
ar
X

iv
:1

90
8.

09
06

8v
1

 [
cs

.N
I]

 2
4

A
ug

 2
01

9

A Precise and Expressive Lattice-theoretical
Framework for Efficient Network Verification

Alex Horn∗

Apple

Ali Kheradmand∗

University of Illinois at Urbana-Champaign

Mukul R. Prasad

Fujitsu Laboratories of America

Abstract—Network verification promises to detect errors, such
as black holes and forwarding loops, by logically analyzing the
control or data plane. To do so efficiently, the state-of-the-art (e.g.,
Veriflow) partitions packet headers with identical forwarding
behavior into the same packet equivalence class (PEC).

Recently, Yang and Lam showed how to construct the minimal
set of PECs, called atomic predicates. Their construction uses
Binary Decision Diagrams (BDDs). However, BDDs have been
shown to incur significant overhead per packet header bit,
performing poorly when analyzing large-scale data centers. The
overhead of atomic predicates prompted ddNF to devise a
specialized data structure of Ternary Bit Vectors (TBV) instead.

However, TBVs are strictly less expressive than BDDs. More-
over, unlike atomic predicates, ddNF’s set of PECs is not minimal.
We show that ddNF’s non-minimality is due to empty PECs. In
addition, empty PECs are shown to trigger wrong analysis results.
This reveals an inherent tension between precision, expressiveness
and performance in formal network verification.

Our paper resolves this tension through a new lattice-
theoretical PEC-construction algorithm, #PEC, that advances the
field as follows: (i) #PEC can encode more kinds of forwarding
rules (e.g., ip-tables) than ddNF and Veriflow, (ii) #PEC verifies
a wider class of errors (e.g., shadowed rules) than ddNF, and (iii)
on a broad range of real-world datasets, #PEC is 10× faster than
atomic predicates. By achieving precision, expressiveness and
performance, this paper answers a longstanding quest that has
spanned three generations of formal network analysis techniques.

I. INTRODUCTION

In complex networks, misconfigurations continue to be

common [1], [2], causing costly unscheduled outages or

compromising security [3]–[5]. This has generated significant

interest in formally analyzing network behavior on the control

(e.g., [6]–[9]) or data plane (e.g., [10]–[15]), a class of formal

methods collectively known as network verification. In this

paper, we provide a new algorithm and data structure that can

serve as a foundation for both forms of network verification.
What make network verification interesting is its predictive

power: it promises to find network-related errors that tradi-

tional diagnostic tools, such as ping and traceroute, in general

cannot. To accomplish this feat, network verification creates

a mathematical model of the network to logically analyze

the packet forwarding behavior of packets, rather than merely

observing network traffic. This is an inherently difficult task:

even reachability checking in the data plane is NP-hard [10].

Much research therefore has gone into making formal network

analysis as efficient as possible.

∗ This work was completed at Fujitsu Laboratories of America.

First-generation formal network analysis tools (e.g., [10],

[16]–[24]) rely on SAT/SMT solvers, highly optimized back-

tracking decision procedures for solving propositional or first-

order logic problems. However, SAT/SMT solvers are too

slow to enumerate all witnesses of each network property

violation [25], and SAT/SMT solvers tend to perform poorly

on reachability queries over many distinct network paths [15].

This bottleneck prompted second-generation formal net-

work analysis techniques to use a geometric model for packet

classification instead, notably in the form of Header Space

Analysis (HSA) [11], [12], [26]. At its core, HSA repre-

sents packet headers as the difference of cubes in a multi-

dimensional hyperspace. While compact, a significant draw-

back of HSA’s difference of hypercube representation is that

it is computationally expensive to evaluate in general. This

explains why HSA uses a lazy evaluation strategy, which still

has performance problems (akin to lazy functional languages).

By contrast, third-generation formal network analysis tools

avoid the problems of lazy evaluation by pre-computing a

family of disjoint sets of packet headers. We call these packet

equivalence classes (PECs). Intuitively, each PEC contains

packet headers that experience the same forwarding behavior

through the network at each router—a form of lossless com-

pression that has been shown to make formal network analysis

more efficient in both time and space [27].1

Formal network analysis tools based on PECs include Veri-

flow [30], APV [27], ddNF [28] and Delta-net [14], all of

which detect a myriad of network errors—such as black holes,

forwarding loops, reachability and isolation violations—and

PECs help to do so in a vendor-agnostic manner. In this paper,

we focus on Veriflow [30], APV [27] and ddNF [28]. These

tools can encode match conditions with possibly many packet

header fields, so-called multi-dimensional match conditions.

However, reasoning about multi-dimensional match condi-

tions in a priority-ordered list (such as a forwarding table) is

challenging, because a higher-priority rule x may overlap with

a lower-priority rule y. Such overlapping amounts to logical

negation (i.e., y∧¬x), because x needs to be subtracted from

y. The crux of the problem is that logical negations can lead

to an exponential number of case splits. Consider some packet

header filter that uses the match condition 1∗1∗0, an instance

of a Ternary Bit Vector (TBV) where ‘∗’ matches either ‘1’ or

1While, in the worst case, the number of generated PECs is exponential
in the number of match conditions, in practice there are only relatively few
PECs [27], [28]. In fact, in restricted, but not uncommon cases, the number
of PECs is even linear in the number of match conditions [14], [29].978-1-7281-2700-2/19/$31.00 2019 c© IEEE

http://arxiv.org/abs/1908.09068v1

‘0’. The number of case splits due to TBV-negation, such as

¬(1∗1∗0), is generally exponential in the length of the TBV.

Binary Decision Diagrams (BDDs) [31], [32] can efficiently

represent such case splits, and APV [27] uses BDDs to

compactly represent the space of packet headers, including

their negation. By constructing BDDs, APV produces also

canonical and optimal PECs, called atomic predicates, which

form the unique and smallest partition of packet headers [27].

But there is a catch: BDDs incur significant overhead per

bit in each packet header field, a performance bottleneck in

real-world network analysis [28]. This prompted ddNF to not

use BDDs. Instead, ddNF constructs PECs by only intersecting

TBVs. The intersection of TBVs is very efficient due to their

compact representation in memory, and experiments using

Azure data center snapshots confirm that ddNF is significantly

more efficient than APV, a remarkable achievement.

However, both ddNF’s TBVs as well as Veriflow’s multi-

dimensional trie data structure have inherent limitations

(§ II-B): they cannot efficiently represent match conditions

over arbitrary sets and ranges of ports, and their complements.

Consequently, ddNF and Veriflow cannot analyze common

firewall rules in practice (§ IV), such as iptables rule-sets [33].

Furthermore, ddNF and Veriflow’s PECs are not minimal

(§ II-C). In the case of ddNF, we show that this non-minimality

can lead to wrong analysis results, e.g., ddNF is unsuitable for

detecting shadowed rules. We catalog over forty cases of such

imprecision (§ IV-C). This motivates the following question:

Can the construction of precise and expressive

packet equivalences classes be also efficient?

Our paper answers this question in the affirmative through

a new lattice-theoretical PEC-construction algorithm (§ III),

#PEC, that combines the precision and expressiveness of

atomic predicates with the scalability of ddNF. #PEC is more

expressive than Veriflow and ddNF, because its encoding is

not tied to TBVs. As a result, for instance, #PEC can check

match conditions with arbitrary ranges, e.g., iptables rule-sets.

Moreover, #PEC can detect errors, such as shadowed rules,

that ddNF cannot in general, since its analysis is imprecise.

We show that ddNF’s imprecision is due to PECs that are

empty. We detect such empty PECs—a coNP-hard problem—

by efficiently counting the packet headers in each PEC. This

way #PEC achieves full precision, and it does so 10− 100×
faster than SAT/SMT and BDD-based solutions that encode

the PEC-emptiness problem into propositional logic. More-

over, by detecting empty PECs, #PEC constructs PECs that

are unique and minimal (§ III-F), achieving the optimality of

atomic predicates, but at least 10× faster than APV (§ IV).

To avoid the aforementioned limitations of TBVs and multi-

dimensional trie data structures, we organize packet headers

in a meet-semilattice [34] (§ III-B). Through this lattice-

theoretical framework, #PEC can formally analyze a strictly

broader class of forwarding filters than ddNF and Veriflow.

By achieving precision, expressiveness and performance, we

answer a longstanding quest that has spanned three generations

of formal network analysis techniques.

