1706.06631v1 [cs.NI] 20 Jun 2017

arxXiv

An Empirical Model of Packet Processing Delay of
the Open vSwitch

tDanish Sattar and fAshraf Matrawy
tDepartment of Systems and Computer Engineering, 1School of Information Technology
Carleton University, Ottawa, ON Canada
Email: {danish.sattar, ashraf.matrawy } @carleton.ca

Abstract—Network virtualization offers flexibility by decou-
pling virtual network from the underlying physical network.
Software-Defined Network (SDN) could utilize the virtual net-
work. For example, in Software-Defined Networks, the entire
network can be run on commodity hardware and operating
systems that use virtual elements. However, this could present
new challenges of data plane performance. In this paper, we
present an empirical model of the packet processing delay of a
widely used OpenFlow virtual switch, the Open vSwitch. In the
empirical model, we analyze the effect of varying Random Access
Memory (RAM) and network parameters on the performance
of the Open vSwitch. Our empirical model captures the non-
network processing delays, which could be used in enhancing
the network modeling and simulation.

I. INTRODUCTION

SDN is a new concept of networking with emphasis on
better and easier network management. In traditional networks,
each device is fully or partially autonomous in decision mak-
ing and forwarding of information (packets) [1]]. On the con-
trary, in SDN the control plane is solely responsible for making
the forwarding decisions and the data plane only forwards the
packets according to the rules set by the control plane. The
control and data plane communicate using OpenFlow protocol.

SDN utilizes several virtual network components (e.g.
switches, firewalls, intrusion detection/prevention systems,
etc.) and one of the widely used virtual network switch used
by the SDN is the Open vSwitch (OVS). In SDN, the network
manager defines the traffic forwarding rules at the controller.
Every new packet follows the following procedure to reach
the destination node: Once a packet reaches the in-port of
OVS, it checks whether it has a flow rule or not. If it has a
flow rule, then forward the packet accordingly otherwise pass
it to the controller. Next, the controller will check if there is a
pre-defined rule for the incoming flow, if there is a rule then
forward it using OpenFlow protocol to the OVS otherwise use
broadcast to find a route in the network.

There are three types of delays experienced by a packet
in the process above; i) controller delay: the time it takes
to find an appropriate rule/route, ii) two-way propagation
delay between the controller and the requesting OVS and iii)
processing delay of the OVS.

We are motivated by the lack of studies, models, and
simulators that consider the processing delays that happen in
inside network elements. In this paper, we are investigating
different processing delays experienced by the packet inside

the OVS to develop an empirical model for processing delays
inside the OVS. The controller and two-way propagation
delays are outside the scope of this paper. We have developed
an empirical model to characterize these delays. We use
commodity hardware to get the measurement in our empirical
model. We performed experiments on two platforms; i) virtual
and ii) baremetal. We tested using a variable amount of RAM
and different network parameters on various hardware configu-
rations. We believe that our empirical model can be beneficial
for data plane simulators, and it could provide insight into
choosing the appropriate platform (virtual or baremetal) for
an application.

We note that while we use different systems in our ex-
perimental setup, we are not trying to benchmark or test the
performance of these systems or create comparisons with other
systems. Rather, we are trying to capture the processing delay
behavior of OVS in our experimental setup, and we understand
that the behavior might be different in a different setup.

The rest of the paper is organized as follows. In section
existing works are presented. Section describes the Open
vSwitch components and functionality. The empirical model
is presented in section [[V] Results are discussed in section [V]
and finally section concludes this paper.

II. RELATED WORK

S. Azodolmolky et al. [2] developed a network calculus
based an analytical model to describe the functionality of
Software-Defined Networks. They modeled the behavior of an
SDN switch in terms of delay, queue length boundaries, buffer
length and controller buffer length. K. Mahmood et al. [3]]
provided SDN modeling based on queuing theory, where a
Jackson network was used to model the data plane and M/M/1
queue was used to model the controller. They determined the
average time a packet spends in the SDN and the maximum
data that can be injected in the network given some delay
requirements. Authors built a custom simulator to validate
their analytical model. Another queuing theory based model
was developed by Xionget al. [4]] to evaluate the OpenFlow-
based software-defined network. To obtain the average time
a packet spends in the system, an M*X/M/1 queue was
used to model the switch. They evaluated the switch queuing
model with different performance parameters using numerical
analysis. The M/G/I queue was used to model the controller

packet—in behavior and it was evaluated using widely used
benchmark Cbench under various network scenarios.

