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Local Fast Rerouting with Low Congestion:
A Randomized Approach
Gregor Bankhamer, Robert Elsässer and Stefan Schmid

Abstract—Most modern communication networks include fast
rerouting mechanisms, implemented entirely in the data plane,
to quickly recover connectivity after link failures. By relying
on local failure information only, these data plane mechanisms
provide very fast reaction times, but at the same time introduce
an algorithmic challenge in case of multiple link failures: failover
routes need to be robust to additional but locally unknown
failures downstream.

This paper presents local fast rerouting algorithms which
not only provide a high degree of resilience against multiple
link failures, but also ensure a low congestion on the resulting
failover paths. We consider a randomized approach and focus
on networks which are highly connected before the failures
occur. Our main contributions are three simple algorithms which
come with provable guarantees and provide interesting resilience-
load tradeoffs, significantly outperforming any deterministic fast
rerouting algorithm with high probability.

I. INTRODUCTION

Emerging applications, e.g., in the context of industrial,
tactile or 5G networks, come with stringent latency and
dependability requirements. To meet such requirements, Fast
Re-Route (FRR) mechanisms have been specified for many
networks [1]–[4]: local failover mechanisms in the data plane
which avoid the time-consuming advertisement and collection
of failure information and re-computation of routes in the
control plane [5], [6]. Rather, these mechanisms rely on a
pre-defined logic, often implemented in terms of conditional
failover rules [3]. For example, wide-area networks often use
IP Fast Reroute [1] or MPLS [2] Fast Reroute to deal with
failures on the data plane, the Border Gateway Protocol (BGP)
uses on BGP-PIC [7] for quickly rerouting flows, many data
centers use Equal Cost MultiPath (ECMP) [8] which provides
automatic failover to another shortest path, and Software-
Defined Networks (SDNs) provide FRR functionality in terms
of OpenFlow fast-failover groups [3], among many others [9].

However, while FRR mechanisms are attractive and widely
used to deal with single failures, they introduce an algorithmic
challenge in the presence of multiple link failures, as they
are common in large networks such as datacenter and Internet
networks [10]–[12]: rerouting decisions need to be made based
on incomplete information about the failure scenario, and in
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particular, about failures downstream. The problem becomes
particularly challenging if the rerouted flows should not only
preserve connectivity under failures but also a low load,
an important criteria in practice: congested routes threaten
dependability and indeed, congestion is a main concern of
any traffic engineering algorithm.

Recently, a series of negative results have been obtained
on what can be achieved using deterministic fast rerouting
algorithms (e.g., [13], [14]). In particular, it has been shown
that even on networks which are still highly-connected after
failures, the congestion resulting from any deterministic local
fast failover algorithm is bound to be high in the worst case,
i.e., polynomial in the number of link failures [15], [16].

This paper initiates the study of randomized algorithms to
provide high resiliency and low congestion at the same time. In
particular, we show that using a randomized approach, the con-
gestion can be reduced from polynomial to polylogarithmic,
with high probability, hence breaking deterministic congestion
lower bounds.

A. Model in a Nutshell

In a nutshell, we consider the fundamental problem of
congestion-minimal fast rerouting on a complete undirected
network G = (V,E), where each pair of the n nodes
(e.g., switches, routers, or hosts) is directly connected (i.e.,
the network forms a clique). Such complete networks are
typically studied in the related work and can be seen as an
approximation of highly-connected networks as they arise,
e.g., in the context of datacenters.

The network links (henceforth called edges) of G are subject
to multiple concurrent failures, determined by an adversary
and the goal is to pre-define local failover rules for the different
nodes V such that traffic is rerouted to the destination while
balancing the network load. A failover rule is essentially a
match-action forwarding rule which not only matches certain
header fields of the arriving packet (e.g., the IP destination
address), but which can also be conditioned on the link failures
incident to a given node v ∈ V , thereby specifying for which
packets the rule is triggered; the action part then defines to
which link the packet needs to be forwarded accordingly.
These rules are static, i.e., the routing table is not allowed to
be updated during the whole routing procedure. To asses the
performance of our protocols, we revisit the challenging (and
practically relevant [17], [18]) in-cast scenario where n − 1
sources inject one indefinite flow each to a single destination
d which is known to the adversary [15], [16], [19], [20]. In
our empirical analyses we additionally consider the so called
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gravity model [21], and evaluate adaptions of our algorithms in
the Clos fat-tree topology against state-of-the-art approaches.

B. The Deterministic Case Lower Bound

The authors of [15] showed that deterministic failover
algorithms are bound to result in a high load even in case
of an initially completely connected network which is still
highly connected after the failures [15]. The proof has been
generalized further by Pignolet et al. in [16]. More specifically,
the authors showed that: (1) when only relying on destination-
based failover rules (i.e., rules which can only match the IP
destination of a packet), an adversary can always induce a load
of Ω(ϕ) at some edge by cleverly failing ϕ edges; (2) when
failover rules can also depend on the source address, an edge
load of Ω(

√
ϕ) can be achieved, when failing ϕ many edges.

When considering the node load only, this bound can be
extended and accounts for further information that may be
used by the routing rules. Particularly, if we require that some
packet starting from node v takes the same path under the
same set of underlying edge failures (i.e., the packets’ paths are
oblivious and may not change depending on the other traffic
moving around the network), a node load of Ω(

√
ϕ) can be

generated by the adversary. Note that this extension allows
for including the hop counter inside the routing rule without
weakening the result of the lower bound.

C. Our Results

The main contribution of this paper are three randomized
fast rerouting algorithms which not only provide a high
resilience to multiple link failures but also an exponentially
lower load than any possible deterministic algorithm.

We present three failover strategies. Assuming up to ϕ =
O(n) edge failures, the first algorithm ensures that a load
of O(log n log log n) is not exceeded at most nodes, while
the remaining O(polylog n)1 nodes reach a load of at most
O(polylog n). As we consider randomized approaches, we
require the above statement to hold with high probability 2.
The second approach we present reduces the edge failure
resilience to O(n/ log n), however it is purely destination-
based and achieves a congestion of only O(log n log log n) at
any node w.h.p. Finally, by assuming that the nodes do have
access to polylog n bits of shared information, which are not
known to the adversary, the node load can be reduced even
further. That is, a maximum load of only O(

√
log n) occurs

at any node w.h.p. All three strategies ensure loop-freedom
w.h.p. [22] and avoid packet reorderings (i.e., all packets of
the same flow are forwarded along the same path).

While our focus lies on complete networks, which constitute
a major open problem in the literature today, we show how
our first two protocols may be adapted to the widely used Clos
datacenter topology [23], [24]. More precisely, we consider the
Clos topology with 3 layers sometimes also simply referred
to as fat-tree topology. Besides datacenters, such fat-tree

1By polylogn, we denote the family of functions in n which lie in
O(logp n) for any constant p > 0.

2We use the well established notion of with high probability, or w.h.p. , to
denote probability of at least 1− n−Ω(1).

topologies are also employed in some HPC systems, e.g. in
the tier-0 supercomputer SuperMUC-NG3. We then report on
empirical insights obtained through simulations and compare
our approaches to other state-of-the-art failover protocols [19],
[25]. The extension of our protocols to general topologies
remains an open problem. However, this may be possible
with the help of network decompositions based on spanning
arborescences: it is known that any k-connected graph can be
spanned by k arc-disjoint arborescences [26] (such a decompo-
sition can be computed efficiently [27]), which enables a loop-
free resilient routing [28]. The idea is then to use our approach
to balance flows across arborescences. Finally, note that our
third protocol is mostly of theoretical interest: extending it to
general topologies would require to compute a set of Hamilton
cycles for each such topology, which is NP-complete [29].

D. Further Related Work

Link failures are the most common failures in communica-
tion networks [30]–[32] and it is well-known that ensuring
connectivity via the control plane can be slow [13], [33],
even if it is centralized [34] or based on link reversal [35],
[36]; it may also introduce undesirable transient behavior,
such as a high loop ratio [22]. Data plane based failover
mechanisms which do not require table reconfigurations can
be orders of magnitudes faster [13] but are algorithmically
challenging as routing tables need to be precomputed without
knowledge of failures. For a general overview on failover
mechanisms in the data plane, we refer to the recent survey by
Chiesa et al. [37], referencing over two hundred papers on the
topic, several of them published at IEEE/ACM Transactions
on Networking [16], [25], [38]–[48].

Except for one model, we are interested in fast failover
mechanisms in the data plane which do not require the
modification of packet headers: while the modification of
packet headers can simplify ensuring connectivity (e.g., by
carrying failure information in the header) [12], [49], packet
header rewriting typically comes with overheads and may
even be infeasible [13], [50], [51]. Furthermore, while several
interesting heuristics have been proposed in the literature [34],
we are concerned with mechanisms which come with formal
(probabilistic) performance guarantees. In particular, we are
interested in scenarios in which multiple links can fail simul-
taneously; that is, in addition to ensuring traditional properties
such as a perfect protection ratio [52] (i.e., ensuring resilience
against any single failure), we aim to preserve connectivity
and low load even under a large number of failures.

Prior work already derived several fundamental results on
the feasibility of preserving connectivity using deterministic
local fast failover mechanisms, in the presence of multiple
failures and on the routing level, in different settings. In
particular, Feigenbaum et al. [13] proved that it is not possible
to achieve a perfect (static) resilience in arbitrary networks
using deterministic local fast rerouting and without header
rewriting: it is impossible to define failover rules such that
connectivity is preserved on the routing level as long as the
network is physically connected. These results were recently

3https://doku.lrz.de/display/PUBLIC/SuperMUC-NG

https://doku.lrz.de/display/PUBLIC/SuperMUC-NG
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extended by Foerster et al., who derive more general negative
and positive results, also considering planar graphs in more
details [14]. In [25], Chiesa et al. conjecture [25], [53] that is
at least always possible to deterministically achieve what they
call ideal resilience: unlike perfect resilience which requires
connectivity on the routing level as long as the underlying
arbitrary network is connected, ideal resilience focuses on k-
(edge-)connected networks and requires connectivity on the
routing level as long as there are at most k − 1 link failures.
Today, it is still unknown whether this conjecture holds in
general, however, at least it has been proved true for several
special graph classes as well as for scenarios with at most k/2
failures [28]. Furthermore, Chiesa et al. [25], [53] showed that
ideal resilience can be achieved using randomized algorithms,
by routing along precomputed spanning arborescences and by
switching to a random alternative arborescence when encoun-
tering a failure [27].

The papers discussed above primarily focus on preserv-
ing connectivity, and much less is known about the design
of failover algorithms which also account for load. More
specifically, while there exist several results on deterministic
algorithms for the incast scenario considered in this paper [13],
[14], [19], [54], we are the first to study randomized algorithms
and we show that the resulting load can be significantly
better than the deterministic lower bound. Motivated by our
empirical results on the Clos fat-tree topology (cf. Section VI)
described in this paper, in a follow-up conference submission
we theoretically analyzed an adapted version of the Intervals
protocol from Section IV, see [55].
Bibliographic note. A preliminary version (without all techni-
cal details) was presented at IEEE ICNP 2019 [20].

II. MODEL

We model the communication network as a complete undi-
rected graph G = (V,E) where the nodes V represent the
switches or routers which need to be configured with static
forwarding rules (in this paper sometimes also simply called
routing rules) and where the links E can fail.

In particular, we consider three different models, i.e., types
of (match-action) rulesets, which are of increasing power
depending on the information on which the rules can depend
(the match part) and the information which they can change
in the packet header (the action part):
• Destination address: Rules can only match the desti-

nation address (e.g., the IP destination) of the packets.
Packets cannot be modified.

• Hop count: In addition to the destination address, rules
can match the hop count: how far the packets have
travelled so far.

• Hop count modification: One of our algorithms (Shared-
Permutations – see Section V) can additionally modify
the hop count to arbitrary O(log n) bit values. Note that
this rule is not needed for the first two algorithms we
develop.