SOURCE DESTINATION PROTO ACTION

1 0.0.0.4/30 0.0.0.0/28 !UDP DROP

2 0.0.0.0/29 0.0.0.12/30 UDP DROP

3 0.0.0.4/30 0.0.0.12/30 ANY FORWARD

Fig. 1: Forwarding table (using priorities) with 3-dimensional

match conditions that neither Veriflow nor ddNF can analyze

II. BACKGROUND AND MOTIVATION

We start by giving background on formal network analysis

(§ II-A), illustrating why achieving expressiveness (§ II-B) and

precision (§ II-C) at the same time is challenging.

A. Background: Formal Network Analysis

In this subsection, we explain through illustrations what

makes multi-dimensional match conditions challenging to

formally analyze. Readers familiar with PEC-based formal

network analysis may wish to skip this subsection for now.

Consider two physically connected routers ν1 and ν2. The

network operator wants to check the absence of forwarding

loops between ν1 and ν2. Assume that ν2 forwards packets

to ν1 according to the forwarding table in Figure 1. This

forwarding table has three priority-ordered rules: 1 , 2 and

3 , where 1 has highest priority. Since the match conditions

of 1 , 2 and 3 filter packets based on three packet header

fields, they are instances of 3-dimensional match conditions.

Consider the lowest-priority rule 3 in Figure 1. It is

not difficult to see that the set of packets matched by 3

correspond to the logic formula 3 ∧¬ 1 ∧¬ 2 . This formula

says that 3 matches only packet headers that are not matched

by 1 or 2 , thereby encoding the fact that both 1 and 2

have a higher priority than 3 .

To understand the significance of such logic formulas,

assume that ν1 forwards to ν2 all packets matched by either

1 , 2 or 3 , i.e., 1 ∨ 2 ∨ 3 . Abstractly, formal analysis

tools essentially reason about the forwarding behavior of

a network in terms of a directed graph whose edges are

annotated by such logic formulas (or PECs as we shall see),

as illustrated in Figure 2. The existence of a forwarding loop

between ν1 and ν2 depends on whether the logic formula

φ = (1 ∨ 2 ∨ 3) ∧ (3 ∧ ¬ 1 ∧ ¬ 2) is satisfiable or

not; equivalently, does there exist a packet header such that

formula φ can evaluate to true?

The challenge for PEC-based formal analysis tools is to be

able to express complex multi-dimensional match conditions,

while also being able to efficiently and precisely solve the re-

sulting constraint systems via PECs. Unlike SAT/SMT solvers,

PECs give by default the set of all such solutions (if any).

ν1

DROP

ν2

1 ∨ 2 ∨ 3

3 ∧ ¬ 1 ∧ ¬ 2

1

2

Fig. 2: Verification: is there a forwarding loop, or not?

(a)

a
ttt
t ❑❑❑

❑

b
✹✹

c

✡✡
✺✺

d
✠✠

e ✽✽ f

⊥

(b)

Fig. 3: (a) Geometric view of the three 3-dimensional match

conditions in Figure 1; (b) Hasse diagram of the meet-

semilattice induced by these match conditions (see also § III)

What does a solution to this challenge entail? To answer

this, consider Figure 3a, a geometric view of the three match

conditions in Figure 1. Since there are 3-dimensional match

conditions, Figure 3a has three axes: the x-axis and y-axis

correspond to the range of the source and destination IP

addresses, respectively, whereas the z-axis evenly divides the

space into UDP and non-UDP packets. The color of each

rectangular cuboid corresponds to 1 , 2 and 3 . The key

idea behind PECs is to divide the whole geometric space into

disjoint sub-spaces prior to the analysis.

Note that each overlapping of cuboids corresponds to an

overlapping of a pair of rules. In general, however, reasoning

about the intersection of higher-dimensional cuboids, as in Fig-

ure 3a, is NP-hard. For example, there is no forwarding loop

between ν1 and ν2, since the 3-dimensional space denoted by

φ is in fact empty, an instance of an NP-hard query.

B. Challenge: Expressiveness

Notice that the highest-priority rule 1 in Figure 1 comple-

ments an individual packet header field. That is, 1 matches

only non-UDP packet headers whose source and destination

IP address match 0.0.0.4/30 and 0.0.0.0/28, respec-

tively. However, the PEC-construction schemes in Veriflow

and ddNF are not designed for multi-dimensional match

conditions with arbitrary ranges, sets of values, or their com-

plements (all of which can be found in iptables rule-sets [33]).

Veriflow and ddNF’s limitation is due to the fact that they

are tied to TBVs, where Veriflow represents TBVs as a trie

data structure with nodes that can have three children for

‘0’, ‘1’ and ‘∗’. The problem is that a single TBV cannot

represent match conditions such as the non-UDP example

above. As another instance, an arbitrary range that is not an IP

prefix can only be represented by multiple TBV. This renders

the TBV representation of match conditions inefficient and

impractical. By contrast, #PEC can efficiently encode such

match conditions via element types (§ III-B). While APV can

represent the same match conditions as #PEC, APV’s reliance

on BDDs makes it at least 10× slower than #PEC (§ IV-D).

C. Challenge: Precision and Minimality of PECs

For ddNF to be able to analyze the network in Figure 2,

let us further simplify the example by replacing the the three

ν′1

DROP

ν′2

{X,Y,Z}

{Z}

{X}

{Y }

Fig. 4: Wrong result in ddNF, due to non-minimal PECs

match conditions of the rules 1 , 2 and 3 with the fol-

lowing three IP prefixes, respectively: x = 10.57.0.0/19,

y = 10.57.32.0/19 and z = 10.57.0.0/18. This

simplifies the forwarding table in Figure 1 accordingly, where

each rule now only matches packets based on longest IP prefix

matching—something that ddNF is designed to handle. We

remark that our simplification preserves a vital characteristic

of the example: reasoning about it requires only two PECs,

which form atomic predicates by definition (§ III-F).

However, ddNF constructs three PECs, denoted by up-

percase letters: X and Y that represent all IP addresses in

x = 10.57.0.0/19, y = 10.57.32.0/19, respectively,

and Z for all IP addresses in z = 10.57.0.0/18, except

those IP addresses in x and y. By construction, X , Y and Z
are disjoint, so {X,Y, Z} is indeed a set of PECs.

The crux of the problem is that {X,Y, Z} is not minimal,

because there is a PEC that is empty, namely Z . To illus-

trate the impact of this superfluous PEC, consider Figure 4.

Notice that each edge in Figure 4 has a corresponding edge

in Figure 2. The problem is that ddNF’s PEC construction

fails to precisely capture the Boolean formulas along the edges

in Figure 2: ddNF wrongly reports a forwarding loop between

ν′1 and ν′2, because the edges in Figure 4 labelled by Z (shown

in bold) form a spurious cycle. This cycle is spurious, and

therefore leads to a false alarm, because the conjunction of the

corresponding Boolean formulas in Figure 2 is unsatisfiable.2

In addition to false alarms, ddNF’s limitation can also

manifest itself as a failure to detect network-related errors: in

our example, ddNF will not detect that the last rule in Figure 2

is shadowed.3 The possibility for both false alarms as well as

false negatives means that ddNF comes with the overhead to

always sanity check its results, a serious limitation (§ IV-C).

Our experiments (§ IV) show that #PEC is 10−100× faster

than alternative SAT/SMT solvers and BDD-based solutions

for detecting empty PECs. To achieve this speedup, #PEC

exploits the fact that it is enough to find the number of packets

in a PEC to check the PEC’s emptiness, rather than finding a

witness for its non-emptiness. This reveals, in particular, that

in the context of formal network analysis counting is much

faster than backtracking on a wide range of realistic datasets.

III. LATTICE-THEORETICAL FRAMEWORK

In this section, we highlight the technical approach behind

#PEC (§ III-A), before explaining its data structures (§ III-B–

III-C) and PEC-construction algorithm (§ III-D). We explain

2A Boolean formula is unsatisfiable whenever it can never evaluate to true.
3There are two kinds of shadowed rules: (i) a single higher-priority rule

covers some lower-priority rule, or (ii) the union of several higher-priority
rules covers some lower-priority rule. Here ddNF fails to detect the latter.

how to answer queries in #PEC (§ III-E). Finally, we show

that #PEC constructs the minimal set of PECs (§ III-F).