U. Javed et al. developed a stochastic model for transit
latency in SDN [5]. They performed experiments on three dif-
ferent platforms (i.e. Mininet, MikroTik RouterBoard 750GL
and GENI) and used the Round Trip Time (RTT) between end
hosts as a measurement metric to formulate their model. They
also proposed and demonstrated that the log-normal mixture
distribution is more suited for transit latency in SDN as com-
pared to M/M/1 models suggested in earlier studies. A hybrid
approach was proposed by M. Jarschel et al. [6]], where they
first used hardware switches to measure the average packet
forwarding time then selected one of the hardware switch
performance values to develop a queuing model to analyze the
network. They simplified the OpenFlow architecture queuing
system to M/M/I (forwarding model), M/M/I-S (controller
model) from M/GI/I and M/GI/I-S, respectively. To validate
the results from analytical model, they used OMNeT++ to
implement packet based simulation.

III. OPEN VSWITCH

Open vSwitch (OVS) is a widely used OpenFlow virtual
switch that is flexible and programmable. The OVS can work
with or without a controller. In the first case, when there is
a controller it uses the control logic to forward the packets.
In the latter, if there is no controller present, it forwards the
packet according to the layer two logic [7].

There are two major components of the OVS. The first is a
userspace module called ovs—vswitchd. It is a userspace
daemon that is implemented independently of the operating
system. The second major component is kernel datapath
module, which varies operating system to operating system [8]].

Figure (1| shows an overview of the working of the OVS.
The datapath module in the kernel always receives the packets
from the Network Interface Card (NIC). Either kernel datapath
module or ovs—-vswitchd has the instructions on how to
handle this type of packet. In the first case, instructions called
actions are already cached at the kernel datapath module, and
it will forward the packets accordingly. In the latter, when the
kernel datapath module does not have the actions cached, it
will pass the packet to the ovs—-vswitchd. Once a packet
reaches the ovs—vswitchd, if there is a controller present
and ovs—-vswitchd does not have the instructions on how
to handle these type of packets, it will forward it to the
controller and wait for a reply. In the second case, when there
is no controller present, it will use its internal logic to define
actions for the incoming packets. Once the ovs—vswitchd
has defined the appropriate actions, it will pass them to the
kernel datapath module and also instruct it to cache them for
future use [8].

As mentioned before, the most common use of the OVS is
as an SDN switch to control packet forwarding in OpenFlow.
The OpenFlow protocol allows a controller to dynamically
add, update, remove, obtain statistics on the flow tables and
monitor the flows as well as inject, redirect or drop the
packets. The ovs—vswitchd receives the flow tables from

the SDN controller, matches any incoming packets against
these OpenFlow tables, gathers the actions applied, and caches
the results in the kernel datapath module. It allows the OVS
to work independently of any SDN controller as it only
needs to understand the OpenFlow protocol. The separation
of userspace module and kernel module is transparent to
the OpenFlow protocol, which makes it simpler from the
network programmer and SDN controller’s point-of-view. In
SDN controller’s point-of-view, every packet goes through
a series of OpenFlow tables and the OVS finds the highest
priority matching flow whose conditions are satisfied by the
packet and executes its OpenFlow actions [J§]].

IV. EMPIRICAL MODEL OF OVS PROCESSING DELAY

In the literature, there are several analytical models based
on network calculus and queuing theory [1]-[4], [6], [9] to
evaluate the performance of SDN. Most analytical models
simplify the network elements to provide a mathematical
formulation to evaluate the network performance but in reality,
today’s network is affected by several external factors as well.
In recent years, a significant amount of network functionality
has been virtualized (NFV), e.g., virtual routers, switches,
firewalls, etc. These virtualized network functions run on top
of an operating system (OS) or a hypervisor, which also affects
the network performance.

In this paper, we provide an empirical model of the Open
vSwitch to characterize different processing delays (non-
network related delays) which affect the performance of the
OVS. We used different sizes of RAM as well as variable
packet sizes and data rates to cover a broad spectrum of
configurations.