In addition to header information, the matching part of each
above rule may also depend on the local link failures, the
link failures incident to the given node v, but not on other

d

u

v

Fig. 1. All-to-one routing in the complete graph K5. Each node sends one
flow towards destination d, each corresponding to one of the colored lines in
non-solid style. Because the link (u, d) is failed the flow of u needs to take
a detour. This causes the edge (v, d) to accumulate a load of 2.

remote failures which are not known at the configuration time.
While the first model is the standard model used by routers and
supported generally, the latter two models require software-
defined switches or routers, e.g., based on OpenFlow [3].

We consider an adversarial model and assume that the link
failures are chosen by an adversary. More specifically, we
assume that the failover rules are generated by a randomized
algorithm (or rely again on a hash function which matches
the hop count), and that the adversary is oblivious: it knows
the failover protocol including the used probability distribu-
tions, but not the generated random values nor the resulting
loads. (Later in this paper we briefly discuss even stronger
adversaries.)

In order to assess the performance of our protocols, we
consider the all-to-one traffic pattern, in which each node v ∈
V \{d} sends a single flow towards some common destination
d. For each node v, such a flow is defined as an indefinite
sequence of packets with source v and destination d. The goal
is to minimize the load of any link (or node) in the network,
which is defined as the number of flows crossing this link (or
node). In case such a flow hits a link multiple times the load
of this edge is increased by 1 for each such hit. An example
of the outcome of all-to-one routing in the K5 graph is given
in Fig. 1. While, w.h.p., our protocols avoid packets to visit a
node more than once, it may happen that some flows travel in
a (temporary) forwarding loops for a small amount of hops.
We ensure that packets of a flow are always forwarded along
the same path, hence avoiding packet reorderings.

III. BEATING DETERMINISTIC APPROACHES WITH THREE
PERMUTATIONS

This section presents our first failover algorithm. While it
is simple as forwarding is only based on the destination and
hopcount header fields, it ensures w.h.p. very low loads even
under a large number of link failures.

From the point of view of some fixed node v the first
protocol, we call it 3-Permutations, works as follows. For
destination d, the node v stores three permutations π(1)

v,d, π(2)
v,d

and π(3)
v,d of all nodes u ∈ V \ {d}. Each node chooses these

three permutations uniformly at random. Upon receiving a
packet p intended for d, the node v first tries to forward it
directly via the link (v, d). In case this link failed, v inspects
the current hop counter of p, denoted by h(p). Depending on
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Input: A packet with destination d and hop count h(p)
1: if (v, d) is intact then forward p to d and return
2: else set i to arg maxj∈{1,2,3}{h(p) ≥ (j−1)C1} and send
p to first directly reachable node in π(i)

v,d

3: h(p) = h(p) + 1

Fig. 2. 3-Permutations protocol. Point-of-view of some node v

h(p), the node v then chooses one of the three permutations
π

(i)
v,d and forwards the packet to the first reachable partner w

in this permutation. We call a node w reachable from v, if
the direct link (v, w) is not failed. The criteria for selecting
which permutation to use is simple. In case h(p) < C1 for
a value C1 = Θ(log n), permutation π

(1)
v,d is consulted. For

C1 ≤ h(p) < 2C1 the permutation π
(2)
v,d is used and in any

remaining case π(3)
v,d is utilized. In any case the packets hop

counter is increased by 1 before handing it to the next node.
A concise description is given in Fig. 2.

Our main contribution is related to the way how these
permutations are selected. Instead of opting for a deterministic
protocol, we assume that each node v chooses the permutations
π

(i)
v,d out of all possible permutations of nodes u ∈ V \ {d}

uniformly and at random. As the adversary is oblivious, these
permutations are not known to it and it needs to essentially
blindly select edges for manipulation. Note however that this
approach comes with a challenge. This random creation of
failover routes may introduce temporary cycles into the pack-
ets routing paths. However, most of the packets p reach the
destination d solely relaying on the failover entries given by
the first permutation, π(1)

v,d. And, only in case p ends up trapped
in a cycle, further permutations are used to allow it to escape
said cycle. We show that w.h.p., at most O(log2 n log log n)
load is accumulated at any node, even if the adversary is
allowed to destroy a linear amount of edges.

Theorem 1. Assume that the adversary fails at most α·n edges
where α < 1 is a non-negative constant4. Then, if all nodes
perform all-to-one routing to any destination d and follow the
3-Permutations protocol, a maximum of

O(log n · log log n)

flows passes at all but O(log2 n) nodes. Furthermore, all
remaining nodes, except for d, receive a load of at most
O(log2 n · log log n) and every packet travels O(log n) hops.
These statements hold w.h.p.

In order for the nodes to follow this protocol they require
the exact value of C1. This value upper-bounds the number
of hops needed by any packet to reach the destination d,
unless it is trapped in a cycle due to the permutation π

(1)
v,d.

We show in Lemma 7 that C1 can be bounded from above by
16 log(1/α) n. If α is not known to the nodes, then C1 can be
set to some value in ω(log n). This slightly changes the result
of Theorem 1 where up to O(log2 n) many nodes receive a
load of O(C1 · log n log log n).

4More specifically, α can be an arbitrary constant with 0 < α < (n−1)/n.
Note that this upper-bound quickly tends towards 1 for large n.

The reason why we employ exactly three permutations
per destination is as follows. Either a packet ends up in a
forwarding loop when forwarded via π

(1)
v,d or it will reach

the destination within C1 hops. The same is true for packets
being forwarded via π(2)

v,d and π(3)
v,d. For each such permutation,

the probability that the packet ends in a forwarding loop
is polylog n/n. Hence, only if the packet ends up in a
forwarding loop for all three permutations, it will not reach
the destination. The probability for this is polylog n/n3 as
the permutations are generated randomly. Because packets
following our protocol take a different path depending on
their destination and source node (roughly n2 possibilities),
we need to multiply this probability of a bad event by n2.
Hence, the probability that any packet does not reach its
desired destination is polylog /n, which is a low probability
event. When it comes to memory complexity, each node may
store 3 permutations of n nodes for every destination d. A
naive approach would therefore require routing tables of size
O(n2 log n) bits to be prepared for routing to any arbitrary
destination d. This can be overcome as follows. First, each
node v only computes 3 random permutations π(i)

v , i = 1, 2, 3

on all nodes. The permutation π(i)
v,d for each d ∈ V is simply

π
(i)
v , and thus we apply π

(i)
v to obtain our failover strategy

regardless of d. Note that if the edge (v, d) is not failed, then
any packet with target d that reaches v is sent directly from
v to d. If, however, (v, d) is failed, then such a packet is sent
to the first node w in π

(i)
v for which (v, w) is not failed.

Secondly, note that the nodes only consult their permutations
up until the first reachable node (see Line 2 of Fig. 2). Even
if all αn failed edges are incident to the same node v, then
at least one of the first 3 log(1/α) n nodes in each of the
permutations π

(i)
v,d is directly reachable from v w.h.p. This

follows from the fact that the adversary does not know the
random bits generated at some node. Therefore, nodes may
truncate the permutations, storing only the first 3 log(1/α) n
entries of each permutation. In the low probability event that
none of the first 3 log(1/α) n is directly reachable from v (due
to the failed edges), another 3 log(1/α) n nodes are selected
uniformly at random – without replacement. Employing these
improvements yields an improved total memory complexity of
O(log2 n/ log(1/α)) = O(log2 n) per node.

In the following, we consider some arbitrary but fixed node
d as destination. As we establish probabilistic guarantees of
at least 1− n−(1+Ω(1)) for the statements in Theorem 1 w.r.t.
this fixed node, applying the union bound then implies that
the results indeed hold for arbitrary destinations d w.h.p.

Regarding the tightness of our result, assume all α ·n failed
edges are so called destination edges, i.e., edges incident to
the destination. Then, the flow starting at the other end v of
such a (failed) edge is first sent to a node selected uniformly
at random from the set V \ {d}. The resulting distribution of
the load can be seen as the outcome of throwing αn balls into
n− 1 bins [56], and the maximum load immediately reaches
Ω(log n/ log log n) at some node w.h.p.
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A. Notation and Conventions

As we consider a fixed destination d we omit it from the
indices of our previously defined notation. Additionally, for
i ∈ {1, 2, 3} and some integer 1 ≤ j ≤ n − 1, we denote by
π

(i)
v (j) the j-th node in v’s i-th permutation.

Definition 1 (Inner/Destination Edges and Good/Bad Nodes).
We call each edge (v, d) with v ∈ V a destination edge as it
is incident to the destination d. All remaining edges are called
inner edges. Furthermore, we call a node v ∈ V \ {d} good
if the destination edge (v, d) is not failed. Otherwise, we call
v a bad node. By VG and VB we denote the sets of good and
bad nodes, respectively.

The intuition behind calling such a node good is that it may
directly forward packets to d when following the protocol in
Fig. 2. Additionally, we define F to be the set of failed edges
and further partition this set into F (in) and F (d). The former
contains all failed inner edges, the latter the failed destination
edges. We let ε and γ be constants such that |F (d)| ≤ ε · n
and |F (in)| ≤ γ · n, where ε+ γ ≤ α < 1.

If we state that we apply Chernoff bounds for a random vari-
able X , we mean the multiplicative variant P [X ≥ (1+δ)µ] ≤
exp (min{δ, δ2}µ/3), where µ = E[X] and δ > 0. For lower
tails we use P [X ≤ (1 − δ)µ] ≤ exp (δ2µ/2) for 0 < δ < 1
(see e.g. [57]). Similar, if we say we apply union bounds, we
mean Boole’s inequality [57]. For a set of probabilistic events,
this bound states that the probability of at least one event in
this set occurring is no greater than the sum of the probabilities
of the individual events. Besides w.h.p., we introduce the
following abbreviations: Instead of with probability, uniformly
at random and random variable, we use w.p., u.a.r. and r.v.,
respectively. We denote the binomial distribution with m trials
and success probability p by B(m, p). Finally, by log n we
denote log2 n.

B. Analysis

We first establish some structural properties that describe the
paths that the packets take according to our failover strategy.
For i ∈ {1, 2, 3}, we define the directed subgraphs G

′(i) =

(V \ {d}, E′(i)) with edge sets E
′(i) = {(v, π(i)

v (1)) | v ∈
VB}. Under assumption that F (in) = ∅, this graph depicts the
possible paths a packet traverses to either the good nodes VG or
to some possibly existing cycle. It is easy to see that any graph
G
′(i) hosts multiple trees, each rooted in some w ∈ VG as the

nodes in VG are the only ones with out-degree 0. The other
components in G

′(i) do not contain a node of VG. Instead,
they contain a cycle, in which each node on the cycle5 is the
root of a subtree (see component on the right of Fig. 3). The
first important result of our analysis is that the size of these
structures is at most O(log n · log log n) w.h.p.

In the next step, we account for the failures in F (in). Here
we use the fact the permutations are chosen completely at
random. We show that only O(log n) of all edges in the graphs
G
′(i) are failed, which reinforces the intuition that failing inner

5Such a cycle may consists of a single node v ∈ VB if E
′(i) contains the

edge (v, v). This happens in case of π(i)
v (1) = v.

Fig. 3. The structures contained in the subgraph G′. On the left, a tree rooted
in some v ∈ VG is presented. On the right, we have a cycle and each node
of the cycle is again the root root of a tree.

edges has little effect compared to the failure set F (d). This
approach allows us to construct the graphs G

′′(i), which now
account for inner edge failures and correctly depict the paths
that the packets traverse.

Finally, we put everything together and use the graphs G
′′(i)

to show the result of Theorem 1. At this point we also argue
that 3 permutations per node do indeed suffice for any packet
to be routed to d w.h.p.

a) Measuring Forests: As mentioned we start by analyz-
ing the graphs G

′(i). We first consider some fixed i ∈ {1, 2, 3}
and omit the superscript (i). That is, we consider the graph
G′ together with the edge set E′ = {(v, πv(1))|v ∈ VB} and
V ′ = V \ {d}. As already discussed, only the existence of
some cycles between nodes in VB prevents G′ from being a
forest. A rough perspective on G′ is given in Fig. 3.