A. Technical Approach

To illustrate our approach, reconsider the match conditions

1 , 2 and 3 in Figure 1. Recall that 1 complements an

individual packet header field. We can represent such and other

match conditions by so-called element types (Figure 7).

The geometric interpretation (§ II-A) we considered in Fig-

ure 2 was only in three dimensions. In general, the geometric

view is unfeasible, since it requires reasoning about hyper-

cubes as the number of packet header fields increases. Instead,

#PEC constructs a meet-semilattice, a form of partially ordered

set in which every finite subset of elements has a greatest

lower bound [34]. In doing so, #PEC is able to represent

match conditions that ddNF and Veriflow cannot, while also

achieving precision and performance, as described below.

Figure 3b shows the Hasse diagram of the meet-semilattice

produced by #PEC, given the match conditions in Figure 1.

A Hasse diagram has an edge from a vertex v to a vertex u
whenever u is a subset of v (written u ⊂ v), and there is no

other vertex w such that u ⊂ w ⊂ v. In other words, only

non-transitive edges are included in the Hasse diagram.

Figure 5 gives the more familiar interpretation of the ele-

ments in the meet-semilattice as match conditions. Note that

the color of the rows in Figure 5 corresponds to the coloring

of the corresponding match conditions in Figure 1.

Observe that the meet-semilattice in Figure 3b contains

more elements than there are match conditions. Intuitively, the

reason is that the meet-semilattice describes the overlapping

of all match conditions. This intuition is made precise by

the requirement that every meet-semilattice is closed under

intersection: it must contain every element that is the result

of intersecting sets of other elements. For example, elements

e and f are in the meet-semilattice because e = b ∩ c and

f = c ∩ d , respectively. The last two rows in Figure 5 give

a more familiar interpretation of elements e and f .

#PEC bases its meet-semilattice construction on the algo-

rithm in [35], but with a twist: we maintain the cardinality

of each PEC—the number of packet headers in each PEC.

Crucially, an empty PEC has cardinality zero. This way, #PEC

detects that e∪ f = c , which ddNF cannot. Unlike a per bit

combinatorial backtracking search with SAT/SMT solvers, our

SOURCE DESTINATION PROTOCOL

a 0.0.0.0/0 0.0.0.0/0 ANY

b 0.0.0.4/30 0.0.0.0/28 !UDP

c 0.0.0.4/30 0.0.0.12/30 ANY

d 0.0.0.0/29 0.0.0.12/30 UDP

e 0.0.0.4/30 0.0.0.12/30 !UDP

f 0.0.0.4/30 0.0.0.12/30 UDP

Fig. 5: Six semi-meetlattice elements induced by the three 3-

dimensional match conditions b , c and d where b features

negation of a protocol header field, e.g., ‘!UDP’

A , a− (b ∪ c ∪ d) C , c − (e ∪ f) E , e

B , b − e D , d − f F , f

Fig. 6: PECs due to the match conditions (colored rows)

in Figure 5, using the Hasse diagram in Figure 3b

cardinality computation uses the structure of the semilattice

and harnesses the computing power of ALUs [36] (IV-D2).

Next, we discuss the technical details behind #PEC, specif-

ically: its data structures for representing match conditions

(§ III-B) and PECs (§ III-C), as well as its algorithm that use

these data structures to compute PECs (§ III-D) and answer a

network operator’s queries about the network (§ III-E).

B. Representation of Match Conditions via Element Types

At its core, #PEC features an abstract data type for match

conditions, called element type, which strictly generalizes the

expressiveness of Veriflow and ddNF’s TBVs. For example,

using element types, we encode the match conditions in Fig-

ure 5 as 3-tuples 〈F1, F2, F3〉 where F1 and F2 denote ranges

of source and destination IP addresses, respectively, whereas

F3 denotes a set of protocols where ‘!’ on the protocol field

is encoded by efficiently complementing a bitset.

For its generalization, #PEC imposes only two basic re-

quirements on element types: elements must form a finite

partially ordered set, whose cardinality must be computable in

polynomial time. Figure 7 shows fundamental element types

used in practice that satisfy these requirements where the

partial ordering corresponds to the usual subset inclusion order.

For example, if x and y are of type ip_prefix, x ⊆ y means

that every IP address in x appears also in y.

Each element type features three operators: equality (=),

intersection (∩), and cardinality. All element types in Figure 7

can be efficiently implemented using data structures that use

contiguous memory, and our implementations have therefore

high cache locality, similar to TBVs in ddNF. We remark that

since x ⊆ y holds exactly if x ∩ y = x, the subset-inclusion

operator (⊆) is derived automatically, a default implementation

that can be optionally optimized.

Some element types such as disjoint_ranges and

set<T> where T is a fixed-size type, support a complement

ELEMENT TYPE DESCRIPTION

ip_prefix IP prefix, convertible to range

optional<T> Wildcard or a value of type T

tbv<N> Fixed-length TBV

range Half-closed interval, e.g., [0 : 10)
disjoint_ranges Set of disjoint ranges

set<T> Finite set of values of type T

tuple<E1, . . . ,Ek> Tuple where Ej are element types

Fig. 7: Element types to form complex (i.e., multi-

dimensional) packet header match conditions

(‘!’) operator. This allows for more complex match conditions,

such as complements on protocol fields as in Figure 5. By

contrast, the tuple element type has no complement operator

because it is computationally too expensive [11].

More generally, by introducing element types, #PEC can

tightly control the use and effects of complements, allowing

only forms of negation that can be efficiently implemented.

Example. The match conditions in Figure 1, and the corre-

sponding meet-semilattice elements in Figure 5, can be rep-

resented by 3-tuples of element type tuple<ip_prefix,

ip_prefix, set<protocol>> where protocol is an

enumeration type. Alternatively, if there is no need to be able

to complement the protocol header field, the last tuple com-

ponent could be also replaced by optional<protocol>.

C. PEC-representation as a DAG

#PEC represents the Hasse diagram of a meet-semilattice as

a directed acylic graph (DAG). Since such a Hasse diagram

can be shown to be unique up to graph isomorphism [34], so

is the DAG that #PEC constructs using the later algorithm.

Therefore, #PEC represents each PEC by a pointer to a

DAG node. Each such PEC denotes the packet headers that

are in the element associated with the pointed to DAG node,

minus the elements in its children. For example, given the

meet-semilattice in Figure 3b, uppercase letter A denotes the

PEC that includes the packet headers in a, excluding those in

b , c and d . Figure 6 defines the other PECs similarly. By

construction, all PECs are pair-wise disjoint. For example, the

intersection of the PECs B and C in Figure 3b is empty,

whereas b ∩ c is non-empty. Each node n in the DAG

has the following three fields: (i) n.elem denotes the match

condition associated with n; (ii) n.children contains all the

DAG nodes c such that c 6= n and c.elem ⊆ n.elem and

there is no other DAG node c′ such that n 6= c′ 6= c and

c.elem ⊆ c′.elem ⊆ n.elem ; (iii) n.cardinality corresponds

to the number of packet headers in the PEC denoted by n.

Example. Let na be the root node of the DAG in Figure 3b

such that na.elem = a and na.children = {nb, nc, nd}. Note

that neither nf and ne are in na.children , because they are

not direct children of na. We shall see that #PEC computes

nc.cardinality = 0, i.e., the PEC denoted by nc is empty.

D. Algorithm for Computing PECs

The algorithm of #PEC is divided into three procedures,

each of which accesses the global variable Modified Nodes

that determines what PEC-cardinalities need to be re-

computed. We explain each procedure in turn.
The main procedure, INSERT (Algorithm 1), takes as input

an element—a match condition of the kind as explained

in § III-B—that is to be added into the meet-semilattice. To do

so, INSERT calls FIND OR CREATE NODE(element) which

uses a hash table (not shown) to determine when a new DAG

node n, satisfying n.elem = element , has to be created or

not. Only in the former case, when new = true, is n inserted

into Modified Nodes and the subprocedures INSERT NODE

and COMPUTE CARDINALITY are called, as discussed next.

To insert a new node n into the DAG that represents

the Hasse diagram of the meet-semilattice, INSERT NODE is

called on the root of the DAG. Intuitively, INSERT NODE

(Algorithm 2) works by case analysis on the three possible

partial orderings between a pair of nodes (line 4, 6 and 9).

By using max children , we only add a child c to a parent

provided that c’s element is maximal with respect to the other

children elements in Γ (line 20 and 21–23), thereby ensuring

that all children of a parent remain mutually incomparable.