In the packet processing function of kernel datapath mod-
ule (Figure [I), each packet passes through four steps, which
are:

o get statistics of the current datapath from the CPU

o flow rule lookup in the flow tables

o if flow rule not found in the existing flow tables send it
to the ovs-vswitchd (upcall)

o update the statistics and apply actions

First, the datapath module gets some statistics (counters) about
this datapath from the CPU then checks whether it has a
cached flow rule or not. If it is present, it will use that
rule otherwise send it to the userspace module (upcall) and
lastly, it updates the statistics about the current flow (usedtime,
packet, bytes, tcp_flag, etc.) and executes the corresponding
flow actions. We present delays in microseconds at each of
these steps as an input for our empirical model.

Our methodology to calculate the empirical model is as
follows [10]]; initially, we collect processing time data from
each experiment then calculate their frequencies. In the second
step, we convert those frequencies into relative frequencies
according to equation |l| and calculate commutative relative
frequencies to produce the empirical Empirical Cumulative
Distribution Function (ECDF).

B (D

Controller

Yes (OpenFIow)o

penFlow

OVS-vswitchd

Flow rule
Received

Incoming
Packets

Kernel Datapath Module

| Cache flow

rule

Yes:

Fig. 1. Overview of the working of the Open vSwitch

PT is the processing time of a packet, N is the total number
of packet samples for an experiment and f is the relative
frequency.

To cover a broad spectrum of configurations, we used two
environments for the experimentation. In the first, we installed
OVS in a virtual environment. For the second, OVS was
installed directly on the baremetal. The OVS installation for all
configurations is single core. We created multiple scenarios.
In each scenario, we fixed all the parameters except one and
analyzed the effect of that parameter on the packet processing
time of OVS, and each experiment is repeated several times.
In the following two sections, we discuss the results of virtual
and baremetal OVS installation.

V. VIRTUAL OVS INSTALLATION (VOI)

In the virtual OVS installation, we used Xen server 7.1 [11]
to create a virtual machine (VM) and installed Ubuntu server
14.0.4 LTS with OVS 2.5.1 [12]. The hardware specifications
of the host system are 8.0GB RAM and Intel E5420@2.50GHz
(4 cores).

In this configuration, we analyzed the effect of RAM, packet
size and data rate on the processing time of the OVS.

A. First scenario (variable RAM)

We analyzed the effect of RAM on the packet processing
time by setting the number of CPU cores to 1, data rate to
10-15Kb/s and the packet size to 56B. Figure [2] shows the
ECDF of processing delay for different sizes of RAM (0.5GB
to 2.0GB). Increasing the RAM does reduce the processing
delay but it is not significant because the majority of packets

0.50GB
0.75GB
1.00GB
1.25GB
1.50GB
1.75GB
2.00GB

06

=)
=
T

Cumulative Relative Frequency
o o
(9] o
T T

=)
a
T

0 I I I I I I I L
10 15 20 25 30 35 40 45 50 55

Delay (microsec)

Fig. 2. VOI: Variable RAM (ECDF).
RAM: 0.5GB-2.0GB, CPU: 1 core, Packet size: 56B and Data rate:
10-15Kb/s

experience the average total delay of approximately 25 us or
less for all the RAM configurations.

B. Second scenario (variable data rate)

After varying the RAM in the first scenario, the RAM is set
to constant values at 1.0GB for the second and third scenarios.
We increase the packet size to 576B in the second scenario
to allow for higher data rates. We present the effect of different
data rates in Figure @ At lower data rate (250 Kb/s), the OVS

5768
09 7508 |
10008

— 13008 | |
—— 15008

o
=]
T

o

~
T
L

=)

=)
T
|

o
s
T
L

Cumulative Relative Frequency
o o
L5 o
T T
I I

o
¥
T
|

=]
.

0 I I I I I
10 15 20 25 30 35 40

Delay (microsec)

Fig. 3. VOI: Variable data rate and constant packet size (ECDF).
RAM: 1.0GB, CPU: 1 core, Packet size: 576B and Data rate: variable

takes more time to process each packet. It is also evident in
comparison with the previous scenario (Figure [2), where data
rates (10-15Kb/s) were much lower that Open vSwitch took
more time to process a packet as compared to the higher data
rates (compare the x-axis values of the Figures 2] and [3). U.
Javed et al. [5] reported similar behavior while they considered
the Round Trip Time (RTT) as a metric. They also reported
how the higher data rates lead to lower processing delays. We
believe this could be an explanation for the results we get
for the processing delay with varying data rates, i.e., they are
impacted by context switching and cache hits.

C. Third scenario (variable packet size)

We fixed the data rate to 750Kb/s and used variable packet
size. The smaller packets take less time to process but the
processing time for larger packets is also not significantly
different from smaller packet sizes as shown in Figure 4] The
processing delay in this scenario is very similar to the second
scenario (Figure [3), a maximum delay experienced by any
packet is less than or equal to 40us.