We start by establishing some structural properties of the
graph G′.

Lemma 1. The graph G′ does not contain paths or cycles of
length larger than 4 log1/ε n w.p. 1 − n−3. Additionally, the
number of cycles in G′ is O(log n) w.p. 1− n−3.

Proof: Let v ∈ VB be an arbitrary node with (v, d) ∈
F (d) and consider the edges (u, πu(1)) of all (1− ε)n nodes
u ∈ VB . Starting at v we uncover the outgoing edges one
after the other and follow the resulting path until either a node
w ∈ VG is reached or a cycle is created. This way, a path of
at least i+ 1 distinct nodes is traversed w.p. at most

εn− 1

n− 1
· εn− 2

n− 1
· ... · εn− i

n− 1
< εi (1 + o(1)) < εi+1.

Here each quotient corresponds to the probability of con-
tinuing the path for one further step without hitting a node
u ∈ VB that we already visited. Therefore, our fixed node v
is at the beginning of a path of length at least 4 log1/ε n with
probability at most n−4.
To bound the probability that none of the nodes in VB are the
origin of such a long path we apply union bounds. As |VB |
such nodes exist, and each of these nodes has probability n−4

to form such a path, we conclude that this probability is at
most |VB | · n−4 < n · n−4 = n−3. Note that this also upper
bounds the length of the cycles, as one may see a cycle as a
path that is concluded with a previously visited node.

To determine the number of cycles contained in G′, consider
again some node v ∈ VB and the path that is created by the
process described above. Assuming that we are at the last node
before the path terminates, there are two possible outcomes:
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Selecting one of the w.h.p. at most 4 log1/ε n already visited
nodes and creating a cycle, or one of the (1 − ε)n nodes
v ∈ VG. Therefore, a cycle is created by v w.p. at most

4 log1/ε n

(1− ε)n+ 4 log1/ε n
.

Now we sequentialize this process for all v ∈ VB one after
the other. Clearly there exist dependencies as it is possible
that v ∈ VB is already contained in a path that was already
uncovered before. Similarly, the path starting in v might hit
the path of another node, which was uncovered earlier. Note
however that this only decreases the probability for v to create
a new cycle. Therefore w.p. p = O(log n/n) some fixed node
v ∈ VB creates a new cycle regardless of the other nodes.
Chernoff bounds immediately yield the desired result.

Consider again the graph G′ = (V ′, E′) with V ′ = V \{d}
and some fixed node w ∈ VG. Remember that such a node is
the root of a tree in G′, induced by the edges (v, πv(1)) for
v ∈ VB . Let now Li denote the set of nodes at level i of w’s
tree, where L0 = {w}. We now construct L1, L2, ... step by
step as follows. In the i-th step construct Li = {v | v ∈ (VB \⋃i−1
j=0 Lj) ∧ πv(1) ∈ Li−1}. One can see this as constructing

the tree w ∈ VG layer-by-layer, by adding nodes with outgoing
edges connected to nodes in the set Li in the i-th step. We
define the r.v. Xi = |Li| and when fixing w ∈ VG we call {Xi}
the layer sequence, or in short sequence, corresponding to v.
The step-wise construction described above directly yields the
following lemma.

Lemma 2. Fix some root node w ∈ VG in G′ together with
its layer sequence {Xi}. Then, it holds for level i that Xi ∼
B(m, p) with

m = |VB | −
i−1∑
j=1

Xj and p =
Xi

|V ′| −
∑i−2
j=0Xj

Proof: Let w ∈ VG and consider the process of uncover-
ing edges just as described in the paragraph before this lemma.
Clearly it holds that X1 ∼ B(|VB |, 1/V ′) as the partner
of every v ∈ VB is chosen u.a.r. due to the nature of the
permutations πv .

Assume now we are in the (i − 1)-th step and already
uncovered all edges between the sets L0, L1, ..., Li−2. To
construct Li−1 we need to consider edges (v, πv(1)), where
πv(1) ∈ Li−2 and v ∈ VB \

⋃i−2
j=0 Lj . At this point m :=

|VB |−X1−X2−...−Xi−1 nodes still have uncovered outgoing
edges. We know that these edges do not connect to nodes in
the sets L0, ..., Li−2. Now, as the edge partners are chosen
u.a.r the probability that such an edge connects to nodes in
Li−1 is exactly p := Xi−1/(|V ′| − X0 − X1 − ... − Xi−2).
Note that there exist no dependencies between the selections
of these m nodes. Hence, Xi follows B(m, p).

This means that we can describe the tree rooted in w ∈ VG
by a sequence of binomial distributions, whose expected value
depends on the previous layers. The following statement gives
us a bound on m · p w.h.p., showing that the set of nodes at
level i indeed decreases exponentially fast. The proof is given
in Appendix A and mostly relies on the statement of Lemma 2
in conjunction with Chernoff bound applications.

Lemma 3. Let w ∈ VG be a root node in G′ together with
its corresponding layer sequence {Xi}. Then, there exists a
constant 0 < β < 1 such that for i < log2 n it holds that
E[Xi+1] ≤ Xi ·ε(1+o(1)) ≤ Xi ·β. Additionally, there exists
a constant C > 0 such that, w.p. 1 − n−3 it holds for all
i ≤ log2 n that Xi < C log n.

According to Lemma 1 packets travel at most O(log n) hops
until reaching the destination. This implies the following.

Corollary 1. Consider any w ∈ VG with its corresponding
layer sequence {Xi} in G′. Then, for i > C ′ log n it holds
that Xi = 0 w.p. at least 1− n−3.

Clearly for some fixed node w ∈ VG with sequence {Xi},
our main interest lies in the value X =

∑
i≥0Xi. In the

following we say that Xi−1 < a increases into the interval
[a, b), iff Xi ∈ [a, b). Analogously we say Xi−1 ≥ b decreases
into the same interval iff Xi ∈ [a, b).

Lemma 4. Consider again a root w ∈ VG and the correspond-
ing layer sequence {Xi}. Then, for j < log(log n/ log log n)
and a constant β̂ with β < β̂ < 1 the following holds: at most
O(β̂−j) members of {Xi} increase into the interval[

C log n · β̂j , C log n · β̂j−1
)

w.p. at least 1 − n−3. Note that β and C are the constants
defined in Lemma 3.

Proof: In the following we consider the elements of
the sequence {Xi} one after the other, starting with X0. By
Lemma 2 and Lemma 3 we know that the i-th value Xi follows
a binomial distribution with mean less than Xi−1 · β. Using
Chernoff bounds together with the fact that β < 1 is a constant,
we obtain for any t ≥ 0

Pr[Xi ≥ t | Xi−1 ≤ t] ≤ exp(−Ω(t)). (1)

Note that for t = C log n · β̂j , (1) bounds the probability
that Xi−1 increases into [C log n · β̂j , C log n · β̂j−1). Now,
from Corollary 1 it follows that at most C ′ log n elements may
increase into the interval mentioned before. Therefore we can
majorize the total number of increases into the interval by
B(C ′ log n, exp(−c·t)), where c is the constant hidden in Ω(t)

in (1). Now, using the well-known upper bound
(
s
t

)
≤
(
e·s
t

)t
on the binomial coefficient (see e.g. Proposition B.2 of [58])
we get

Pr

[
B
(
C ′ log n, exp

(
−cC · log n · β̂j

))
=

5

cC
· β̂−j

]
<

(2)(
O(1) log n · β̂j

)O(β̂−j)
(

1

e

)5 logn

<
1

n3.4

for n large enough and j < log(log n/ log log n).
We are finally ready to state that no tree contained in G′

consists of more than O(log n · log log n) nodes.

Lemma 5. Let w ∈ VG be a root and {Xi} the corresponding
layer sequence. Then it holds w.p. at least 1 − polylog n/n3

that
∑
iXi < O(log n · log log n)
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Proof: We start by fixing some interval J := [C log n ·
β̂j , C log n · β̂j−1) for j < log(log n/ log log n) just as in
Lemma 4. In the following we consider the so-called cost
caused by this interval, i.e,

∑
{i: Xi∈J}Xi. Three possible

events may cause some Xi to contribute to this sum:
1) Xi−1 increased into the interval
2) Xi−1 decreased into the interval
3) Xi−1 ∈ J and Xi ∈ J

Now, the first point is addressed by Lemma 4. We know
that w.h.p. at most O(β̂−j) such values exist in total. As for
the second point, assume that this event occurred for some
Xi−1, i.e., assume Xi−1 decreased into J . Clearly, for Xi′−1

with i′ > i to decrease into J again, there must be a k ∈
i, . . . , i′ − 2 such that Xk increases into an interval with index
j′ > j. Using again Lemma 4 and applying the union bound
over all intervals with j < log(log n/ log log n) we know
that at most O

(
β̂−(j−1) + β̂−(j−2) + ...+ β̂−1

)
= O

(
β̂−j

)
such members exist.

The third point is the most interesting. Assume Xi−1 ∈
[C log n · β̂j , C log n · β̂j−1), and observe that if Xi ≤ β̂Xi−1

it follows that Xi 6∈ J . Now, according to Lemma 3 we know
that E[Xi] ≤ Xi−1β. Noting that β̂ > β we bound Pr[Xi ≥
Xi−1 · β̂]. Applying Chernoff bounds with δ = β̂/β − 1 =
Ω(1), we get

Pr[Xi ≥ Xi−1β̂] < exp(−Ω(Xi−1)) < exp
(
−Ω(log n · β̂j)

)
.

As the whole sequence {Xi} has length at most C ′ log n
according to Corollary 1, any of the above events can happen
at most C ′ log n times. A similar approach as in (2) therefore
immediately yields that at most O(β̂−j) many times Xi stays
in the interval J w.p. at least 1− n−3.

Summarizing, the cost caused by elements taking values in
J is at most O(β̂−j ·C log n · β̂j−1) = O(log n) w.p. 1−n−3.
When applying the union bound we obtain that the total cost
generated by all intervals with j ≤ log(log n/ log log n) is
O(log n · log log n). Note that for j > log(log n/ log log n) it
holds that C log n · β̂j−1 = O(log log n). Even if the whole
sequence {Xi} remains in these remaining intervals for all
C ′ log n steps, a cost of at most O(log n · log log n) can be
accumulated.

When applying the union bound, this gives us that no
tree with root w ∈ VG of G′ exceeds size O(log n ·
log log n) w.h.p. However, remember that another type of
component exists in G′, namely cycles that may have ad-
ditional nodes attached to them. Fix one of these compo-
nents and let C = {v1, ..., v|C|} be the set of nodes of
the cycle. Furthermore define Ai := {v | v ∈ (VB \
C)∧ a path from v to vi exists in G′} ∪ {vi}. Then, this set
induces a tree in G′ unless the loop (vi, vi) is contained in
E′ which implies |C| = 1. In any case, one may see the
component as being induced by the set

⋃
iAi as a forest

of trees, whose roots lie on the cycle C. To determine the
total size of the set

⋃|C|
i=1Ai, we look at the growth of them

layer-by-layer. However, this time we let all |C| of these trees
grow at the same time, again uncovering edges step-by-step.
That is, L0 = C and construct any set Li with Xi = |Li|
just as we did when considering the roots w ∈ VG, i.e.,

Li = {v | v ∈ (VB \
⋃i−1
j=0 Lj)∧πv(1) ∈ Li−1}. Observe that

for this fixed cycle we can describe the sequence {Xi} by the
number of nodes in VB \C being at distance i from the cycle.
When replacing the set VB by VB \C, the result of Lemma 2
also holds for this layer sequence. As Lemma 1 guarantees
that X0 < O(log n), the statement of Lemma 3 follows
accordingly and allows us to repeat the whole approach.