The correctness of the induced updates to the DAG edges

(line 17, 22 and 23) follows directly from the proof in [35],

since we only augment the algorithm by maintaining what

nodes have been modified along the way (see Modified Nodes

on line 18 and 15). There may be multiple such nodes when

the insertion of a single new match condition requires multiple

DAG nodes to be created, due to the requirement that the

lattice be closed under meets, as illustrated next.

Example. Consider the DAG in Figure 8a whose nodes corre-

spond to the elements a through e in Figure 8c, and suppose

we want to insert element f now. For clarity in what follows,

let np denote a DAG node that satisfies np.elem = p. As

expected, the call INSERT(f) creates DAG node nf . However,

it also creates ng and nh for elements g and h in Figure 8c,

respectively, since b ∩ f = g and d ∩ g = h; hence,

Modified Nodes = {na, nb, nd, nf , ng, nh}. The resulting

DAG is shown in Figure 8b (new elements shown in bold).

We compute PEC-cardinalities using the set of modified

nodes: once Algorithm 2 returns, the computation continues

on line 8 in Algorithm 3 where COMPUTE CARDINALITY

is called for every node in Modified Nodes (line 6–7), and

as it does so Modified Nodes shrinks after each call to

COMPUTE CARDINALITY, until it becomes empty.

The re-computation of PEC-cardinalities works as follows.

COMPUTE CARDINALITY in Algorithm 3 traverses the DAG

using a queue (line 2). We initialize the PEC-cardinality of the

input DAG node n by counting the packets in its associated

element (line 3), using the cardinality operator from § III-B,

before subtracting the PEC-cardinality of n’s descendants.

To do so, the PEC-cardinality of all the modified children

is computed (line 9) prior to updating n’s PEC-cardinality

(line 12). Since there may be multiple paths to the same node

in the DAG, COMPUTE CARDINALITY uses a local variable

(line 2) to ensure it does not subtract too much (line 7) as it

traverses the sub-DAG rooted at COMPUTE CARDINALITY’s

input DAG node. By deferring the re-computation of PEC-

cardinalities for several insertions, the computation can be

Algorithm 1 Insert new element into meet-semilattice

1: procedure INSERT(elem)
2: n,new ← FIND OR CREATE NODE(elem)
3: if new then
4: Modified Nodes .insert(n)
5: INSERT NODE(Root , n) ⊲ Root .elem = ⊤
6: for n′ ∈ Modified Nodes do
7: COMPUTE CARDINALITY(n′)

Algorithm 2 Update DAG representing meet-semilattice

1: procedure INSERT NODE(parent , n)
2: Γ← {}
3: for child ∈ parent .children do
4: if child .elem ⊆ n.elem then
5: Γ.insert(child)
6: else if n.elem ⊆ child .elem then
7: INSERT NODE(child , n)
8: return
9: else

10: e′ ← n.elem ∩ child .elem
11: if e′ is not empty then
12: n′,new ← FIND OR CREATE NODE(e ′)
13: Γ.insert(n′)
14: if new then
15: Modified Nodes .insert(n′)
16: INSERT NODE(child , n′)

17: parent .children .insert(n)
18: Modified Nodes .insert(parent)
19: max children ←
20: {c ∈ Γ | ∀c′ ∈ Γ: (c.elem ⊆ c′.elem → c = c′)}
21: for max child ∈ max children do
22: parent .children .erase(max child)
23: n.children .insert(max child)

amortized, if so desired. Note that the set of generated PECs

is invariant under the insertion order of elements.

Unlike SAT/SMT solvers or BDD-based solutions—which

can prove that a PECs is non-empty by finding a witness—

#PEC computes PEC-cardinalities instead. In the worst case,

this computation is quadratic in the size N of the DAG

where N can be exponential in the number of input match

conditions [28].

E. Answering Operator Questions via PEC-based Queries

When applying a PEC-based formal network analysis tech-

nique to a set of packet headers decribed by a logical query, it

is necessary to convert the query into a set of PECs. In #PEC,

we perform this conversion as follows.

Foremost, we assume that each logical query is a Boolean

combination of logical predicates that have the same element

type (Figure 7) as the match conditions in the meet-semilattice.

a

b
✸✸
✸

c d

✔✔
✔✔
✔✔
✔

e

⊥

(a)

a
✺✺✺✡✡✡

b
✷✷
✷

❊❊
❊❊

❊ f

c
✷✷
✷✷
d

✸✸
✸ g

☛☛
☛

e h

✡✡
✡

⊥

(b)

DESTINATION PROTO

a 0.0.0.0/0 ANY

b 210.4.214.0/23 ANY

c 210.4.214.0/24 ANY

d 210.4.215.0/24 ANY

e 210.4.214.0/24 ICMP

f 0.0.0.0/0 ICMP

g 210.4.214.0/23 ICMP

h 210.4.215.0/24 ICMP

(c)

Fig. 8: Two meet-semilattices (a and b) for different subsets

of (c) 2-dimensional match conditions

Algorithm 3 Compute and/or update cardinality of PECs

1: procedure COMPUTE CARDINALITY(n)
2: queue ← [n]; visited ← {n}
3: n.cardinality ← cardinality(n.elem)
4: while queue is not empty do
5: n′ ← queue .dequeue()
6: for child ∈ n′.children do
7: if child 6∈ visited then
8: if child ∈ Modified Nodes then
9: COMPUTE CARDINALITY(child)

10: visited .insert(child)
11: n.cardinality ←
12: n.cardinality − child.cardinality
13: queue .enqueue(child)

14: Modified Nodes .erase(n)

If a predicate in the query is not present in the meet-

semilattice, we first insert it via Algorithm 1.

Under these assumptions, a query is then converted into a

set of PECs by invoking Algorithm 4, a recursive function on

the logical structure of the input query. We remark that our

last assumption ensures that line 3 in Algorithm 4 always finds

a node in the DAG, i.e., n is never null. As part of our case

study (§ IV-C), we give an example of a query conversion.

Algorithm 4 Convert a query to a set of PECs

1: function CONVERT TO PECS(query)
2: if query is an element type then
3: n← FIND NODE(query)
4: return SUBTREE(n)
5: else if ∃ g : query = ¬g then
6: Universe ← SUBTREE(Root)
7: return Universe − CONVERT TO PEC(g)
8: else if ∃ g, h : query = g ∧ h then ⊲ ‘g ∨ h’ is similar
9: G← CONVERT TO PECS(g)

10: H ← CONVERT TO PECS(h)
11: return G ∩H ⊲ Use ‘∪’ for ‘g ∨ h’

F. Minimality of PECs

Next, we show that the set of non-empty PECs produced

by #PEC form atomic predicates in the following strict sense:

Definition (Atomic Predicates [27]). Let M be a set of

predicates, each of which represents a match condition of a

firewall or forwarding rule. Then M’s set of atomic predicates,

written A(M) = {α1, . . . , αk}, satisfies the following:

1) for all i ∈ {1, . . . , k}, αi 6= false;

2) (
∨k

i=0 αi) = true;

3) αi∧αj = false for all i, j ∈ {1, . . . , k} such that i 6= j;

4) Each match condition p in M, where p 6= false, is equal

to the disjunction of some subset of atomic predicates:

p =
∨

i∈S(p)

αi where S(p) ⊆ {0, . . . , k};

5) k is the minimal number such that the set A(M) =
{α1, . . . , αk} satisfies the above four conditions.

Yang and Lam show that the set of atomic predicates is

unique [27], which they compute using BDDs. Given a set

of rule match conditions that can be expressed using element

types (Figure 7), the next theorem shows how to compute

this unique and minimal set through a fundamentally different

algorithm that uses lattice theory and model counting.

Theorem (Optimality of #PEC). Given as input a set of match

conditions M of an element type, the set of non-empty PECs

constructed by #PEC forms atomic predicates A(M).

Proof. The proof can be found in Appendix C.

Put simply, #PEC’s output is as good as APV’s [27]. We

re-emphasize two important assumptions: (i) match conditions

must be expressed as element types (Figure 7), and (ii) the

same inputs are supplied to both tools. Condition (ii) is

violated when, say, APV is allowed to pre-process forwarding

rules by aggregating match conditions that are associated with

the same output port. #PEC does not perform such port-

aggregation pre-processing step, a design decision we made

because the partitioning of the packet header space would need

to be re-computed every time some port is changed.

