, and M. Kroigard. Homomorphic encryption

and secure comparison.Int. J. Appl. Cryptol., 1(1):22–31, Feb. 2008.
[8] M. Djatmiko et al. Federated flow-based approach for privacy preserv-

ing connectivity tracking. InCoNEXT, 2013.
[9] C. Gentry. Fully homomorphic encryption using ideal lattices. InSTOC,

volume 9, pages 169–178, 2009.
[10] O. Goldreich. Foundations of Cryptography Volume 1: Basic Tools.

Cambridge University Press, 2001.
[11] D. Gupta et al. A new approach to interdomain routing based on secure

multi-party computation. InProc. of ACM HotNets, 2012.
[12] W. Henecka and M. Roughan. Strip: Privacy-preserving vector-based

routing. In Proc. of IEEE ICNP, 2013.
[13] C.-Y. Hong, S. Kandula, et al. Achieving high utilization with software-

driven wan. InProc. of ACM Sigcomm, 2013.
[14] Y. Huang, D. Evans, J. Katz, and L. Malka. Faster secure two-party

computation using garbled circuits. InUSENIX Security Symposium,
volume 201, 2011.

[15] S. Jain et al. B4: Experience with a Globally-Deployed Software
Defined WAN. InProceedings of ACM Sigcomm, 2013.

[16] Y. Lindell and B. Pinkas. Secure two-party computationvia cut-and-
choose oblivious transfer.Journal of cryptology, 2012.

[17] D. Malkhi, N. Nisan, B. Pinkas, Y. Sella, et al. Fairplay-secure two-party
computation system. InUSENIX Security Symposium, pages 287–302.
San Diego, CA, USA, 2004.

[18] D. Marconett, L. Liu, and S. Yoo. Optical flowbroker: Load-balancing
in software-defined multi-domain optical networks. InOptical Fiber
Communication Conference, 2014.

[19] J. B. Nielsen, P. S. Nordholt, C. Orlandi, and S. S. Burra. A new
approach to practical active-secure two-party computation. In CRYPTO.
2012.

[20] T. Nishide and K. Ohta. Multiparty computation for interval, equality,
and comparison without bit-decomposition protocol. InPublic Key
Cryptography–PKC 2007, pages 343–360. Springer, 2007.

[21] K. Phemius, M. Bouet, and J. Leguay. Disco: Distributedmulti-domain
sdn controllers.CoRR, abs/1308.6138, 2013.

[22] C. Qian and S. S. Lam. ROME: Routing On Metropolitan-scale
Ethernet. InProceedings of IEEE ICNP, 2012.

[23] S. Schmid and J. Suomela. Exploiting locality in distributed sdn control.
In Proc. of ACM HotSDN, 2013.

[24] A. Shamir. How to share a secret.Communication of the ACM, 1979.

10

[25] N. P. Smart and F. Vercauteren. Fully homomorphic encryption with
relatively small key and ciphertext sizes. InPublic Key Cryptography–
PKC 2010, pages 420–443. Springer, 2010.

[26] N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP Topologies
with Rocketfuel. InProceedings of ACM SIGCOMM, 2002.

[27] M. Van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully
homomorphic encryption over the integers. InAdvances in Cryptology–
EUROCRYPT 2010, pages 24–43. Springer, 2010.

[28] D. Xu, M. Chiang, and J. Rexford. Link-state routing with hop-by-
hop forwarding can achieve optimal traffic engineering.IEEE/ACM
Transactions on Networking, 2011.

[29] Z. Yang, S. Zhong, and R. Wright. Privacy-preserving classification of
customer data without loss of accuracy. InProceedings of SIAM SDM,
2005.

[30] A. C.-C. Yao. Protocols for secure computations. InFOCS, volume 82,
pages 160–164, 1982.

11

	I Introduction
	II Related Work
	III Problem Overview and Background
	III-A Problem Formulation
	III-B Cryptographic Tool

	IV Design of the PYCRO Protocol
	IV-A Equivalent Cost Graph Construction
	IV-B Privacy-preserving Shortest Path Tree Protocol
	IV-C Path Establishment
	IV-D Implementation of Secure-If Operations

	V Protocol Optimization
	V-A Shared Shortest Path Tree
	V-B PYCRO with Candidate Recommendation

	VI Bandwidth Allocation
	VII Privacy analysis of PYCRO
	VIII Performance Evaluation
	IX Conclusion
	References