Corollary 2. The results of Lemma 3, Corollary 1, Lemma 4
and finally Lemma 5 also hold for the sequence {Xi} of nodes
in distance i to some fixed cycle in G′.

b) Accounting for Inner Edge Failures: So far we estab-
lished that none of the components in G′ is of size more than
O(log n · log log n) w.h.p. Remember however that we still
need to account for the failures in F (in). We start by showing
that only O(log n) of them lie on any path in G′, even if the
adversary fails Θ(n) inner edges.

Lemma 6. The number of nodes v ∈ V that have their first
failover edge (v, πv(1)) destroyed by the adversary is O(log n)
w.p. 1− n−3

Proof: Consider some fixed node v and assume that
the adversary destroyed fv < n − 1 inner edges connected
to v. Remember, the adversary cannot predict the permutation.
Therefore a failed edge lies at the beginning of πv w.p. at most
fv/(n− 1). Define r.v. Xv s.t. Xv = 1 iff (v, πv(1)) ∈ F (in),
and 0 otherwise. Clearly the random variable X =

∑
v∈V Xv

is what we are looking for where

E[X] =
∑

v∈V \{d}

Xv =
1

n− 1
·
∑

v∈V \{d}

fv ≤
2γn

n− 1
< 2.

In the third step, we use that
∑
v∈V \{d} fv = 2·|F (in)| < 2γn.

The factor 2 is introduced because the sum represents the num-
ber of incident failed edges, summed up over all nodes. This
way, each of the |F (in)| < γn failed inner edges is counted
twice. As all Xv ∈ {0, 1} are independent from each other,
we may apply Chernoff bounds to X . For δ = 9 lnn/E[X] <
δ2 this yields that Pr[X > E[X](1 + 9 ln /E[X])] ≤
exp(−3 lnn) = n−3. Hence Pr[X > 2 + 9 ln] ≤ n−3.

In the following we show how to transfer G
′(i) into G

′′(i)

for any i = 1, 2, 3. The basic idea is to remove edges
(v, π

(i)
v (1)) that lie in F (in) from G

′(i) and replace them
with edges (v, π

(i)
v (j)), where π

(i)
v (j) is the first reachable

neighbor in the permutation of v. This way, the graph G
′′(i)

represents the correct path of the packets with hop counter
(i − 1)C1 ≤ h(p) < iC1 when following our protocol. The
edge replacements throughout the construction of G

′′(i) causes
subtrees of size O(log n · log log n) to relocate (see Fig. 4).
This may cause some components in G

′′(i) to be extended by
these relocated subtrees, and also a new type of component
may be created. That is, the roots of relocated subtrees may
connect with nodes in other subtrees and cause the formation
of a cycle.

Formally, we can show the following claim. As in the
previous sections, we focus on a fixed i and will omit the
superscript (i). The idea behind the proof is that, according
Lemma 6, only O(log n) such subtrees are relocated. It is
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G′(i) G′′(i)

Fig. 4. For some node v the edge (v, π
(i)
v (1)) is failed (marked in red). In

G′′(i) this edge is replaced by (v, π
(j)
v ), causing the subtree rooted in v to

relocate.

unlikely that more that O(1) of these subtrees connect to the
same structure. Full proof is given in Appendix A.

Lemma 7. Consider the graph G′′. Then, none of the com-
ponents contained in G′′ has more than O(log n · log log n)
nodes. Furthermore, the number of contained cycles remains
in O(log n) with each not exceeding length O(log n). Addi-
tionally, any packet that is not trapped in some cycle takes at
most C1 = 16 log1/ε n steps to reach d. All above statements
hold w.p. 1−O(n−2)

c) From Forests to Load: To determine the total load
some node v receives we look at the graphs G

′′(i) one
after another. When starting the all-to-one routing, each node
initiates a flow and all of them follow paths according to the
single outgoing edges in G

′′(1). Now, most of the flows reach
the destination d after at most C1 many hops. However, some
might be trapped inside a cycle. In both cases consider the
cost T1(v) that occurred at any node v until this point. Upon
reaching a hop value of C1 the flows currently trapped in a
cycle start to traverse according to the permutation π(2)

v . If we
know where these cycle nodes are located in G

′′(2), we can
again track the flows’ paths and determine the loads caused by
the next C1 many hops, denoted T2(v). Finally, we repeat this
approach one more time in the same manner and obtain the
values T3(v). In the following we say that flows exit the system
G
′′(i) if their respective hop counter reaches iC1. Similarly

we say flows enter the system G
′′(i), if they reach hop value

(i− 1)C1 and G
′′(i) becomes relevant for their failover paths

for the first time. Finally, we argue that Ti(v) = 0 w.h.p. for
any v and i ≥ 4, which is why we originally only required
three permutations, and deduce that the total load v receives
is T (v) = T1(v) + T2(v) + T3(v).

We start with the following statement. The proof, given in
Appendix A, exploits the structure of G

′′(i), as each node has
out-degree either one or zero.

Lemma 8. Let i ≥ 1 and assume that every component in
G
′′(i) is entered by O(log n · log log n) total flows. Then, every

node v that is not contained in a cycle receives a load of at
most Ti(v) = O(log n · log log n). Nodes contained in a cycle
in G

′′(i) receive Ti(v) = O(log2 n · log log n) load until the
flows exit G

′′(i) w.p. 1−O(n−2)

Clearly, for i = 1 and G
′′(1) the assumption of above

lemma is satisfied. This is because Lemma 7 guarantees that all

structures are of size O(log n · log log n) and each node starts
sending one flow of packets. The next lemma deals with the
inductive step and i > 1. The proof relies on the fact that the
permutations π(i+1)

v , v ∈ V ′, were chosen independently from
any previous permutation π(j)

v , j < (i + 1). A detailed proof
is given in Appendix A.

Lemma 9. Assume that the assumption of Lemma 8 holds for
G
′′(i). Then, also in G

′′(i+1) no component is entered by more
than O(log n log log n) flows w.p. 1−O(n−2)

Above lemma concludes the inductive step, showing that
Lemma 8 is applicable to all i ≥ 1. We now state that it
is indeed enough to only look at the graphs G

′′(i) where
1 ≤ i ≤ 3 to determine the maximum load. The proof of
the statement is very similar to the proof of Lemma 1 and
given in Appendix A. We track a fixed packet that starts at
some node and argue that it is unlikely to be stuck in a cycle
in G

′′(1), G
′′(2) and G

′′(3).

Lemma 10. Fix an arbitrary packet p sent by a node v ∈ VB .
Then, p ends up in a cycle in G

′′(1), G
′′(2) and G

′′(3) w.p. at
most polylog n/n3. Additionally, it holds that Ti(v) = 0 for
all nodes v ∈ V \ {d} and i ≥ 4 w.p. 1− polylog /n2.

Note that this lemma also implies that O(log n) hops suffice
for any packet to reach the destination. We established in
Lemma 9 that the assumption in Lemma 8 is indeed fulfilled
for G

′′(1), G
′′(2) and G

′′(3). Hence, the total load any node
receives that is not contained in a cycle in either G

′′(2) or
G
′′(1) is O(log n · log log n). And those that lie on a cycle

have a load of O(log2 n · log log n), where according to
Lemma 7 at most O(log2 n) such nodes exist. Theorem 1
follows accordingly.

IV. CIRCUMVENTING CYCLES BY PARTITIONING

One of the major challenges of the 3-Permutations protocol
is to cope with temporary cycles, which may be introduced
when employing randomization into the failover strategy. For
packets with large hop counts, which indicate the existence
of a cycle, we effectively provided different failover routes.
In the following we present the Intervals routing protocol that
1) does not introduce any cycles in the packets routing paths
w.h.p. and 2) is purely destination based. This comes however
at the cost of smaller maximum resilience against failures.

The Intervals protocol works as follows. We assume that
every node is given a unique ID or address, which is known
to the other nodes. Therefore we can enumerate the nodes by
v1, v2, ..., vn. Let now α be some small constant 0 < α < 1.
We partition the nodes of the graph into consecutive sets of
size I = n/4 log1/α n. That means, the i-th set Ri contains
nodes with addresses in the range[

(i− 1) · n

4 log1/α n
+ 1 , i · n

4 log1/α n

]
.

Assume that the value α is chosen such that both, the interval
bounds and the number of intervals, are integers. The next
step is similar to Section III. Every node tries to directly
forward a packet to the desired destination d, if the direct link
is available. Otherwise, again a permutation πv,d of nodes is
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Input: A packet with destination d
1: if (v, d) is intact then forward p to d and return
2: Forward p to first directly reachable node in πv,d

Fig. 5. Intervals protocol. Point-of-view of some node v

consulted and the packet is sent to the first reachable partner
in πv,d. The crucial difference to the 3-Permutations protocol
is the following: for some node v that lies in the interval
Ri, the permutation πv,d is a permutation of the nodes in
R(i+1) \ {d}. Hence, only edges ranging from nodes in the
set Ri to nodes in Ri+1 are considered as possible failover
edges. To allow for a proper protocol, we assume that nodes
of the rightmost interval choose failover edges into R0. We
show in the upcoming analysis that this protocol does not
create any cycles in the routing paths w.h.p. The following
statement allows the adversary to fail up to O(n/ log n) many
edges. Note that this protocol is purely destination based
and therefore any deterministic scheme operating under this
constraint would allow Ω(n/ log n) load to be created by the
adversary [15].

Theorem 2. Assume the adversary is allowed to fail up to
α · I many edges, for some arbitrary constant 0 < α < 1
where I = n/(4 log1/α n). Then, when considering all-to-one
routing to any destination d, the Intervals protocol guarantees
a maximum of

O(log n · log log n)

load at any node except d and edge w.h.p. Additionally, no
packet performs more than O(log n) hops w.h.p.

For α = 1/e above statement provides the maximum
resilience of n/(4e loge n). Furthermore, assume the adversary
fails Ω(n/ log n) destination edges (v, d), with all such nodes
v being in the same interval Ri. Then, similar as in the
case of the 3-Permutation protocol, a balls-into-bins argument
[56] shows that after all nodes in Ri send their flows to
randomly chosen nodes in Ri+1, at least one node has load
Ω(log n/ log log n) w.h.p.

Concerning the notation we carry over everything defined
in Section III-A. Additionally we extend the notation for the
sets of failed edges as F (in)

i and F (d)
i . These sets only contain

failed edges started in the i-th interval and, in case of F (in)
i ,

have partners in the interval i + 1. Just as in the protocols
description we denote the set of nodes inside the i-th interval
as Ri where I = |Ri|.

We remark that the result of Theorem 2 also holds, if we
require that |F (in)

i | < ε · I and |F (d)
i | < γ · I for any interval

Ri, as long as ε+γ ≤ 1−∆ for some constant ∆ > 0. As the
sets F (in)

i and F (d)
i are specified for some fixed destination

d, we require this property for all possible destinations d.
Regarding the memory complexity, for a fixed destination

each node needs a permutation of O(n/ log n) nodes, hence
O(n) bits in total. As in case of the 3-Permutations protocol,
the set of permutations {πv,d | d ∈ V } some node v
requires can be derived from a single permutation πv , and
only the first 3 log1/α n entries of each permutation need to
be stored (see corresponding description on page 4). This

allows for a reduction of the total memory required per node
to O(log2 n/ log(1/α)).

A. Analysis

A main motivation behind Section IV is to eliminate the
need to perform any kind of cycle resolution. To that end
we start by showing that our protocol does not introduce any
cycles into the packets routing paths and at the same time
derive that the hop count of any packet remains in O(log n).

To show that the maximum load occurring lies in O(log n ·
log log n), we take a similar approach as in Section III-B. That
is, we fix some node v ∈ VG ∩Ri in some interval. Then, all
the sources of packets that are forwarded over the edge (v, d)
form a tree rooted in v. We again argue that, in expectation, the
number of nodes per level of this tree decreases exponentially
fast and reuse parts of Section III-B.

a) Cycles: Some packet located in Ri has only two
possibilities for its next hop. Either it is directly forwarded
to the destination, or it is forwarded to a node of the set
Ri+1. To end up in a cycle it needs to traverse a sequence
of 4 log1/α n intervals, hitting a node v ∈ VB with every hop.
This is unlikely and formalized as follows.

