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Abstract—The applications in the critical infrastructure sys-
tems pose simultaneous resilience and performance requirements
to the underlying computer network. To meet such requirements,
the networks that use the store-and-forward paradigm poses
stringent conditions on the redundancy in the network topology
and results in problems that becoming computationally challeng-
ing to solve at scale. However, with the advent of programmable
data-planes, it is now possible to use linear network coding (NC)
at the intermediate network nodes (i.e. hardware and software
switches) to meet resilience requirements of the applications. To
that end, we propose an architecture that realizes linear NC in
programmable networks by decomposing the linear NC functions
into the atomic coding primitives. We designed and implemented
the primitives using the features offered by the P4 ecosystem.
Using an empirical evaluation of an open-source prototype, we
show that the theoretical gains promised by linear network coding
can be realized with a per-packet processing cost.

Index Terms—Resilience, Network Coding, Software Defined
Networking

I. INTRODUCTION

The applications that constitute the critical infrastructure
(e.g. smart power generation and distribution systems, oil
refineries etc.) have a unique set of requirements regarding
their underlying communication networks. For example, such
applications require that their communication is seamlessly
resilient against link or device failures. Furthermore, these
applications also require a predictable end-to-end delay for
data delivery in multicast settings [[1] [2]]. Such resilience and
performance requirements cannot be simultaneously accom-
plished by mere over-provisioning of network resources such
as topological redundancy or bandwidth.

Rather, in the packet store-and-forward paradigm, the re-
siliency is provided by carefully routing the packets around
a failed link or network device [3]] [4] [5] [6]. However,
such an approach requires solving complex combinatorial
problems. Similarly, performance requirements (e.g. end-to-
end delay) are met by solving resource allocation problems
on a per-flow basis [7]], but even a static resource allocation
for flows that have such performance requirements is an NP-
complete problem [8]]. Therefore, combining the performance
and resilience requirements poses an intractable problem.

Such intractability is a result of hard routing and resource
allocation decisions that are in turn a consequence of the
atomic nature of a packet flow in the store-and-forward
paradigm. In this paradigm, a flow has to originate at a source
port and follow a specific path to arrive at the destination(s)
without any modifications to its contents. However, network

coding converts this hard decision into one of many soft deci-
sions by mixing packets at intermediate network devices using
algebraic coding. In theory, NC promises to provide seamless
resilience to failures for critical infrastructure applications over
the store-and-forward paradigm [9] [10]. However, practical
NC that achieves the promised theoretical gains has remained
elusive.

Clearly, NC is realized when the intermediate network
devices can be programmed to implement the packet coding
and decoding capabilities. While there have been successful
attempts to demonstrate the efficacy of using inter-session NC
in wireless networks [11] [[12]], the progress on the widespread
adoption of the same has been disappointing. In part, the
reason has been the practical issues of retrofitting NC onto
the prevalent networking architecture. These issues have been
addressed in various ingenious efforts in the past [[13[]] [14].
But, more importantly, the adoption of NC has been stifled due
to a lack of programmable platforms that can implement novel
data-plane methods at scale. Historically, the switch ASIC
architectures that implement data-plane functionality have
been optimized for ever-increasing line-speed performance at
the expense of programmability. However, very recently, with
the advent of programmable data-planes [15]], it has become
possible to not only experiment [16], but also deploy new
network functions using a flexible data-plane architecture in
production networks [|17]].

Based on these developments, we devise an architecture
capable of simultaneously meeting resilience and performance
requirements of the data streams generated by applications
in critical infrastructure systems. To that end, we present
one that leverages programmable networks to replace routing
algorithms with NC functions. Our contributions include:

e A library of atomic network coding primitives imple-
mented using the programmable data-planes.

« Use of the proposed primitives to construct linear network
coding functions capable of achieving specific require-
ments for applications’ data streams.

o Evaluation of the coding functions to show that the
seamless resilience and multicast rate gains are obtained
at a small per-packet processing cost of coding and
decoding the packets in the data-plane.