IV. EVALUATION

For our study, we experimentally evaluate different imple-

mentations of PEC-construction schemes (§ IV-A), namely:

#PEC, APV, ddNF and Veriflow where possible. We evaluate

both the SAT/SMT and BDD-based solutions of the PEC-

emptiness problem as well as our counting method. As part

of our evaluation, we analyze firewalls and forwarding rules

collected from a variety of sources (§ IV-B). Using these

datasets, we uncover real-world cases where ddNF raises false

alarms and misses errors (§ IV-C), which #PEC successfully

avoids. We then evaluate #PEC’s performance (§ IV-D).

A. Implementations

Here we outline our implementations of PEC-emptiness

checks (§ IV-A1), and APV as well as #PEC (§ IV-A2).

1) Three PEC-emptiness checking procedures: In addition

to implementing #PEC’s counting method, we want to evaluate

the SAT/SMT and BDD-based solutions to the PEC-emptiness

problem that use propositional logic to precisely encode when

a PEC is empty. Their symbolic encoding works as follows.

Let x be a match condition of a rule, and denote with Cx

the set of direct children of element x in the DAG constructed

by #PEC (recall § III-C). By construction, every child c in

Cx is a strict subset of x, i.e., c ⊂ x. We emphasize that, for

efficiency reasons, we only consider the direct children of x, so

DATASET SHORT DESCRIPTION

REANNZ-IP [37], [38] 1,159 distinct IP prefixes
REANNZ-Full [37], [38] 1,170 OpenFlow rules
Azure-DC [25] 2,942 ternary 128-bit vectors
Berkeley-IP [14], [39] 584,944 distinct IP prefixes
Stanford-IP [11] 197,828 distinct IP prefixes
Stanford-Full [11] 2,732 ternary 128-bit vectors
Diekmann [33] Thousands of 8-tuples

Fig. 9: Summary of datasets

all children in Cx are mutually incomparable, i.e., for any child

c and c′ in Cx, neither c ⊂ c′ nor c′ ⊂ c. To implement the

propositional logic PEC-emptiness solutions, we construct the

following Boolean formula: x ∧ ¬
(
∨

c∈Cx

c
)

—equivalently,

x∧ ¬c1 ∧ ¬c2 ∧ . . .∧ ¬cn where c1, c2, . . ., cn are x’s direct

children in Cx. For checking the formula’s satisfiability, we

use a SAT/SMT solver or construct a BDD, as detailed next.

Our BDD implementation uses the C++ BuDDy library.

We set the intial node number and cache size by manual

tuning and choosing values that yield better results. In the

case of the SAT/SMT implementation, we call Z3 [40]. To

avoid additional parsing overhead, we use Z3’s C++ API to

construct the Boolean formulas, rather than using the more

standard SMT-LIB [41] or DIMACS format for SAT solvers.

As part of the Boolean encoding of element types (re-

call § III-B), we convert tbv<N> elements into N Boolean

variables, one for each non-∗ ternary bit. For the conversion

of set<T>, which is implemented using bitsets, we encode

the disjunction of the indexes of the set bits using ⌈log2 K⌉
Boolean variables where K is the length of the bitset. For the

tuple<E1, . . . ,Ek> encoding, we designate b = b1+ . . .+bk
Boolean variables where bj is the number of Boolean variables

needed to represent Ej . The final encoding is the conjunction

of the Boolean encoding of each tuple coordinate.

2) Implementation of APV, ddNF and #PEC: To rigorously

evaluate the performance of our tool against others, we imple-

ment a version of APV and #PEC within the same framework:

we opted for Z3 [40]. Our re-implementation of APV applies

the same optimizations as proposed in [28]. We do not have to

re-implement ddNF, since it is already available as an open-

source module in Z3. Similar to ddNF, our implementation of

#PEC leverages Z3’s highly optimized TBV implementation.

We implement the other element types as a C++11 library,

which we describe in more detail in Appendix B.

B. Datasets

Our evaluation uses 64 different datasets, extracted from

five independently collected routing tables and firewalls col-

lections [11], [14], [25], [33], [37]. Figure 9 categorizes our

datasets according to their source of origin. Each dataset is

encoded as a list of rule match conditions of a specific element

type (recall Figure 7 in § III-B). Since ddNF only supports

TBVs, we encode the match conditions in our datasets as

TBVs whenever possible, which is feasible for all datasets

except the ‘Diekmann’ dataset, as described below. Irrespec-

tive of the element type, we ensure all match conditions per

dataset are unique, since duplicates could be processed with

almost zero cost. We describe each category of dataset in turn.

a) REANNZ: The REANNZ-Full dataset [37] contains

more than a thousand OpenFlow rules, extracted from a single

routing table that was used in the Cardigan deployment [38].

The OpenFlow rules in the REANNZ dataset use the following

header fields: source and destination MAC addresses, ether-

type, source and destination IP address, IP protocol field, and

source and destination TCP ports. We convert each match

condition in the rules to a ternary 216-bit vector. From the

full dataset, we extract REANNZ-IP which contains only IP

prefixes, but also encoded as TBVs.

b) Berkeley-IP: The Berkeley-IP dataset originates

from [14] where IPv4 prefixs from the RouteViews

project [39] were evaluated in the context of the UC Berkeley

campus network topology. Our dataset focuses only on the

IPv4 prefixes, which we encode as 32-bit long TBVs.

c) Azure-DC: The Azure-DC dataset [25] contains syn-

thetic FIBs that simulate Azure-like data centers as deployed

by Microsoft at that time. It contains a total of nearly 3000

match conditions, each of which is a ternary 128-bit vector.

d) Stanford: The Stanford dataset originates from Stan-

ford’s backbone network [11], which contains configurations

of sixteen Cisco routers. For each router, we generate its

transfer function [11] which models the static behavior of

the router (including forwarding and ACLs). We then use

the match conditions in the transfer function, encoded as

ternary 128-bit vectors, to produce a dataset for that router

(e.g Stanford-Full/boza). To measure the effect of analyzing

a network containing all sixteen routers, we also combine

all sixteen datasets into a single one, Stanford-Full, which

contains a total of 2,732 unique ternary 128-bit vectors. In

our Stanford-IP dataset, we extract the IP prefixes directly

from the raw router configurations, thereby avoiding the IP

prefix compression feature in HSA’s transfer functions. As a

result, our Stanford-IP datasets are significantly larger than the

datasets used in the evaluation of HSA [11] and ddNF [28].

e) Diekmann: The Diekmann datasets contains match

conditions from real-world Linux iptables rule-sets [33]. We

parse the following packet header matching fields: source and

destination IP prefix, source and destination port, protocol,

connection state, input and output interface. We encode these

as a mixture of TBVs and regular bitsets, which we combine

into 8-tuples. We ignore wildcard characters for interfaces. We

simplify each original iptables rule-set through a pre-processor

that propagates match conditions along iptables chains in a

depth-first manner, similar to function inlining. This essentially

flattens a multi-chain iptables configuration into a list of match

conditions without jumps and returns, so they conform to the

same format as the other datasets.

C. Case Study

In this subsection, we describe real-world cases of impreci-

sion in ddNF, all of which #PEC handles successfully. Due to

space, we only illustrate a few examples (in our full study, we

encountered over three dozen cases of imprecision in ddNF).

To begin with, ddNF misses 35 shadowed rules in the

REANNZ dataset. We found that ddNF misses four shadowed

rules in the Stanford datasets, one in each of the ‘soza’, ‘sozb’,

‘yoza’, and ‘yozb’ Cisco routers. Furthermore, in the Stanford

dataset, ddNF fails to check that every packet whose destina-

tion IP address matches the IP prefix 171.64.79.160/24

is forwarded from router ‘yozb’ to router ‘yoza’. For this

query, ddNF wrongly reports that some packets with such

a destination IP address are dropped. The slightly simplified

relevant rules in the dataset for the ‘yozb’ router are as follows:

Destination=171.64.79.160/28 => yoza

Destination=171.64.79.176/28 => yoza

Destination=171.64.79.128/27 => yoza

Destination=171.64.79.192/27 => yoza

Destination=171.64.79.224/27 => yoza

Destination=171.64.79.0/25 => yoza

Destination=171.64.79.0/24 => DROP

Here, ddNF produces this wrong result, because the union

of IP prefixes that forward to ‘yoza‘ equals the IP prefix of

the last rule that drops packets: the match condition of the last

rule, therefore, is encoded as a singleton set that contains an

empty PEC—the same underlying cause as described in § II-C.