Lemma 11. Let p be an arbitrary packet to be routed to
destination d. Then, its routing path does not contain any
cycles and it reaches the destination within 4 · log1/α n + 1
hops w.p. at least 1− n−4.

Proof: Consider some packet p originating from some
node v ∈ VB in an arbitrary interval Ri. In the next hop, p
travels to some node v′ in Ri+1. If v′ ∈ VG the packet is then
forwarded directly to d. Now, |F (d)

i+1| bad nodes exist in Ri+1.
In the worst-case the adversary fails |F (in)

i | edges (v, w) with
w ∈ Ri+1 ∩ VG. Hence, the probability that v′ is a bad node
is at most

|F (d)
i+1|

I − |F (in)
i |

< α.

Here we used that |F (in)
i | + |F (d)

i+1| ≤ αI . Therefore, the
probability that p hits bad nodes in 4 · log1/α n consecutive
hops is at most 1/n4. The result immediately follows.

b) Carrying over Previous Results: In the following we
show that the result of Lemma 5 also holds when nodes follow
the Intervals protocol. That is, for some fixed node w ∈ VG we
construct a tree as follows. Assume w ∈ Ri and let L0 = {w}
denote the root of this tree. The j-th level of the tree associated
with v is defined by Lj = {v | (v ∈ Ri−j ∩ VB) ∧ (πv(k) ∈
Li−1)∧(∀` < k : (v, πv(`)) ∈ F (in))∧((v, πv(k)) 6∈ F (in))}.
That is, Lj is the set of nodes whose packets reach v in exactly
j hops (for easier readability we neglect the fact that wrap-
around might occur). Formally we show the following.

Lemma 12. Let w ∈ VG be arbitrary and assume that w ∈ Ri.
Furthermore let Xj = |Lj |, where Lj is the j-th level of the
tree associated with v. Then, it holds that E[Xj+1] ≤ Xj · α.

Proof: Let w ∈ VB ∩ Ri. Assume that due to the failed
edges by the adversary, Xj many nodes of the interval Ri−j
route packets over w to the destination. Consider now some
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node v ∈ Ri−(j+1) ∩ VB . According to the assumption of
Theorem 2 at most ε · I such nodes exist. Hence v hits one
of the Xj nodes w.p. smaller than Xj/(I −|F (in)

i−(j+1)|). Now,

since we have |F (d)
i−(j+1)| = |Ri−(j+1) ∩ VB |, we obtain that

E[Xj+1] ≤ |F (out)
i−(j+1)| ·

Xj

I − |F (in)
i−(j+1)|

≤ α ·Xj

With this we established a statement similar to the first
part of Lemma 3. It is easy to see that the size of each
level Xj can be modelled with a sum of independent Poisson
trials, when constructing the tree level-by-level. Furthermore,
Lemma 11 establishes the property of Corollary 1 and since
Lemma 12 guarantees that the levels shrink exponentially
fast in expectation, the statement Xi < C log n, C large
enough, follows by applying Chernoff bounds. That said, we
established all necessary requirements and a simple repetition
of the corresponding analysis allows us to reuse Lemma 4 and
Lemma 5. Summarizing, we get the following and conclude
the proof of Theorem 2.

Corollary 3. Let w ∈ VG be a good node and let {Xi} be
defined as in Lemma 12. Then it holds that

∑
iXi = O(log n ·

log log n) w.p. 1− polylog n/n3.

V. FURTHER REDUCING THE CONGESTION

In this section we present a third protocol, called Shared-
Permutations, that improves the bound of the maximum load
observed in Theorem 1 and Theorem 2 under the assumption
that the nodes share a common but randomized permutation
over V . This could for example be achieved by computing
parts of the routing tables starting from the same seed for the
random generator, which is unknown to the adversary. While
this assumption is indeed a weakness inherent to this protocol,
it can be offset in case the adversary does not compromise one
of the nodes directly: if all nodes manage to agree on a new
permutation from time to time, this may invalidate previously
obtained information by the adversary about the traffic flow.
We also assume that the packet headers are equipped with a
hop field of size O(log log n) bits, which is initially set to 0
and may be accessed by the nodes of the network.

The Shared-Permutations protocol works as follows. Again
we consider an arbitrary but fixed destination d. Every node
v ∈ V is equipped with permutations π0,d, π1,d, ..., πC1,d

of all nodes V \ {d}, where C1 is a value O(log n) to be
specified later. Now, contrary to the 3-Permutation protocol,
these permutations are assumed to be globally agreed upon
without being known to the adversary. Furthermore, each
permutation is chosen u.a.r out of the set of all possible per-
mutations. Additionally we assume that v stores C2 additional
permutations πv,j,d on V \ {d}, only known to v itself and
chosen u.a.r. Here j ∈ {E2, E2 + 1, . . . , E2 + C2 + 1} for
E2 = C1 + 1 and C2 is another value in O(log n).

Assume now that a packet p with destination d arrives at
node v ∈ V and denote its current hop counter by h(p).
First of all, if the link (v, d) is not failed the packet is
directly forwarded to the destination. Otherwise if h(p) < E2,

Input: A packet with destination d and hop count h(p)
1: if (v, d) is not failed then forward p to d, set h(p) ←
h(p) + 1 and return

2: if h(p) < E2 then v′ ← successor of v in πh(p),d

3: if (v, v′) is not failed then forward p to v′

4: else h(p)← E2.
5: if h(p) ≥ E2 then forward p to first directly reachable

node according to πv,h(p),d

6: h(p)← h(p) + 1

Fig. 6. Shared-Permutations protocol. Point-of-view of some node v

the node v forwards it via a link (v, v′) where v′ denotes
the node following v in the global permutation πh(p),d. In
case this link is failed, v raises the hop counter of p to E2

instead and forwards it to the first non-failed edge according
to πv,E2,d. The case we did not consider yet is h(p) ≥ E2.
In this case p is routed over the first reachable partner in
πv,h(p),d. Finally, in every case, h(p) is increased by one. A
pseudo-code describing this algorithm is given in Fig. 6. The
common global permutations allow the flow to be distributed
more evenly among the network, reducing the congestion to
O(
√

log n), even if Ω(n) edges are failed by the adversary.

Theorem 3. Assume that the adversary is allowed to fail α ·n
edges total, where α < 1 is a constant6. When performing all-
to-one routing to any destination d, the Shared-Permutations
protocol guarantees a maximum flow of

O(
√

log n)

on any node (except d) and edge w.h.p. Additionally, no packet
traverses more than O(log n) hops w.h.p.

Assuming it is possible for the nodes to agree on common
permutations that are not known to the adversary, the max-
imum load can be decreased by more than a factor

√
log n

compared to the protocols in Sections III and IV. Note that
this result breaks the Ω(log n/ log log n) lower bound of the
3-Permutations and Intervals protocols.

Regarding space complexity, our nodes are required to store
O(log n) permutations of n nodes per destination. Therefore
in the most simple case we require O(n2 · log2 n) bits at most.
However, the same improvements as described in Sections III
and IV can be made to store the permutations more efficiently
and achieve a memory complexity of O(log3 n/ log(1/α))
bits per node. Note that the protocol requires knowledge of
the values C1 and C2, which can both be set to 5 log1/α n.
These values are given in Lemma 14 and Lemma 17, together
bounding the maximum number of hops any packet performs
until it reaches the destination d w.h.p. If α is not known
to the nodes, then a slow growing function in ω(log n) can
be used for C1 and C2, which comes at the cost of slightly
increased memory complexity.

6Just as in our first algorithm, α can be any constant that lies in the range
0 < α < (n− 1)/n ≈ 1.
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A. Analysis

Throughout the analysis we consider a fixed destination
d and omit the corresponding index from all permutations.
We use the notation defined in Section III-A and start by
neglecting any failed edges in the set F (in). Next, we assume
that each node sends 1 packet with destination d from each
node v ∈ V . We consider the number of packets that have
i hops while still not having reached the destination d and
see that this set decreases exponentially fast. Additionally
no packet traverses more than C1 < E2 many hops w.p. at
least 1 − n−2. Therefore, without any inner edge failures,
the only relevant permutations for our failover strategy are
π0, ..., πE2−1.

Finally we account for the failures in F (in) and make use of
the permutations πv,j . We consider the maximum load caused
by the flows after reaching hop value E2 separately and deduce
that this value is O(

√
log n) w.h.p.

a) Staying in Line: We start by neglecting the failures
in F (in), i.e we assume first that |F (in)| = 0 and |F (d)| <
ε · n. Furthermore, assume that every node v ∈ V \ {d} starts
sending a single packet to destination d. Then, the number
of packets that pass through some node v is equivalent to
the number of flows passing through v. Notice, that due to
the global permutations, no node is visited by more than 1
packet with the same hop value. Consider the set of packets
hop-for-hop and denote Hi as the set of packets that reached
hop i at some point without reaching the destination. Clearly
|H0| = (n− 1), |H1| = |VB | and we can show the following.

Lemma 13. Assume |F (in)| = 0. Let Hi denote the set of
packets have not reached d after i hops. Then, for |Hi| =
Ω(log n) it holds w.p. at least 1−n−4 that |Hi+1| ≤ |Hi| ·

√
ε.

Proof: Fix some i < E2 and consider the set of packets
Hi. Let Si be the set of nodes hosting the packets Hi. Clearly
the nodes v ∈ Si hosting a packet (remember each node either
hosts one or 0 packets) are distributed uniformly across the
network. This results from the fact that |F (in)| = 0 and the
permutations are chosen u.a.r. from each other.

The question is now what is the size of Si ∩ VB , i.e. what
is the number of packets in Hi that can not directly leave the
network over a direct link to d with hop i+ 1. As the nodes
in Si are uniformly distributed over the network, consider the
following process to determine the number of bad nodes in Si.

Enumerate the packets in Hi as {p1, ...p|Hi|} and assign
to each pj some node vj ∈ V \ {d}, chosen u.a.r. without
replacement. We are only interested in counting the number
of nodes vj that then lie in VB . This can be modeled as an
urn process, where we draw |Hi| out of n−1 total balls, with
|VB | of these balls being black. Answering the question of
how many drawn balls are black yields |Si ∩ VB | = |Hi+1|.
We define the r.v. Yj to model the j-th draw, where Yj = 1
iff a black ball was drawn, and Yj = 0 otherwise. Hence, we
are interested in |Hi+1| = Y :=

∑|Hi|
j=1 Yj . Clearly the values

Yj are not independent. However, Y follows a hypergeometric
distribution, which according to [59] is subject to the negative
association property. As stated in Theorem 3.1 of [60] we
may apply Chernoff bounds and since E[Y ] < |Hi| · ε(1 +

o(1)), the result follows as long as |Hi| > c log n for a large
enough constant c. For the next hop a completely independent
permutation is used. Therefore, the set Si+1 is again uniformly
distributed allowing this approach to be repeated.

From the exponential shrinking in Lemma 13, it follows
that no packet takes more than O(log n) hops to reach d. In
Appendix B we show the following statement.

Lemma 14. Fix some packet p with destination d. Then,
assuming F (in) = 0, it requires at most C1 steps to reach the
destination w.p. at least 1−n−3. Here C1 is a value bounded
above by 5 log1/ε n.

Recall the following invariant: when fixing some node v
and hop value i, the node v receives at most 1 packet with
such hop value. This leads to following result.

Lemma 15. Consider some node v ∈ V and assume |F (in)| =
0. Then, if every node sends 1 packet with destination d, v is
visited by packets O(

√
log n) times w.p. at least 1− n−3.

Proof: Let i∗ be the first time such that Hi∗ reaches size
O(log n). We start by showing that throughout hops 1 ≤ i <
i∗ the node v is visited by at most O(

√
log n) packets in total.