The remainder of this paper is organized as follows: Section
discusses related work; Section discusses background
and how the features of programmable data-planes affect the



design of coding functions and primitives; Section [[V]proposes
an architecture to implement coding functions; Section E]
discusses the design of various elements of the proposed
architecture; Section evaluates the performance and costs
of using the proposed design; and Section concludes and
discusses future work.

II. RELATED WORK

There has been prior work in the store and forward paradigm
that allows nearly instantaneous failure recovery. When such
failures are addressed reactively, they result in prohibitively
large restoration time for critical infrastructure applications
[18]] [1f]. There are proactive approaches to deal with such
failures which use the mechanisms local to a switch to
reroute traffic on an alternative path [3] [4] [S]] [6]. However,
such approaches require k-connected network topologies for
sustaining k link failures, thus incurring a large overhead in
procuring and maintaining such networks. Furthermore, these
approaches require solving combinatorial problems to choose
alternative links in the event of link failures. These approaches
also lead to new problems such as the need to "load-balance”
resilience so that a small set of links does not become too
critical for the resulting network after the failures.

Recently, in order to meet the performance guarantees in
store-and-forward networks, the standard bodies have pro-
posed standards for special-purpose hardware [19] [20]. How-
ever, using such special hardware incurs large capital and
recurring expenses. To that end, some recent work has pro-
posed mechanisms to simultaneously meet per-flow end-to-
end delay and bandwidth requirements using software-defined
commodity networks [7]]. However, this work solves a resource
allocation problem using a heuristic for a multi-constraint path
problem that provides no guarantees of optimality.

The seminal work that demonstrated a practical mechanism
to implement NC by using simulations was done by Chou et.
al. [[14]]. This work focused on coding batches of data which is
incompatible with the acknowledgement mechanisms of TCP.
Subsequently, there has been work that demonstrated TCP
throughput gains with the use of NC [[13] [21]] with deployable
implementations. However, these efforts focus on intra-session
coding at source only and the goodput gains obtained due to
intermittent packet loss.

There have been several prior efforts to implement NC
top of on the application layer, either in an overlay topology
[22] [23]] [24] or as a virtual network function [25]. While
implementing NC in the application layer offers flexibility
and variety in the type applications that can be materialized,
the cost of taking packets from the network interface and
processing them in upper layers can be high and can be
mitigated by implementing NC in the data-plane of network
devices.

Finally, COPE [11] demonstrated the benefits of inter-
session coding in the specific setting of wireless networks by
utilizing the broadcast property of the media with a clever
heuristic. The types of benefits that COPE extracted using a
specially designed architecture can now be replicated for wired

networks by implementing NC using standard platforms such
as the P4 ecosystem.

III. MOTIVATION AND BACKGROUND
A. Why use Network Coding?

In the store-and-forward paradigm, each flow originates at
a source port and follows a deterministic path to arrive at the
destination port(s), however, its contents are immutable during
the transit. Hence, due to immutability, when globally optimal
decisions for resource allocation for flows are to be made, the
resources are allocated separately for each flow at the network
devices. Furthermore, in the event of a link or device failure,
the flows must be routed around the failure entirely. Due to
these requirements of immutability, solving for performance
guarantees and resilience requirements results in formulation
of problems that are intractable [8] [7] or combinatorially
complex [3]] [4] [S] [6].

The NC paradigm approaches the problem of delivering data
from point A to point B by allowing intermediate nodes within
the network to code and recode the packets. This paradigm
has many promising theoretical properties. For example, in
their seminal work, Ahlswede et. al. [9] showed that, given a
network represented as a multigraph G(V, E), network coding
can enable a sender s € V to communicate with a set of
receivers T' C V'\ s, at a multicast rate equal to the minimum
max-flow from the sender to any of the £ € T. Li et. al.
[26] showed that using linear codes on the network nodes
are sufficient to achieve this rate. Koetter and Medard [10]
extended the theorem to the cases when the edges in E are
subject to failures and showed that the linear codes can achieve
minimum max-flow even after failures. Finally, Ho et. al. [27]]
showed that the random linear network codes suffice to achieve
the same.