As a more complicated example, consider the following

human-readable form of the OpenFlow rules part in the

REANNZ dataset (slightly simplified to help with readability),

ordered from highest to lowest priority:
Protocol=ICMP => Controller

Destination=210.4.214.0/24 => Port 1

Destination=210.4.215.0/24 => Port 1

Destination=210.4.214.0/23 => Port 2

Destination=ANY => DROP

The match conditions associated with these OpenFlow rules

induce the DAG shown in Figure 8. Suppose a network

operator wants to answer the following query:

“Are all non-ICMP packets destined to IP prefix

210.4.214.0/23 sent to Port 1?”

Formally, this query is a Boolean combination of the form

210.4.214.0/23,ANY∧¬(0.0.0.0/0,ICMP) where the

first and second conjunct are elements b and c in the DAG

in Figure 8, respectively. Using Algorithm 4 in § III-E, we

convert the query into the set of PECs {B,C,D}. Since B
is a PEC associated with a rule that outputs the packet at

port 2, ddNF concludes that the above property is violated.

However, ddNF’s verification result is incorrect: since B is

empty no such violation can be realized in the actual network.

#PEC correctly detects that the property holds. For the sake

of brevity, we omit the discussion of five other, but similar,

examples of imprecision in the REANNZ dataset.

D. Performance Evaluation

We evaluate #PEC’s performance along two dimensions,

namely: (i) time and memory usage to construct #PEC’s meet-

semilattice; (ii) time and memory usage for detecting empty

PECs. We discuss our results in turn.4

1) PEC-construction: We compare #PEC to APV, and Z3’s

implementation of ddNF. We ensure that every implementation

benefits from the same optimizations (§ IV-A2). We find

that #PEC consistently outperforms APV and ddNF in Z3

where, on larger datasets, the speed-up is more than 10×.

For example, on the Azure-DC dataset, our re-implementation

of #PEC in Z3 is approximately 30× faster than ddNF. APV

times out on the Berkeley-IP dataset after 10 hours, whereas

#PEC completes the PEC-construction in 45 minutes. We

include in #PEC’s total run-time the time it takes to check

PEC-emptiness, when comparing #PEC and APV. For this

4All experiments are run on a Linux machine with an Intel Xenon CPU
ES-1660 3.30GHz and 32GB DDR3 1333MHz RAM.

Dataset Insertions PECs
Empty

PECs

Atomic

Preds.

PEC-construction

time (s)
PEC-emptiness check (s) APV (s) Memory (MB)

Z3 ddNF #PEC BDD SAT Card. BDD SAT Card. APV

REANNZ-IP 1,159 1,160 25 1,135 <1ms <1ms 0.016 0.414 <1ms 0.001 6 6 3 5

REANNZ-Full 1,170 12,783 275 12,508 0.112 0.009 2 9 0.018 3 14 26 9 10

Azure-DC 2,942 5,096,869 10,450 5,086,419 3301 121 20112 47829 30 25669 4,429 5,797 2,365 2,517

Berkeley-IP 584,944 584,945 29,813 Timeout Timeout 2709 1553 460 0.515 Timeout 302 701 227 Timeout

Stanford-IP/soza 184,682 184,682 4,841 179,841 471 347 7 82 0.119 4951 102 251 69 49

Stanford-IP/yoza 4,746 4,746 3 4,743 <1ms <1ms 0.076 2 0.002 2 8 9 4 6

Stanford-IP/All 197,828 197,828 4,874 192,954 266 199 19 89 0.156 5149 122 265 85 53

Stanford-Full/soza 524 16,764 81 16,683 0.056 <1ms 0.668 9 0.024 2 18 19 10 13

Stanford-Full/yoza 507 60,363 231 60,132 5 0.17 4 38 0.17 20 46 65 31 28

Stanford-Full/All 2,732 1,176,095 48,906 1,127,189 560 28 692 1958 4 2314 895 1,077 544 439

Diekmann/G 5,321 889,646 40 889,606 - 39 413 4729 10 2385 3,843 3,854 3,924 608

Diekmann/J 6,004 1,058,897 56 1,058,841 - 71 486 5654 13 2936 4,558 4,573 4,656 700

Diekmann/K 3,242 400,911 257 400,654 - 18 157 2084 3 732 1,997 2,006 2,031 233

Diekmann/P 578 492,378 4 492,374 - 47 168 1837 4 635 1,563 1,573 1,606 324

Diekmann/Q 307 4,626 38 4,588 - 0.087 0.763 17 0.016 0.94 21 29 18 7

Fig. 10: Evaluation results for a subset of datasets. See Appendix D for full experimental results table.

comparison, we use the 39 datasets in which either APV or

#PEC runs for more than 100ms, excluding the Berkeley-

IP dataset where APV times out. In 95% of these 39 cases,

despite #PEC’s PEC-emptiness check, #PEC is at least 10×
faster than APV, and 25% of this time #PEC’s speed-up is

at least 100×. On average, #PEC is at least 80× faster than

APV. Finally, APV and #PEC’s memory usage averages out

to be the same across these datasets. Figure 10 shows parts

our experimental results, see Appendix D for the full details.

The fact that #PEC outperforms APV is expected, since

#PEC eliminates the per-bit overhead of BDDs. The perfor-

mance difference between #PEC and Z3’s implementation of

ddNF, in turn, can be explained in terms of the number of

intersection and subset operations required to insert a new

match condition into their respective data structure: their total

run-time is proportional to these operations. For example, in

the Stanford-Full dataset, #PEC requires 0.4 million whereas

ddNF in Z3 takes 8 million such operations, a 20× improve-

ment. #PEC’s improvement over Z3’s implementation of ddNF

are similar on the other datasets.

2) PEC-emptiness checking: We compare #PEC’s counting

method to the SAT/SMT and BDD-based solutions to check-

ing PEC-emptiness. We evaluate the performance of PEC-

emptiness checking using the 24 datasets in which #PEC

runs for more than 100ms. We perform the PEC-emptiness

check after the PEC-construction has completed. We take extra

precautions in our implementations to ensure a fair comparison

(§ IV-A1). Figure 10 shows that #PEC’s counting method

significantly outperforms the SAT/SMT and BDD-based ap-

proaches: #PEC achieves at least a 10× speed-up compared

to the SAT/SMT and BDD-based approach in over 95% of

cases. On average, #PEC is at least 500× and 200× faster

than the SAT/SMT and BDD-based approaches, respectively.

To understand why #PEC’s cardinality-based approach out-

performs the SAT/SMT and the BDD-based approaches, re-

consider the IP prefixes in § II-C. Representing x, y, and

z in propositional logic requires 19, 19, and 18 variable

assignments respectively, corresponding to their non-wildcard

bits. Just encoding Z = z − (x ∪ y) in SAT requires near

60 logic gates, excluding the task of checking satisfiability.

Representing the predicates using BDDs requires the same

number of BDD nodes. Assuming logical BDD operations are

linear in their operand size, computing Z at least requires

CPU cycles proportional to the cumulative size of the three

BDDs. On the other hand, the cardinality of each predicate in

the example fits into a single machine word. We need only

2 arithmetic CPU operations to compute the cardinality of

Z (i.e |z| − |x| − |y|), and then check if it is zero. While

in theory there are still near 60 operations performed (at the

bit level), #PEC harnesses the computing power of ALUs to

finish the operations in fewer CPU cycles. For example, in

the Stanford-Full dataset where each node in the DAG has 3

children and 12 nodes in its subtree on average, the BDD-

based approach requires 3 × 128 low-level BDD operations

on average (each spanning tens of CPU instructions). By

contrast, our cardinality-based approach needs at most 3 ALU

operations for each subtraction. So #PEC should be at least

(3×128)/(12×3) ≈ 10× faster than the BDD-based approach,

and our experiments show indeed at least a 127× speed-up.
3) Comparison with Veriflow: We compare #PEC to the

original implementation of Veriflow [42]. Since that imple-

mentation of Veriflow only supports a restricted form of

OpenFlow rules where arbitrary per-field bitmasks are dis-

allowed, it cannot analyze the majority of our datasets. We

therefore restrict our experiments with Veriflow to a simpli-

fied version of the Stanford-Full dataset. We use the default

packet header field ordering in Veriflow. We ask Veriflow

to only find ‘Equivalence Classes’ (ECs), rather than each

EC’s forwarding graph. In this restricted setting, Veriflow

takes 41 s to create 3,778,324 ECs, using 1GB of memory.