D. Comparing different types of delay

One interesting result we obtained from our experiments
is the comparison of various components of packet processing
delay inside the kernel datapath module. In particular, we refer
to the four delays(i.e. upcall, lookup, statistics update and CPU
counters). Figure [5] captures the delays of each component.
The parameters used for this experiment are same as the third
scenario. The OVS spends a considerable amount of time (in
comparison with other types of delay) obtaining information
(or waiting for the CPU) about the current datapath from the
CPU. The second largest component that contributes to the
overall processing delay of the OVS is flow lookup delay.

We also noticed that the time required to obtain CPU coun-
ters is higher then upcall to the userspace daemon, flow lookup

1 -
250Kbls
0er 750Kbs
1250Kb/s
08
=
c - -
207
@©
s [
o 06 y
Z
T g5k]
T os
o
Loar 1
k5
2031 g
E
=
©o2r 1
01 1
o Lt . . | . |
10 15 20 25 30 Kl 40
Delay (microsec)
Fig. 4. VOI: Variable packet size and constant data rate (ECDF).

RAM: 1.0GB, CPU: 1 core, Packet size: variable and Data rate: 750Kb/s

and updating the datapath statistics (and preform necessary
flow actions).

n
6l .
& I
z A A
©
A
2| .
3
0 500 1,000 1,500
Packet Samples
Upcall —a— Lookup Update Statistics —m— CPU Counters

Fig. 5. VOI: Processing delay comparison of different components of kernel
datapath module

We also performed experiments where we added 2000
arbitrary flow rules to OVS’s flow tables to see the effect on
the lookup delays (not shown here). The flow lookup delays
we obtained in these experiments were not as significant as
we expected.

VI. BAREMETAL OVS INSTALLATION (BOI)

In the second configuration, we installed Ubuntu server
14.0.4 LTS with OVS 2.5.1 directly on the baremetal. The
second configuration is used to provide results for the differ-
ent network parameters. The hardware specifications of the
baremetal system are 8.0GB RAM and Intel Core 2 Quad
Q6600@2.4GHz (4 cores). In this configuration, we variated

the packet size and data rate. The network parameters for both
scenarios are similar to VOI experiments (section [V)). We also
performed these experiments on multiple baremetal systems
that produced results (not shown here) similar to BOI results.

250Kbis
750Kb/s
1250Kb/'s

o
=]
T

o

~
T
L

05 T
04 ‘ T

03 | N

Cumulative Relative Frequency

0.2 | i

01 T

Delay (microsec)

Fig. 6. BOI: Variable data rate and constant packet size (ECDF).
RAM: 8.0GB, CPU: 4 cores, Packet size: 576B and Data rate: variable

A. First scenario (variable data rate)

We repeated the variable data rate experiment on baremetal
as shown in Figure [On baremetal, OVS produced similar
behavior to the VOI, but it did improve the processing time of
the OVS. The processing time is reduced to 10us from 40us

(Figure [3).
B. Second scenario (variable packet size)

In the second scenario, we repeated the variable packet
size experiment on baremetal. This experiment also produced
similar results as shown in Figure [7] The OVS took more time
to process larger packets but an interesting point to note here
is that in VOI the minimum processing delay experienced by
any packet is approximately 10us. On the other hand, 10us
is the maximum delay encountered by any packet in the BOI,
which is a significant reduction as we expected.

C. Comparing different types of delay

We used same network parameters as scenario This
experiment also produced similar behavior. The CPU counters
contributed the most in the OVS processing time followed by
the lookup delay as shown in Figure [8] One difference we can
see between Figure [5] and [§]is that in BOI all delays are more
consistent and stable as compared to VOI. The reason could
be that in BOI, the CPU scheduling is done by the OS. While
in VOI there are two levels of scheduling; one by the OS and
other by the Xen Server.

VII. CONCLUSION

An empirical model of Open vSwitch has been presented
in this paper. We conducted experiments using a different

5768
09r 7508 |

10008
— {3008 | |
15008

=)
=
T

=)
3
T
|

=)

=)
T
|

Cumulative Relative Frequency
© ©o o9
(0 - o
T T T
| | L

=)

[
T
|

=)
e
T
|

o

Delay (microsec)

Fig. 7. BOI: Variable packet size and constant data rate (ECDF).
RAM: 8.0GB, CPU: 4 cores, Packet size: variable and Data rate: 750Kb/s

1.5 -
o

2 1p 2
>
=
5]
@)

0.5 .