B. Why use the P4 ecosystem?

The implementation of linear NC requires two types of
computations: First, there are network-level operations such as
computation of coding co-efficients or designation of various
roles to the individual nodes based on the topology and the
application requirements. These operations can be performed
in the programmable control-plane. Second, there is the simple
arithmetic operations (e.g. addition, multiplication) that are
performed on an individual or a small batch of packets in the
applications’ data stream. In order for coding to scale to line-
speeds, these operations have to be performed on the individual
network devices using a programmable data-plane architecture.

The P4 ecosystem is a programmable data-plane architec-
ture has been gaining traction in both academia and industry
for implementing novel data-plane functions. It comprises an
open-source P44 language [15] [28|] and the accompanying
Portable Switch Architecture (PSA) [29]. The ecosystem has
accelerated the design and adoption of novel network functions
by enabling fully programmable data-planes without compro-
mising the line-speed performance of modern network devices.

The primary goal of the P4 ecosystem is to make data-
planes programmable by allowing expression of per-packet
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computations performed on a network device. As such, it is
not designed to enable network coding applications. However,
it does provide several features that make it well-suited as
a platform for implementing linear NC functions for failure
resilience and multicast rate enhancements. Below, we briefly
describe some of the relevant features:

o Customizable Packet Processing Pipelines: There are
separate ingress and egress pipelines on each PSA device
which can be configured from the control-plane. These
pipelines are constructed using tables. Each table has a
set of fields (called its key) that determines the packets
that match it. Each table also has associated C-link sub-
routines called actions. The actions can perform nearly
arbitrary operations on the packet headers including for
example addition, multiplication and XOR.

« Packet Cloning & Recirculation: Cloning makes copies
of packets on the egress pipeline, while recirculation
sends the packets from the egress pipeline to the ingress
pipeline. Both of these features can be used in tandem to
generate a new packet for coding/decoding operations.
Furthermore, since P4 does not have a primitive anal-
ogous to a loop in imperative programming languages,
packet cloning and recirculation can also be used to create
one without any intervention from end-hosts.

o Registers: Registers are essentially global variables that
can hold global state independent of any specific packet in
any given pipeline. These registers can be used to drive
state machines and implement data structures that hold
packets that are required to be coded.

« Extensibility: P4 allows extension of the core language
by using a construct called extern. Essentially, this
construct allows another level of flexibility to implement
features that do not exist in the language. Such flexibility
may be crucial to any implementation of NC that goes
beyond simple linear codes.

IV. ARCHITECTURE

The Figure [] illustrates the proposed architecture which
enables implementation of linear network coding using P4

devices. This particular example shows a steam of packets
carrying applications’ data originates at the host on the left side
and terminates on the host at the right side. Fundamentally,
we assume that a packet stream can be divided into a batches
of packets. These batches are then processed by individual
devices to achieve the NC gains.

We define a coding function as the realization of a linear
code to improve resilience or throughput of a unicast/multicast
data stream. For example, in Figure[I] the function implements
a diversity code [30] to provide resilience to failure of any one
of the three paths between S; and Ss3. The function replaces
IP forwarding and spans one or more P4 enabled devices.
A northbound coding application implements multiple coding
functions that operate simultaneously across the network.

A coding primitive is an atomic block of functionality
implemented on the individual P4 switches. For example,
in Figure (I} switches S; and S3 implement the coding and
decoding primitives respectively. Each primitive operates in-
dependently of the others. Each incident stream of packets on
the device is subject to one or more primitives. A switch can
process multiple data streams simultaneously. Each switch’s
configuration contains the identifier for the data streams and
the exact sequence of coding primitives applied to each of
them.

V. DESIGN

In this section, we first describe our design for the coding
functions in the control-plane. Next, we discuss the packet
header that is used to coordinate primitives for a given coding
function and finally describe how our design of the coding
primitives in the data-plane using the P4 ecosystem.