Despite #PEC’s support for arbitrary bitmasks, it is still more

efficient than Veriflow, in both time (30 s) and space (0.5GB):

specifically, #PEC constructs only 1,066,645 PECs in 27 s, and

finds 44,418 empty PECs in 3s.

E. Discussion: Importance of Empty PECs

We showed that ddNF’s non-minimality of PECs is due

to PECs that are empty. In our case study (§ IV-C), we

exemplified real-word cases where empty PECs lead to wrong

analysis results, which are very likely to hinder technology

adoption [43]. We emphasize that we only gave illustrative

examples; our list is not exhaustive, and it includes cases where

ddNF misses errors. In practice, therefore, ddNF is only as fast

as the slowest decision procedure needed to sanity check its

results, a fundamental limitation. By contrast, #PEC’s analysis

is correct by construction (§ III-F), and its performance is not

dependent on BDDs or SAT/SMT solvers, which are orders

of magnitude slower in finding empty PECs (§ IV-D2).

V. RELATED WORK

Similar to APV [27] and ddNF [28], #PEC has many

potential applications in the field of network correctness. The

literature in this field is vast and includes BGP configuration

checking (e.g., [7], [44]–[51]), ACL misconfiguration detec-

tion (e.g., [52], [53]), firewall checking (e.g., [17], [18], [21],

[54]), SDN verification (e.g., [20], [23], [55], [56]), testing

(e.g., [2], [57]–[60]), debugging (e.g., [61], [62]), differential

analysis (e.g., [63]), concurrency analysis (e.g [64], [65]),

automatic repair (e.g., [66]–[68]), synthesis (e.g. [69]–[71]),

programming languages (e.g. [72]–[76]), safe network updates

(e.g., [77]–[80]), data plane checking (e.g., [10], [11], [16],

[25]), real-time checkers [12], [14], [30], [81], and more

general network analyses (e.g., [6], [8], [9], [19], [82], [83])

together with suitable levels of abstractions (e.g., [84], [85]).

Our work is most closely related to ddNF [28], APV [27],

Delta-net [14] and Veriflow [30], since they all partition

packet headers somehow. However, these formal network

analysis tools also differ in important ways, as summarized

by Figure 11 using characteristics, which are divided into

three blocks: (i) whether the analysis is precise PECs remain

the same when the priority or output port of rules change;

(ii) common kinds of match conditions of practical interest;

and (iii) finally, attributes of the underlying algorithms. We

discuss each of these tools in turn:

a) ddNF [28]: #PEC achieves precision when ddNF

cannot. Furthermore, we have shown that #PEC can detect

shadowed rules, whereas ddNF cannot in general. As a result,

#PEC can verify equivalence of forwarding tables, whereas

ddNF cannot. We have also shown that #PEC is more expres-

FEATURE / CHARACTERISTIC #
P

E
C

d
d
N

F

A
P

V

D
E

L
T

A
-N

E
T

V
E

R
IF

L
O

W

Precise network analysis #

Rule priority & action invariant #

Match conditions with bit masks # G#

Wildcard on packet header fields #

Match conditions with sets of values # # #

Negation on packet header fields # # #

Range filters beyond IP prefixes # #

PEC-cardinalities # # # #

Negation-free PEC-construction # #

Canonical PEC-representation #

Minimal and unique set of PECs # # #

Fig. 11: Feature comparison of closest related work

sive than ddNF in the kind of match conditions supported,

e.g., iptables rule-sets. The DAG produced by #PEC can be

shown to be isomorphic to ddNF’s, but #PEC is up to 30×
faster than ddNF in constructing it (§ IV).

b) APV [27]: APV produces PECs in the form of atomic

predicates, the smallest partition of the packet header space.

#PEC also constructs the fewest PECs (§ III-F), and it does

so 10× faster than APV (§ IV-D). Through an optional pre-

processing step, APV may further reduce the problem size

by aggregating match conditions per output port. However,

when the priority or the output port of a rule changes, so

would atomic predicates for the entire network then. By

contrast, #PEC and ddNF only create PECs that are invariant

under changes to the priority of rules and/or their actions.

As explained in the introduction, APV’s PEC-construction

algorithm is not negation-free, explaining why it relies on

BDDs [31], [32], whereas neither #PEC nor ddNF do.

c) Delta-net [14]: Delta-net is specifically designed for

real-time analysis of large-scale BGP-controlled data cen-

ters [86]. It only supports forwarding rules that match pack-

ets based on ranges, possibly with arbitrary lower and up-

per bounds (unlike ddNF). Due to its limited expressive-

ness, Delta-net achieves quasi-linear time complexity, whereas

ddNF and #PEC’s higher expressiveness has an exponential

worst-case time complexity. In addition, unlike ddNF and

#PEC, Delta-net’s run-time is independent of the order in

which match conditions are inserted. Delta-net exploits the

fact that the negation of a range can be efficiently computed,

so its PEC-construction scheme is not negation-free.

d) Veriflow [30]: Veriflow uses a multi-dimensional trie

data structure to represent PECs. To do so efficiently, Veriflow

imposes assumption that prevent it from analyzing most multi-

dimensional match conditions in our datasets (§ IV-D). The

PECs constructed by Veriflow depend on the order of levels

in the multi-dimensional tries, which can render its memory

usage and run-time performance unpredictable.

VI. CONCLUDING REMARKS

Our case study (§ IV-C) and experiments (§ IV-D) reveal the

tension between precision, expressiveness and performance:

Veriflow and ddNF impose assumptions that prevent them

from analyzing most of our dataset, and ddNF’s analysis is

imprecise. By contrast, APV is very expressive and precise

but significantly slower than Veriflow and ddNF. Our work

offers a new lattice-theoretical, algorithmic framework for

formal network analysis that is expressive, precise and fast,

thereby addressing a longstanding problem that has spanned

three generations of formal network analysis tools.

To achieve this, we identified and efficiently solved the

coNP-hard problem (Appendix A) of deciding whether a

PEC is empty or not. We showed that both SAT/SMT and

BDD-based solutions to this problem perform poorly. This

lead to #PEC, which uses a model counting method that is

10−100× faster than the SAT/SMT and BDD-based solutions.

In addition, #PEC constructs the unique minimal number of

PECs, and it does so 10× faster than APV’s atomic predicates.

REFERENCES

[1] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, “Making middleboxes someone else’s problem: Network
processing as a cloud service,” in SIGCOMM, 2012.

[2] H. H. Liu, Y. Zhu, J. Padhye, J. Cao, S. Tallapragada, N. P. Lopes,
A. Rybalchenko, G. Lu, and L. Yuan, “CrystalNet: Faithfully emulating
large production networks,” in SOSP, 2017.

[3] A. Wool, “A quantitative study of firewall configuration errors,” Com-

puter, vol. 37, no. 6, Jun. 2004.
[4] H. Hamed and E. Al-Shaer, “Taxonomy of conflicts in network security

policies,” IEEE Comm. Mag., vol. 44, no. 3, Mar. 2006.
[5] A. Wool, “Trends in firewall configuration errors: Measuring the holes

in swiss cheese,” IEEE Internet Computing, vol. 14, no. 4, Jul. 2010.
[6] A. Fogel, S. Fung, L. Pedrosa, M. Walraed-Sullivan, R. Govindan,

R. Mahajan, and T. Millstein, “A general approach to network con-
figuration analysis,” in NSDI, 2015.

[7] A. Gember-Jacobson, R. Viswanathan, A. Akella, and R. Mahajan, “Fast
control plane analysis using an abstract representation,” in SIGCOMM,
2016.

[8] S. K. Fayaz, T. Sharma, A. Fogel, R. Mahajan, T. D. Millstein,
V. Sekar, and G. Varghese, “Efficient network reachability analysis using
a succinct control plane representation,” in OSDI), 2016.

[9] R. Beckett, A. Gupta, R. Mahajan, and D. Walker, “A general approach
to network configuration verification,” in SIGCOMM, 2017.

[10] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey, and S. T.
King, “Debugging the data plane with Anteater,” in SIGCOMM, 2011.

[11] P. Kazemian, G. Varghese, and N. McKeown, “Header space analysis:
Static checking for networks,” in NSDI, 2012.