For this range of i, we know according to Lemma 13 that the
size of Hi decreases exponentially fast, i.e |Hi+1| < |Hi| · β
for some constant 0 < β < 1 that depends on ε. Fix now
some node v and let Yi = 1 iff v receives a packet with hop
value i at some point, and 0 otherwise. Similar as in the proof
of Lemma 13, we argue that the packets with hop value i
are distributed uniformly – and independently of any earlier
hops – among the nodes of the network. Hence P [Yi = 1] =

Hi/(n− 1) and we are interested in Y =
∑i∗

i=1 Yi. Note that
P [Yi = 1] = Hi/n < ε · βi , where we wrote n instead of
n− 1 for ease of readability. Then

P [Y = k] =
∑

S⊆{1,...O(logn)}
with |S|=k

(∏
j∈S

P [Yj = 1]·

∏
`∈{1...O(logn)}\S

1− P [Y` = 1]
)
.

The second product can be crudely bounded above by 1. The
first product reaches its maximum value for S = {1, ..., k}
and is bounded by (εβ · εβ2 · ... · εβk). Therefore we get

P [Y = k] <

(
e · C log n

k

)k
εk · βk(k−1)/2.

Now assume k = C ′ ·
√

log n for some sufficiently large
constant C ′. In this case

P [Y = k] < O
(√

log n
)C′√logn

·
(

1

n

)5

.

Clearly the first term lies in o(n). When increasing k further,
the probability only gets smaller. Applying the union bound
over the remaining O(log n) − C ′

√
log n larger values of k,

we get P [Y ≥ C ′
√

log n] < n−3. Adding 1 for the packet
that was initialized on v yields the result.

Clearly this implies that both, the maximum node load and
the edge load are O(

√
log n) in the case of |F (in)| = 0.
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b) Accounting for Inner Edge Failures: We consider two
copies, S(out) and S of our initial graph in which the adversary
failed at most αn edges according to its strategy. In S(out)

we repair all failures F (in), which results in ignoring inner
edge failures just as described above. Again we consider the
equivalent point-of-view of each node sending a single packet
to d instead of a consecutive flow. The idea in the following is
to consider only S(out) and each time an inner-edge (u, v) is
chosen for communication that is failed in the original graph,
the packet is copied and placed with hop count E2 on u in
S. This way S contains packets with hop count of at least
E2. The packets in S(out) however continue as if the edge
was intact. Note that, by Lemma 14, S w.h.p. only consist
of packets that are redirected because of inner edge failures.
The idea behind the analysis is the following: Let S(out) run
until all packets reached the destination d and determine the
number of packets starting in S. We then let the system S run
and it is easy to see that we can majorize the load some node
v receives in the original process by adding up the loads of v
in S(out) and S respectively. This is because in S(out) we do
not remove packets but copy them to S instead.

In Lemma 15 we already established the load some node
v receives in S(out). We start by determining the number of
packets that are initialized in the system S.

Lemma 16. Consider the number of packets p that reach a
load of E2 at some point. Then, at most O(log n ·

√
n) of them

exist w.p. at least 1− 2 · n−3.

Proof: First, consider some randomly selected permuta-
tion π of the nodes V \{d}. Define Xi to be the r.v. indicating
whether the edge (π(i), π(i + 1)) ∈ F (in) and let fi denote
the number of failed inner edges at π(i), all for 1 ≤ i ≤ n−2.
One can see the construction of π as follows. First, π(1) is
chosen at random, then we sequentially sample nodes without
replacement to continue to the permutation and alongside
determine the value of the Xi. When following this approach
P [Xi = 1|X0, ..., Xi−1] ≤ min{fi/r(j), 1} =: pi, where
r(j) := (n − 1) − i denotes the number of remaining
nodes that may be sampled by π(i). Note that pi bounds
Xi independently of any Xj with j < i as we crudely
assume that all failed edges reach into nodes that are still
open for sampling, i.e. nodes that are not already in the set
{π(j)|1 ≤ j < i}. Let now Ik := (n/ logk n, n/ logk+1 n] and
L := log n/ log log n. Observe, for 0 ≤ k ≤ L − 1 it holds
that

∑
r(i)∈Ik pi ≤ min{logk+1 n, n/ logk n}. Then,

n−2∑
i=1

pi =

L−1∑
k=0

∑
r(i)∈Ik

pi ≤
(1/2)L−1∑
k=0

logk+1 n+

L−1∑
k=(1/2)L

n

logk n
.

Both these sums can be represented by a geometric series
of the form

√
n ·
∑
k=0 log−k n when shifting the indices

accordingly. It is easy too see that their value can be bounded
by 2
√
n(1 + o(1)) in total. If we now define the independent

Bernoulli trials X∗i with P [X∗i = 1] = pi, then for X∗ :=∑
iX
∗
i it holds that E[X∗] < 2

√
n(1 + o(1)). According to

Lemma 1.19 of [61] X =
∑
iXi is majorized by X∗, which

can be bounded using Chernoff bounds. The result follows by
applying the union bound and considering that according to

Lemma 14 only inner edge failures can lead to a hop count
of E2 w.p. (1− n−3).

As all packets in S have hop count at least E2, only the
local permutations πv,j are used as part of our failover strategy.
While this leads to nodes possibly receiving multiple packets
of the same hop value, the number of initial packets lies in
O(log n

√
n) only. We give a detailed proof to the following

statement in Appendix B.

Lemma 17. 1) Fix some arbitrary packet in S. Then, it
reaches the destination after at most C2 hops for C2 <
3 log1/α n w.p. at least 1−O(n−3).

2) Each node in S is reached by at most O(
√

log n) packets
in total and w.p. at least 1−O(n−3).

We established that in both systems, S(in) and S, each node
has a load of O(

√
log n). Theorem 3 follows accordingly.

VI. SIMULATIONS

To complement our theoretical analysis, we compare an
adapted version of our protocols against other state-of-the-art
local failover strategies [19], [25] in the widely deployed Clos
datacenter topology [23], [24]. More precisely, we consider
the special case of the Clos topology with 3 layers, sometimes
simply referred to as fat-tree. All source code used to derive
the results in this section can be found on GitHub [62].

For our experiments we considered 8 different protocols in
total, which can be described as follows.
Our own protocols: Abbreviated by ThreeP-D, and
Interval-D we consider variants of our 3-Permutations and
Intervals protocol from Sections III and IV, adapted to the
Clos topology. Additionally, we consider two further variants
of these protocols denoted by ThreeP-ID and Interval-ID.
The ending -ID indicates that for these protocols, we select
the permutations which are used for forwarding not only
depending on the destination of the packet but also the inport
from which the packet arrives. We employ these additional
variants of our protocol as the reference protocols require
support for destination and inport-based forwarding. A detailed
description of these protocols is given in Section VI-A.
Related Approaches: We consider the state-of-the art local
failover protocols DetCirc, PRNB, CASA and SquareOne [19].
Throughout our experiments, we refer to them as A-Det,
A-PRNB, A-CASA and Square1, respectively. The first two
protocols are slightly modified versions of the HDR-Log-K-
Bits and Bounced-Rand-Algo originally presented in [25], and
versions of all of these protocols have also been evaluated
using simulations in [19]. The first three protocols have in
common that they are so-called arborescence-based routing
protocols. To route a packet toward some destination d in a
topology which is `-connected, the protocols use a set of pre-
computed sub-trees {T0, T1, ..., T`−1} called arborescences.
Each such tree has d as its root, consists of all nodes in the
topology and does not share any directed edges with other trees
in the set. Packets then start on some arborescence Ti and are
routed along the edges in the tree until they hit the destination.
In case the packet arrives at a failed edge, another arborescence
Tj with j 6= i is selected along which the packet may continue
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its path towards d. This procedure is repeated until the packet
arrives at d. The aforementioned protocols differ in the way
this alternate arborescence Tj is selected in case a failed edge
is encountered. In A-Det, j is selected deterministically and
set to (i + 1) mod `. In A-PRNB, j is selected uniformly at
random out of {0, 1, ..., ` − 1} \ {i}. Finally, A-CASA uses
a sophisticated pre-computed matrix which is constructed
via so-called balanced incomplete block designs (BIBD) to
deterministically select j.

The Square1 protocol operates differently. In this protocol,
packets with destination d and source s are routed over one
of the ` shortest edge-disjoint paths from s to d. At first, the
packet attempts to follow the shortest such path to reach d.
However, in case a failed edge is encountered, the packet needs
to traverse back to s and follow the next-shortest path instead.
This is repeated until the destination d is reached.

A. Engineering Protocols for the Clos Topology

In this section we discuss the required adaptation of our
protocols to be employed in the Clos topology as well as the
computation of the arborescences and edge-disjoint shortest-
paths required by the related protocols. We start with a short
definition of the Clos topology, which is required to explain
the required modifications to our own protocols.

The Clos topology with 3 layers consists of k/2·k/2+k·k =
Θ(k2) nodes (or routers), each having at least k ports. These
nodes are partitioned into k/2 blocks and k pods, which we
assume to be numbered from 1 to k/2 and 1 to k, respectively.
Each block contains exactly k/2 many nodes, which we again
assume to be numbered from 1 to k/2. Each pod consists of
two sets of k/2 nodes each. The first set we call the top nodes
while the second set we call bottom nodes. Bidirectional links
are inserted such that in each pod, the top and bottom nodes
form a complete bipartite graph. Additionally, the i-th top node
in each pod is connected to all nodes in the i-th block and vice
versa. Endpoints using this communication infrastructure are
connected at the remaining k/2 open links at each bottom
node. Throughout our experiments, we focus on forwarding
flows which have bottom nodes as source and destination.
Adapting our Own Protocols: We start with an explanation of
the Interval-D protocol. Note that this adapted protocol has
been analyzed theoretically after we performed our first exper-
iments in a follow-up paper [55]. First we need to partition the
Clos topology into more fine-grained pieces. The top as well
as the bottom nodes are split into K := blog(k)c consecutive
partitions, deviating in size by at most ±1. Similarly, the k/2
block nodes in each block are also split into K many intervals.
Furthermore, consider nodes in the b-th block. Each such node
is connected to the b-th node in the top layer of every pod.
We also assume that, for each block, the set of such top nodes
is partitioned into K what we call vertical intervals. In the
remaining description, when we say that some node v forwards
a packet with destination d to a random node in an interval,
then we assume that the random selection follows the approach
described in Section IV. That is, the node v consults a random
permutation of all nodes in this interval (one such permutation
is precomputed for each destination d) and then forwards the

packet to the first node u in this permutation, such that the link
(v, u) is not failed. When following the Interval-D protocol,
the forwarding rules for a packet with destination d arriving at
a node v then depend on whether v is a block, top or bottom
node. First, assume that v is a bottom node in the p-th pod.
Then, if v = d nothing needs to be done. Otherwise, let j
denote the interval of v. In such case, v forwards the packet
to a random top node of pod p that also lies in the j-th interval.
Second, if v is a top node in some pod p (in more detail, let
v be the i-th top node in p). Then, if the destination also lies
in p, the node v attempts to forward the packet directly to
d. In case this link is failed, it instead forwards the packet
to a random bottom node of p in interval (j + 1) mod K.
This way, as soon as the packet lies on some node in the
pod of the destination, it will ping-pong between bottom and
top nodes until it reaches a top node whose link to d is not
failed. However, if v is not in the pod of the destination, then
it forwards the packet to a random node in the j-th interval of
the i-th block. In the latter case v is a node in some interval
j of a block (let it be the b-th block). Each node in block b is
connected to the b-th top node in the pod of the destination.
In case the link to this top node is not failed, v forwards the
packet over this link. Otherwise, v forwards the packet to a
random top node in the vertical interval (j + 1) mod K.