A. Coding Functions

The coding functions are a part of the coding application.
Each coding function takes as input the source host and
destination host(s) associated with the data stream. It accesses
the topology information by using the controller’s northbound
API. Then, the coding function generates the configuration for
the coding primitives described later in this section. Figure
shows two instances of coding functions. One instance is
that of a diversity code that provides seamless resilience for
a unicast stream over three paths. The other instance uses a
linear code for enhancing receiver’s data rate of a multicast
stream.

B. Coding Header

Each packet that belongs to a coding function carries a
coding header. The header contains various fields to coordinate
the operations performed by the coding primitives across the
network. The header has a field called next_primitive
which determines what happens to the packet when it arrives
at a network device. It also has a field called stream_id to
identify packets belonging to different streams. Finally, it has
the batch_number which identifies the packets belonging
to a given batch of packets within the stream.
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Fig. 3. Linear Coding Functions: (a) For multicast rate improvements over a butterfly topology (b) For seamless failure resilience to failure of links in any

one of three available paths

Since P4 does not provide access to the contents of a packet
beyond a few hundred bytes, in our prototype, we use a field
in the coding header to carry the packet’s payload.

C. Coding Primitives

The coding primitives are implemented in the data-plane
on the individual network devices using P4. The primitives
are implemented primarily in the ingress pipeline. However,
some of the primitives use the egress pipeline for recircu-
lating cloned packets for generating new packets that carry
coded/decoded payload. For every primitive, we also collect
some in-band telemetry to measure processing times for eval-
uation.

Coding primitives use several common design patterns.
Each primitive uses at least one table in the ingress pipeline.
If the primitive uses packet cloning and recirculation, then
it also uses a table in the egress pipeline. Furthermore, each
primitive table has a common field called st ream_id as part
its key. This field is used to specify the packets belonging
to an specific application’s data stream. These packets could
originate at the host or could be the result of the output of
another primitive.

Each table implements a decision tree. The levels of the tree
are determined by values taken by the fields in the key of the
table. The actions in the table form the leaves in the decision
tree. These actions either perform the mathematical operation
for coding/decoding packets or manipulate some global state
that is held in registers.

Next, we describe the particulars of the individual prim-
itives. As illustrated in the Figure 2] we developed five
primitives to implement linear inter-session NC as follows:

« Splitting: primitive splits a given packet stream arriving
from a single interface into individual batches of packets.
It uses global state in registers on a per stream basis and
stores the packets in the appropriate registers so that the
coding/decoding primitives can use them.

o Coding: primitive generates new packets whose pay-
load are obtained by coding over the previously stored
payloads. It accomplishes that by using the cloning and
recirculation features to create a loop to generate packets
whose payload is then populated to be the coded packets.
In order implement linear codes, the coding primitive
only performs addition, subtraction and XOR operations
provided by P4.

o Forwarding: primitive performs unicast or multicast
forwarding of a packet. The multicast forwarding action
makes use of cloning to generate copies of packets.

« Gathering: primitive collects a batch of incoming pack-
ets from multiple interfaces and puts them into the reg-
isters corresponding to their stream_id. It also relies
on global state in registers to keep track of the packets it
has received on a per-stream basis.

o Decoding: primitive takes the gathered packets, decodes
them and forwards the payload packets to the host. In
order to generate decoded payload, this operation may
also require generating new packets. This primitive also
uses cloning and recirculation to generate new packets
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that are then populated with decoded payload.

Clearly, the coding and decoding primitives require buffer-
ing of the packets. In our current prototype, we use the
registers to maintain a fixed size ring buffer containing the
packet payloads and use the batch_number to locate them
appropriately. The packets belonging to same stream of pack-
ets are correlated by using the stream_id. In our design,
we do not perform any flow control on the switches.