0 - |

0 500 1,000 1,500
Packet Samples
Upcall —a— Lookup Update Statistics —m— CPU Counters

Fig. 8. BOIL: Processing delay comparison of different components of kernel
datapath module

hardware and network configurations. Our empirical model
captures the non-network processing delays that a packet
experiences due to the nature of different OVS installations
as well as other operating system factors. These experiments
revealed some interesting results. Increasing the RAM size did
not have a significant effect on the delay a packet experiences
inside the OVS in the experiments we ran. Smaller packet size
and higher data rates reduce the overall processing time of the
OVS.

ACKNOWLEDGEMENT

The second author acknowledges funding from Canada’s
NSERC thought the Discovery Grant Program.

[1]

[2]

[3]

[4]

[5]

[6]

[7]
[8]

[9]

[10]

[11]

[12]

REFERENCES

B. Xiong, K. Yang, J. Zhao, W. Li, and K. Li, “Performance evaluation of
OpenFlow-based software-defined networks based on queueing model,”
Computer Networks, vol. 102, pp. 172 — 185, 2016.

S. Azodolmolky, R. Nejabati, M. Pazouki, P. Wieder, R. Yahyapour, and
D. Simeonidou, “An analytical model for software defined networking:
A network calculus-based approach,” in 2013 IEEE Global Communi-
cations Conference (GLOBECOM), Dec 2013, pp. 1397-1402.

K. Mahmood, A. Chilwan, O. @sterbg, and M. Jarschel, “Modelling
of OpenFlow-based software-defined networks: the multiple node case,”
IET Networks, vol. 4, no. 5, pp. 278-284, 2015.

B. Xiong, K. Yang, J. Zhao, W. Li, and K. Li, “Performance Evaluation
of OpenFlow-based Software-defined Networks Based on Queueing
Model,” Comput. Netw., vol. 102, no. C, pp. 172-185, Jun. 2016.

U. Javed, A. Igbal, S. Saleh, S. A. Haider, and M. U. Ilyas, “A stochastic
model for transit latency in openflow {SDNs},” Computer Networks, vol.
113, pp. 218 — 229, 2017.

M. Jarschel, S. Oechsner, D. Schlosser, R. Pries, S. Goll, and P. Tran-Gia,
“Modeling and performance evaluation of an OpenFlow architecture,”
in Teletraffic Congress (ITC), 2011 23rd International, Sept 2011, pp.
1-7.

OVS, “Open vswitch manual,” accessed 16 May 2017. [Online].
Available: http://openvswitch.org/support/dist-docs/ovs-appctl.8.txt

B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar, K. Amidon, and M. Casado,
“The Design and Implementation of Open vSwitch,” in 12th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
15). Oakland, CA: USENIX Association, 2015, pp. 117-130.

A. Bianco, R. Birke, L. Giraudo, and M. Palacin, “OpenFlow Switch-
ing: Data Plane Performance,” in Communications (ICC), 2010 IEEE
International Conference on, May 2010, pp. 1-5.

J. Banks, I. John S. Carson, B. L. Nelson, and D. M. Nicol, Discrete-
Event System Simulation. Prentice Hall, 2001.

XEN, “Xen server 7.1, accessed 16 May 2017. [Online]. Available:
https://xenserver.org/overview-xenserver-open-source- virtualization/
download.html

OVS, “Open vswitch 2.5.1,” accessed 16 May 2017. [Online]. Available:
http://openvswitch.org

http://openvswitch.org/support/dist-docs/ovs-appctl.8.txt
https://xenserver.org/overview-xenserver-open-source-virtualization/download.html
https://xenserver.org/overview-xenserver-open-source-virtualization/download.html
http://openvswitch.org

	I Introduction
	II Related Work
	III Open vSwitch
	IV Empirical Model of OVS Processing Delay
	V Virtual OVS Installation (VOI)
	V-A First scenario (variable RAM)
	V-B Second scenario (variable data rate)
	V-C Third scenario (variable packet size)
	V-D Comparing different types of delay

	VI Baremetal OVS Installation (BOI)
	VI-A First scenario (variable data rate)
	VI-B Second scenario (variable packet size)
	VI-C Comparing different types of delay

	VII Conclusion
	References