Following above description, the ThreeP-D protocol, which
can be seen as an adaptation of the 3-Permutation protocol,
is now easy to define. This definition is very similar to the
Interval-D protocol except for two differences: First, we set
K = 1, i.e., we don’t split the block, top, or bottom nodes
into further intervals. Second, we assume that each node v
does not only store one permutation but 6 permutations per
destination d. Depending on the hop count of the arriving
packet one of these permutations is selected. More precisely,
the i-th permutation with i ∈ {1, 2, ..., 5} is consulted for
packets with hop count [(i− 1) · blog kc , i · blog kc]. The 6-
th permutation is used for packets with any larger hop count.
The reason that we use 6 permutations instead of the 3 as
defined in Section III is that empirical results indicated that it
is beneficial to switch permutations frequently. This, however,
requires the employment of additional permutations to avoid
the creation of permanent forwarding loops.

Finally, the two additional variants called ThreeP-ID and
Interval-ID. They follow the exact same definition as their
protocols of similar name with only one exception. We now
assume that nodes store additional sets of these randomly
generated permutations: one per combination of possible des-
tination address and inport. In contrast to the basic ThreeP-D
and Interval-D protocols, which select the permutations used
for forwarding solely depending on the destination address, we
assume this selection to be performed randomly for each pair
of destination and inport.
Employing Related Approaches: While the related protocols
we consider are applicable to general graphs, they require
the pre-computation of sets of arborescences as well as edge-
disjoint shortest paths for every possible destination d. In order
to compute the set of arborescences required by the first group
of protocols, we employed the round-robin approach with
swaps presented in [54]. Even with this efficient approach,
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Fig. 7. Average maximum edge load and average amount of hops required
to reach the destination when performing all-to-one routing.

the calculation of these arborescences for a single destination
node d of the Clos topology with k = 80 required more
then 20 hours on the MACH-2 supercomputer (https://www3.
risc.jku.at/projects/mach2/). Some preliminary tests showed
that the computation time is roughly proportionate to k6,
which prevented us from using larger topologies in our tests.
Similarly, the edge-disjoint shortest paths required for the
Square1 protocol took more than 15 minutes to compute for
a single destination d. To avoid costly recomputation of these
structures for multiple destination nodes, we only computed
them once for some fixed destination d on the bottom layer. We
then applied an isomorphism to map these structures towards
the remaining possible destination nodes on the bottom layer.

B. Experiments

We conducted two different types of experiments, both in
the Clos topology with k = 80 (consisting of 8000 nodes).
Experiment 1: Performance under all-to-one model. In
the first experiment we examine the performance of the fast
rerouting protocols under the all-to-one traffic pattern. Results
are given in Fig. 1. Each simulation was started by first failing
a p fraction of random edges. We then select a random node
on the bottom layer and let each other bottom layer node send
one unit of flow towards this destination. After the routing
procedure is complete, we measure the maximum edge load
as well as the average amount of hops required by any flows
to reach the destination. To obtain the results for the plots in
Fig. 1 we perform these simulations for increasing values of p
(ranging from p = 0.0 to p = 0.2 in steps of 0.02), repeat the
simulation for each p value 40 times and report the average
of the resulting maximum edge load and hop values.

As we can see in the plot on the left-hand side of Fig. 8, all
protocols besides A-CASA accumulate similar loads in case no
edges are failed. We suspect that the worse behavior of A-CASA
stems from the fact that the Clos network we consider is 40-
connected. As explained in [19] this protocol works best when
this value is a prime power. In our setting, this led to multiple
arborescences being (almost) completely unused, which causes
the load to be distributed unevenly. It is also important to
note that the results for our Interval-D and Interval-ID
protocols are reported till p = 0.1. We do this because a

0.0 0.1 0.2

failed edges (p)

5000

10000

15000

20000

m
ax

im
um

ed
ge

lo
ad

0.0 0.1 0.2

failed edges (p)

4

5

6

7

av
er

ag
e

ho
ps

A-Det

A-PRNB

A-CASA

Square1

Interval-D

Interval-ID

ThreeP-D

ThreeP-ID

Fig. 8. Average maximum edge load and average amount of hops required
to reach the destination when performing gravity routing.

higher amount of edge failures causes forwarding loops to be
created or prevents the routing strategy from working (nodes
get disconnected from all nodes in the adjacent interval). We
emphasize that this is related to the small value of k = 80
we consider in these experiments, which leads to intervals
of size only 6 (see the description of the adaptation of our
protocol in Section VI-A). For values of k > 200 we could
not observe this behavior even when failing a p > 0.25
fraction of all edges. When increasing the amount of failed
edges in the system, only the randomized A-PRNB protocol is
able to compete with our ThreeP-ID protocol, which further
illustrates the strength of randomized approaches when dealing
with edge failures.

When looking at the right-hand side of Fig. 7 we can see
the average number of hops required for packets to reach the
destination. There we can observe three regimes. First, we have
the Square1 protocol which performs the worst. While it starts
from a near-optimal average hop count of roughly 4 (note that
almost all source nodes in our all-to-one routing approach are
4 hops away from the destination), it increases more rapidly
than the other approaches. This is an inherent weakness of this
protocol, as each time a packet with source s encounters an
edge failure on the way to d, it goes all the way back to s and
attempts another route. In the second regime, we can observe
all the aborescence based approaches. We think the reason
that these protocols perform worse than our protocol is the
following: assume that a packet traversing some arborescence
Ti encounters a failed edge while being at node v. It will now
continue from node v in another arborescence Tj . Now, it is
possible that the position of v in Ti is much closer to the
destination than in Tj and hence, this packet possibly needs
to traverse a long path inside Tj even though it was close to
the destination before switching to this tree. In contrast, our
protocols avoid sending packets on a long detour. If a packet
resides at distance x from the destination and cannot proceed
closer due to a failed edge, it is forwarded between nodes in
distance x and x + 1 until it is able to move to a node in
distance x− 1.
Experiment 2: Performance under gravity model. We next
consider the performance of the protocols under a gravity
model [21], describing the demands between any pair of two

https://www3.risc.jku.at/projects/mach2/
https://www3.risc.jku.at/projects/mach2/
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nodes on the bottom layer of the Clos topology. We set the
parameters of this model such that, in expectation, the demand
between each such pair of nodes is 1. Throughout the routing
process we then send a flow from each bottom node to every
other bottom node (all-to-all). This flow is assigned a weight
corresponding to the demand. For this experiment we also
generalize our notion of node and edge load: load is now
defined as the sum of all weights of flows that cross the node
or edge. Besides these changes, the steps for generating the
results of our second experiment are the same as in the first.

As we can see on the left-hand side of Fig. 8 our
ThreeP-D and ThreeP-ID protocols achieve lower maximum
load than all other approaches (including our Interval-D and
Interval-ID approaches). We suspect that this is because
in the ThreeP-D and ThreeP-ID protocols, packets are for-
warded according to random permutations that span over a
larger amount of nodes. In the Interval-D and Interval-ID
the selection of possible forwarding partners in any hop is
more constrained. This advantage is further emphasized on
in the ThreeP-ID protocol as in this protocol nodes are only
guaranteed to make the same forwarding decisions for flows
that arrive from the same inport and have the same destination.
This makes it less likely for multiple flows to follow the same
path. When it comes to the protocols of related work, we
suspect the higher load to stem from the selection of the set
of arborescences and also the selection of the set of shortest-
paths for Square1. There exists some discussion around the
efficient construction of a good set of aborescences for a fixed
destination [54]. However, it seems to be an open question
how to select such sets for multiple destinations with the goal
of optimizing load in many-to-many traffic patterns. We found
that these structures need to be sufficiently edge-disjoint from
those used for other destinations. Otherwise, load imbalances
occurred when performing gravity routing. In particular, we
encountered a “bad” set of arborescences, which lead to an
maximum node load of more than 200,000 in all arborescence-
based protocols even if no edge is failed. In contrast, a better
set of arborescences lead to a maximum node load of at most
40,000. For all of our experiments, we employed the best sets
of arborescences we could create in order to minimize the load
values w.r.t. all the approaches we considered.

On the right-hand side of Fig. 8 we can see the average
number of hops required by the flows to reach their destination.
From the point of view of any bottom node, the Clos topology
looks exactly the same. Because of this inherent symmetry, the
average hop values are very similar as in our all-to-one routing
experiments. The reasoning for the three regimes of average
hop values that can again be observed in this setting is the
same as in the all-to-one experiments.
Takeaway: We observe in our experiments that the ThreeP-ID
protocols guarantee, both, the lowest maximum load as well as
average hop count in both experiments. In case it is possible to
match the source address, destination address, input and hop
count in the packet header it is advisable to use this protocol.
In case a slim set of forwarding decisions is required it makes
sense to consider the Interval-D protocol. It still outperforms
all approaches of related work considering the average hop
count and only gets outperformed by A-PRNB when it comes

to ensuring limited load. However, if resilience against a large
amount of failures is required, then it is only advisable to
utilize this strategy in topologies of sufficiently large size.

VII. CONCLUSION AND FUTURE WORK

In our work we considered three different local failover
protocols. Starting with the 3-Permutations protocol, we
presented a protocol which guarantees a load of at most
O(log2 n log log n) w.h.p. even if α · n edges are failed for
some constant 0 < α < 1. Next, we presented the Inter-
vals protocol. While this protocol comes with slightly lower
theoretical resilience of O(n/ log n), it can also be used in
settings where the hop count in the packet header cannot be
matched. It achieves a maximum load of O(log n log log n)
w.h.p. Finally, we presented a third approach, the Shared-
Permutations protocol, which is mostly of theoretical interest.
In case the nodes have access to some shared permutation,
we show that the maximum load can be reduced to at most
O(
√

log n) w.h.p.
We also adapted two of the above approaches to the Clos

topology with 3 layers and performed emperical tests. These
tests indicate that our protocols ensure a low edge load in this
more practical setting as well. The ThreeP-ID variant of the 3-
Permutations protocol even outperforms all related approaches
when it comes to the maximum edge load. Additionally, all
our adapted protocols ensure that packets reach their desired
destination in less hops than in related approaches in case
multiple edge failures occur. It remains an open question
whether the above protocols can also be adopted to more
general topologies.

Throughout all our theoretical results we assumed an obliv-
ious adversary which selects the set of failed edges. However,
some of our algorithms can easily be extended to deal also with
more adaptive adversaries: to defeat adversaries who aim to
infer network-internal loads (e.g., leveraging physical access
or using tomographic techniques), we can simply regenerate
random permutations periodically. That is, the 3-Permutations
and Intervals algorithms have the attractive property that they
allow to regenerate such permutations quickly, locally, and
without coordination: each node can independently regenerate
random numbers over time to enhance security. Note, this also
allows our algorithms to recover if the low probability event
occurs, in which higher loads than the ones specified in our
theorems emerge.

There are also slight variations of our failure model which
we did not fully cover in our analysis. For example, the case of
a lower amount of edge failures. In our analysis, we assumed
that the adversary destroys up to either linear or O(n/ log n)
many edges. We believe that a lower amount of edge failures
affects the performance of the algorithms as follows. If n1−δ

edges are destroyed for some constant δ > 0 it can be shown
(by a slightly adapted repetition of the existing analysis) that
all three of our algorithms guarantee w.h.p. a maximum load
of O(1) on most of the nodes.

Finally, it may also make sense to analytically consider the
case of randomly selected edge failures instead of assuming
the existence of a malicious adversary. In the context of
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hardware failures or power outages, it might make sense to
model the set of failed edges as selected u.a.r. out of all
∼ n2/2 edges. If only a small amount of edges is failed in such
a way (i.e., O(n)), then all but O(log n) nodes may forward
their flows directly to the destination w.h.p. It can be shown
that all our algorithms then induce a congestion of O(1) w.h.p.
The question about a higher amount of edge failures and also
the expected resilience against failures of such type remains
an open question.