VI. EVALUATION

We implemented a prototype of the library of primitives
and functions that use them. Our prototype is available in
the public domain [31]. We evaluated our approach using
mininet [32] and a software switch [33] as P4 target.
The end-host were emulated using python scripts that used
scapy [34] to construct and parse custom coding headers.
The emulations were performed on a machine that was running
Ubuntu 16.04 LTS. The machine had eight processor cores
clocked at 2.7 GHz and 16 GB of RAM. We performed two
types of evaluation that are described below.

A. Multicast Rate Gains of Coding

We performed an experiment to measure the multicast rate
gains that are obtained when using a simple linear code to
perform multicast over the classic butterfly network shown in
Figure [3[(a). The host on the left side wants to multicast a data
stream to the two hosts on the right. Suppose the bandwidth of
the links between the switches is k bps. Theoretically, coding
should allow a multicast rate of k bps for flows S; — Ss
and 57 — S5 simultaneously, whereas any scheme that uses
packet forwarding would not be able to accomplish this rate
because only a single packet can be forwarded along the link
Sy — Ss.

We sent a thousand packets at various data send rates with
an exponentially distributed inter-packet time to match the rate.
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Each packet contained 4096 bytes of payload. The k£ was set to
0.01 Mbps. We measured the simultaneous received data rate
on each receiver by using the packet payload sizes and their
timestamps in the generated PCAP files to obtain the range of
time for which the transmission was received at each receiver,

Figure [35] plots two ratios. The x-axis is the ratio of send-
rate over the max-flow between the source and destination
host, whereas the y-axis is the ratio of observed received rate
at one of the receiving hosts (without loss of generality and
empirically identical) over the send rate. We observed that the
received rate drops for forwarding as the send rate is about
40% of the max-flow, whereas it does not drop for coding
until 80% of the max-flow. At 80%, we see a drop for coding
as well, likely because the processing delays associated with
coding at nodes Sy, Sg, S7.

B. Microbenchmarks

We performed an experiment to measure the processing
time associated with coding and decoding packets in a P4-
enabled switch. We used in-band telemetry to measure the
processing time at each switch in the path of the packet. The
processing time is measured as difference between the time-
stamp associated with packet arriving at the ingress pipeline
and packet being queued for egress.

We used the framework described above to implement
diversity coding over multiple alternative paths as shown in
Figure [3(b). Each link was set to have a delay of 5 ms.
The delay for link between S:-S; was varied to create a
delay differential for packets arriving at S5 for decoding.
Furthermore, we measured the impact of payload size on the
processing time as well. We sent a thousand packets for a
each point in the plot shown in Figure fi] The packets were
sent as fast as possible (i.e. there was no sleep between any
two packets).

We observed a negligible effect of increasing the payload
sizes of packets for all operations. Specifically, we observed



that the processing time for the set of switches that forward
the packets (i.e. S3, S3, S4) increases only slightly even when
payload sizes are quadrupled. In the worst case, we observe
that processing time at the coding node (i.e. S1) can be up to
four times the processing time for only forwarding the packets.
Similarly, in the worst-case, decoding node (i.e. S5) can take
up to six times to process a packet than a forwarding node.
Some of this variation and extra processing time is due to the
cloning and recirculation operation that coding and decoding
primitives use.

Finally, we observe that for a lower link delay differential,
the decoding time is higher than coding time and has a high
standard deviation and vice versa. This is because different set
of table actions are in effect in those two cases. For a lower
link delay differential, the XOR packet arrives at the decoder
first and necessitates the use of arithmetic decoding, whereas
when the differential is higher, the decoding is essentially
reduced to forwarding the uncoded packets.

VII. CONCLUSION AND FUTURE WORK

We proposed an architecture that realizes linear NC in
programmable networks by decomposing the linear NC func-
tions into the atomic coding primitives. In our future work,
we want to verify whether the gains associated with NC are
also observed in hardware devices. Furthermore, we want to
study the resilience and throughput gains for more complex
coding functions and in larger topologies. Finally, we also
want to study how NC can be used to control the trade-offs
between network resources, the level of resilience and end-to-
end delay.
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