APPENDIX A

Proof of Lemma 3: We show by induction on i that with
probability pj > (1 − i · n−4) it holds for all j ≤ i that
Xj < C log n. Clearly w.p. 1 it holds that X0 = 1 < C log n.
Now, consider step (i+ 1) and observe that by Lemma 2

E[Xi+1|X0, ..., Xi < C log n]

< (|VB | − polylog n)
Xi

|V ′| − polylog n

< ε ·Xi ·
(

1 +
polylog n

n

)
, (3)

where we used the induction hypothesis and that i < log2 n
as well as |VB | ≤ εn. By Lemma 2, Xi+1 follows a
binomial distribution. Therefore we apply Chernoff bounds
with δ ≈ ε−2 − 1 (c.f Section III-A) and obtain that
P [Xi+1 ≥ C log n | X1, ..., Xi < C log n] < n−4 for large
enough constant C. Hence we established the desired property
w.p. pi+1 ≥ pi ·(1−n−4) > (1−(i+1)n−4) and conclude the
induction. Using that P [Xi+1 ≤ n] = 1, for i < log2 n we can
bound E[Xi+1] < E[Xi+1 | X0, ..., Xi < C log n]+n ·i ·n−4,
since P [Xi < n] = 1. This, together with (3), yields the first
statement of the lemma.

Proof of Lemma 7: According to Lemma 6 we know that
the failure of inner edges causes O(log n) nodes to redirect
their incoming packets via another path than given in G′. That
is, for some node v ∈ VB the outgoing edge (v, πv(1)) is
replaced by some (v, πv(j)) where πv(j) is the first non-failed
link in v’s permutation. Note that this corresponds to relocating
the whole subtree rooted in v over to πv(j). Such a subtree
will be called a relocated subtree in the following.

There are now two major points to be checked. First, two or
more of these relocated subtrees may connect to each other,
potentially causing a new cycle to be created. According to
Lemma 5 and Corollary 2 the size of these subtrees may
not exceed O(log n · log log n). As the adversary can fail at
most γn edges at v, a relocated subtree hits another relocated
subtree w.p. at most O(polylog n/n). Since only O(log n)
relocated trees exist, it is easy to see that each such subtree
is hit by at most O(1) other relocated subtrees, and at most a
chain of length 3 of subtrees may exist. Furthermore at most
O(1) cycles are formed this way, each consisting of a total of
O(1) relocated subtrees. All these statements hold w.h.p.

The second question is whether the subtrees docking onto
another component that already existed in G′ may increase
their size substantially. Now, the adversary may only fail γn
inner edges, hence the probability that a relocated subtree

hits some arbitrary but fixed component is O(polylog n/n)
as well. Again, using for example the PDF of the binomial
distribution, it is easy to see that no component is hit by more
than O(1) such relocated subtrees directly w.h.p. Since each
of these subtrees are of size O(log n · log log n), the size of
the components does not change asymptotically.

Finally, it follows from Corollary 1 and Corollary 2 that
no relocated subtree can be of height larger than C ′ log n. In
the worst case a structure of size C ′ log n is docked on by a
chain of 3 relocated subtrees. Hence, the paths of packets not
trapped in cycles is elongated to at most 4C ′ log n.

Proof of Lemma 8: We start with the proof of the
first statement. Per assumption each component is entered by
O(log n · log log n) flows in total. These flows travel through
the component until they either hit a cycle or some good node.
As every node in G

′′(i) has out-degree of either 0 or 1, each
flow can hit a node v that lies outside the cycle at most once.
Therefore, no such node receives more than O(log n log log n)
load in total.

For the second statement, consider a flow that starts at a
component which contains a cycle. As soon the flow reaches
the cycle, it causes the accumulation of one unit of load at
each node inside the cycle per turn. In the worst-case, the
cycle is of length O(1) and the flow accumulates O(log n)
load at any node on the cycle before it exits G

′′(i). Together
with the assumption of O(log n log log n) initial flows being
present, the result follows.

Proof of Lemma 9: According to Lemma 7,w.h.p., the
only way for flows to enter G

′′(i+1) is if they spun in a cycle in
G
′′(i). Denote now S as the set of cycle nodes. Then, the flows

enter G
′′(i+1) at the positions of these nodes S. According

to Lemma 7, |S| = O(log2 n), and we first consider where
the set of nodes S is located in G

′(i+1). As the permutations
are independent, the set S is distributed uniformly among the
nodes in G

′(i+1). When sequentializing the placement of the
set S, the probability to hit some fixed structure in G

′(i+1) is
O(polylog n/n) independently. As |S| = O(log2 n) it is easy
to see that at most O(1) nodes of S are located in the same
structure w.h.p.

Next, we account for inner edge failures and consider where
these S cycle nodes are located in G

′′(i+1). We already
established that the inner failures cause up to O(log n) subtrees
to be relocated among the structures in G′. In the proof of
Lemma 7 we argued that O(1) many subtrees relocate to the
same structure and only O(1) of them combine together to
a new type of structure that contains a cycle. Clearly, each
subtree contains only O(1) cycle nodes as well. Therefore,
also in G

′′(i+1) all components contain O(1) nodes of S. Note
that according to the assumption in Lemma 8, the structure of
any v ∈ S was entered by at most O(log n log log n) flows in
G
′′(i). Clearly, only a flow that entered at some point can exit.

Therefore each node v ∈ S serves as entry point for at most
O(log n · log log n) flows in G

′′(i+1).

Proof of Lemma 10: To show this statement we follow
the path a packet p takes starting from some fixed v ∈ VB .
Similar to the proof of Lemma 1 we look at the path starting
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at v and uncover the edges which are traversed by packet p in
G
′′(1). Along the lines of the proof of Lemma 1 we get that the

resulting path forms a cycle with w.p. at most 4 log1/α(n)/n.
If this event indeed occurs, the packet p will continue to
traverse this cycle until it reaches a hop count of C1. From
this point on, the π(2)

v is consulted to forward the packet p.
By construction of the graph G

′′(2) it follows that we can now
use this graph to describes pack the packet p takes in the next
C1 hops. A repetition of above argument again yields that p is
forwarded in a cycle in G

′′(2) w.p. at most polylog n/n. The
same argument can be applied a third time w.r.t G

′′(3) in case
p is also trapped in a cycle in G

′′(2). Because C1 is chosen
such that the packet p reaches destination d unless it is stuck
in such a forwarding loop (see Lemma 7), it follows that p will
reach the destination unless it is stuck in forwarding loops in
G
′′(1), G

′′(2) and G
′′(3). As each of these graphs is induced by

independent and randomly generated permutations, it follows
that the probability for this event is at most O(polylog n/n3).

APPENDIX B

Proof of Lemma 14: The exponential shrinking in
Lemma 13 implies that at most R := O(log n) packets remain
after 2 log1/ε n = O(log n) steps w.h.p. Assume that at this
point we are still using global permutations as part of our
failover strategy. Similar as in the proof of Lemma 13 this set
S of nodes hosting these R packets is uniformly distributed
among the graph. Now, fixing some packet p ∈ R we
determine the the probability that it resides on a node v ∈ VB .
Again, there exist dependencies between the packets as each
node v ∈ VB can host at most 1 packet. At this point however
only O(log n) packets {p1, ..., pO(logn)} remain. Therefore
any packet pi resides on a node v ∈ VB w.p. at most

|F (d)|
n− 1−O(log n)

< ε (1 + o(1))

independently. Hence, the packet p ∈ R reaches the destination
after 3 log1/ε n further steps w.p. 1− n−3.

Proof of Lemma 17: In Lemma 16 we established that
at most O(log n ·

√
n) packets start in the system S. All of

these start with hop count E2. According to Lemma 15 at most
O(
√

log n) packets are initiated by the same node v ∈ S(out).
In the following we call a set of packets being at the same
node with the same hop counter a (packet-)bundle. We can
crudely assume that O(log n ·

√
n) packet bundles of size less

than O(
√

log n) are distributed among the nodes of S initially
and thereby upper bound the accruing load. Each time, the
next hop of a packet p is at a node v ∈ VB w.p. at most
|F (d)|/((n − 1) − |F (in)|) < α(1 + o(1)). Hence, no packet
performs more than 3 log1/α n hops as on each hop a new
independent permutation is used.

Next we analyze our process hop-by-hop, starting with
hop count E2. When sequentializing the target selection
of the bundles, each bundle hits at least one other bundle
w.p. O(log n/

√
n) independently. Using the PDF of the bi-

nomial distribution it is easy to see that w.p. 1− O(n−3) no
more than O(1) bundles combine with each other throughout

the same hop. Similarly one may see that in O(log n) hops no
fixed bundle merges more than O(1) times.

Finally fix a node v ∈ V and consider some hop i ≥ E2.
Now, v is hit on the i-th hop by some fixed bundle w.p. less
than 1/((n−1)−|F (in)|) = O(1/n). As at most O(log n

√
n)

bundles exist in the system, it follows that at most O(1)
bundles hit v in the same hop. Also, the probability that v
is hit at least by one bundle in hop i is smaller than

1−
(

1−O
(

1

n

))O(logn
√
n)

< O

(
log n√
n

)
.

Independent from any previous hops, v receives no packets
w.p. 1 − O(log n/

√
n), and O(1) load w.p. 1 − O(n−3).

Therefore, the total load v receives may be majorized by
O(1) ·B(3 log1/α n,O(log n/

√
n)) with expected value o(1).

Looking again at the PDF yields that this load lies in O(1)
w.p. 1−O(n−3), and applying the union bound we obtain that
no node receives more than O(1) bundles in total.

Putting everything together we have that 1) no bundle
combines enough times to exceed size of O(

√
log n), and 2) no

node is visited by more than O(1) bundles in total.
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tichi, and M. Wójcik, “Re-architecting datacenter networks and stacks
for low latency and high performance,” in Proc. of ACM SIGCOMM,
2017, pp. 29–42.

[19] K.-T. Foerster, Y.-A. Pignolet, S. Schmid, and G. Tredan, “Casa: Conges-
tion and stretch aware static fast rerouting,” in Proc. IEEE INFOCOM,
2019.

[20] G. Bankhamer, R. Elsaesser, and S. Schmid, “Local fast rerouting
with low congestion: A randomized approach,” in Proc. 27th IEEE
International Conference on Network Protocols (ICNP), 2020.

[21] M. Roughan, “Simplifying the synthesis of internet traffic matrices,”
ACM SIGCOMM CCR, vol. 35, no. 5, p. 93–96, 2005.

[22] F. Clad, “Disruption-free routing convergence: computing minimal link-
state update sequences,” Ph.D. dissertation, Strasbourg, 2014.

[23] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” ACM SIGCOMM CCR, vol. 38, no. 4, pp.
63–74, 2008.

[24] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon,
S. Boving, G. Desai, B. Felderman, P. Germano et al., “Jupiter rising: A
decade of clos topologies and centralized control in google’s datacenter
network,” ACM SIGCOMM CCR, vol. 45, no. 4, pp. 183–197, 2015.

[25] M. Chiesa, I. Nikolaevskiy, S. Mitrovic, A. V. Gurtov, A. Madry,
M. Schapira, and S. Shenker, “On the resiliency of static forwarding
tables,” IEEE/ACM Trans. Netw. (TON), vol. 25, pp. 1133–1146, 2017.

[26] J. Edmonds, “Edge-disjoint branchings,” Combinatorial algorithms,
vol. 9, no. 91-96, p. 2, 1973.

[27] A. Bhalgat, R. Hariharan, T. Kavitha, and D. Panigrahi, “Fast edge split-
ting and Edmonds’ arborescence construction for unweighted graphs,”
in Proc. SODA, 2008.

[28] M. Chiesa, A. Gurtov, A. Madry, S. Mitrovic, I. Nikolaevkiy, A. Panda,
M. Schapira, and S. Shenker, “Exploring the limits of static failover
routing,” 2014. [Online]. Available: http://arxiv.org/abs/1409.0034

[29] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman, 1979.

[30] M. Chiesa, A. Kamisinski, J. Rak, G. Retvari, and S. Schmid, “A
survey of fast-recovery mechanisms in packet-switched networks,” IEEE
Communications Surveys and Tutorials (COMST), 2021.

[31] G. Iannaccone, C.-n. Chuah, R. Mortier, S. Bhattacharyya, and C. Diot,
“Analysis of link failures in an IP backbone,” in Proc. ACM SIGCOMM
Workshop on Internet Measurment, 2002.
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