[12] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, and
S. Whyte, “Real time network policy checking using header space
analysis,” in NSDI, 2013.

[13] C. Zhongbo, “Veriflow system analysis and optimization,” Master’s
thesis, University of Illinois Urbana-Champaign, 2014.

[14] A. Horn, A. Kheradmand, and M. Prasad, “Delta-net: Real-time network
verification using atoms,” in NSDI, 2017.

[15] J. Backes, S. Bayless, B. Cook, C. Dodge, A. Gacek, A. J. Hu, T. Kahsai,
B. Kocik, E. Kotelnikov, J. Kukovec, S. McLaughlin, J. Reed, N. Rungta,
J. Sizemore, M. A. Stalzer, P. Srinivasan, P. Subotic, C. Varming, and
B. Whaley, “Reachability analysis for AWS-based networks,” in CAV,
2019.

[16] G. G. Xie, J. Zhanm, D. A. Maltz, H. Zhang, A. Greenberg, G. Hjalm-
tysson, and J. Rexford, “On static reachability analysis of IP networks,”
in INFOCOM, 2005.

[17] A. Jeffrey and T. Samak, “Model checking firewall policy configura-
tions,” in POLICY, 2009.

[18] T. Nelson, C. Barratt, D. J. Dougherty, K. Fisler, and S. Krishnamurthi,
“The Margrave tool for firewall analysis,” in LISA, 2010.

[19] E. Al-Shaer and S. Al-Haj, “FlowChecker: Configuration analysis and
verification of federated OpenFlow infrastructures,” in SafeConfig, 2010.

[20] S. Son, S. Shin, V. Yegneswaran, P. A. Porras, and G. Gu, “Model
checking invariant security properties in OpenFlow,” in ICC, 2013.

[21] S. Zhang, A. Mahmoud, S. Malik, and S. Narain, “Verification and
synthesis of firewalls using sat and qbf,” in ICNP, 2012.

[22] K. Jayaraman, N. Bjørner, G. Outhred, and C. Kaufman, “Automated
analysis and debugging of network connectivity policies,” Microsoft
Research, Tech. Rep., 2014.

[23] T. Ball, N. Bjørner, A. Gember, S. Itzhaky, A. Karbyshev, M. Sagiv,
M. Schapira, and A. Valadarsky, “VeriCon: Towards verifying controller
programs in software-defined networks,” in PLDI, 2014.

[24] F. A. Maldonado-Lopez, E. Calle, and Y. Donoso, “Detection and
prevention of firewall-rule conflicts on software-defined networking,”
in RNDM, 2015.

[25] N. P. Lopes, N. Bjørner, P. Godefroid, K. Jayaraman, and G. Varghese,
“Checking beliefs in dynamic networks,” in NSDI, 2015.

[26] H. Hu, W. Han, G.-J. Ahn, and Z. Zhao, “FLOWGUARD: Building
robust firewalls for software-defined networks,” in HotSDN, 2014.

[27] H. Yang and S. S. Lam, “Real-time verification of network properties
using atomic predicates,” in ICNP, 2013.

[28] N. Bjørner, G. Juniwal, R. Mahajan, S. A. Seshia, and G. Varghese,
“ddNF: An efficient data structure for header spaces,” in HVC, 2016.

[29] R. McGeer, “Verification of switching network properties using satisfi-
ability,” in ICC, 2012.

[30] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey, “VeriFlow:
Verifying network-wide invariants in real time,” in NSDI, 2013.

[31] R. E. Bryant, “Graph-based algorithms for boolean function manipula-
tion,” IEEE Trans. Comput., vol. 35, no. 8, pp. 677–691, Aug. 1986.

[32] D. E. Knuth, The Art of Computer Programming, Volume 4, Fascicle
1: Bitwise Tricks & Techniques; Binary Decision Diagrams, 12th ed.
Addison-Wesley, 2009.

[33] C. Diekmann, J. Michaelis, M. Haslbeck, and G. Carle, “Verified iptables
firewall analysis,” in IFIP Networking, 2016.

[34] B. A. Davey and H. A. Priestley, Introduction to Lattices and Order,
2nd ed. Cambridge University Press, 2002.

[35] D. G. Kourie, S. Obiedkov, B. W. Watson, and D. van der Merwe, “An
incremental algorithm to construct a lattice of set intersections,” Sci.
Comput. Program., vol. 74, no. 3, Jan. 2009.

[36] A. Fog, “Instruction latencies, throughputs and micro-
operation breakdowns for intel, amd and via cpus,”
https://www.agner.org/optimize/instruction tables.pdf.

[37] N. Katta, O. Alipourfard, J. Rexford, and D. Walker, “Cacheflow:
Dependency-aware rule-caching for software-defined networks,” in
SOSR, 2016.

[38] J. Stringer, D. Pemberton, Q. Fu, C. Lorier, R. Nelson, J. Bailey, C. N.
Correa, and C. E. Rothenberg, “Cardigan: Sdn distributed routing fabric
going live at an internet exchange,” in ISCC, 2014.

[39] Route Views, http://www.routeviews.org/.

[40] L. De Moura and N. Bjørner, “Z3: An efficient SMT solver,” in TACAS,
2008.

[41] C. Barrett, P. Fontaine, and C. Tinelli, “The SMT-LIB Standard: Version
2.6,” Department of Computer Science, The University of Iowa, Tech.
Rep., 2017, available at www.SMT-LIB.org.

[42] A. Khurshid and B. Godfrey, personal communication, Jan. 2019.
[43] C. Sadowski, E. Aftandilian, A. Eagle, L. Miller-Cushon, and C. Jaspan,

“Lessons from building static analysis tools at google,” Commun. ACM,
vol. 61, no. 4, pp. 58–66, Mar. 2018.

[44] S. Prabhu, A. Kheradmand, B. Godfrey, and M. Caesar, “Predicting
network futures with plankton,” in APNet, 2017.

[45] T. G. Griffin and G. Wilfong, “An analysis of BGP convergence
properties,” in SIGCOMM, 1999.

[46] N. Feamster and H. Balakrishnan, “Detecting BGP configuration faults
with static analysis,” in NSDI, 2005.

[47] B. Quoitin and S. Uhlig, “Modeling the routing of an autonomous system
with C-BGP,” IEEE Network, vol. 19, no. 6, Nov. 2005.

[48] A. Wang, L. Jia, W. Zhou, Y. Ren, B. T. Loo, J. Rexford, V. Nigam,
A. Scedrov, and C. Talcott, “FSR: Formal analysis and implementation
toolkit for safe interdomain routing,” IEEE/ACM Transactions on Net-
working, vol. 20, no. 6, Dec. 2012.

[49] K. Weitz, D. Woos, E. Torlak, M. D. Ernst, A. Krishnamurthy, and
Z. Tatlock, “Formal semantics and automated verification for the border
gateway protocol,” in NetPL, 2016.

[50] S. K. Fayaz, T. Sharma, A. Fogel, R. Mahajan, T. Millstein, V. Sekar, and
G. Varghese, “Efficient network reachability analysis using a succinct
control plane representation,” in OSDI, 2016.

[51] S. Prabhu, K. Y. Chou, A. Kheradmand, B. Godfrey, and M. Caesar,
“Plankton: Scalable network configuration verification through model
checking,” in NSDI, 2020.

[52] L. Bauer, S. Garriss, and M. K. Reiter, “Detecting and resolving policy
misconfigurations in access-control systems,” ACM Transactions on

Information and System Security, vol. 14, no. 1, Jun. 2011.
[53] K. Jayaraman, V. Ganesh, M. Tripunitara, M. Rinard, and S. Chapin,

“Automatic error finding in access-control policies,” in CCS, 2011.
[54] L. Yuan, J. Mai, Z. Su, H. Chen, C.-N. Chuah, and P. Mohapatra,

“FIREMAN: A toolkit for firewall modeling and analysis,” in SP, 2006.
[55] M. Canini, D. Venzano, P. Perešı́ni, D. Kostić, and J. Rexford, “A NICE

way to test openflow applications,” in NSDI, 2012.

[56] L. Ryzhyk, N. Bjørner, M. Canini, J.-B. Jeannin, C. Schlesinger,
D. B. Terry, and G. Varghese, “Correct by construction networks using
stepwise refinement.” in NSDI, 2017.

[57] H. Zeng, P. Kazemian, G. Varghese, and N. McKeown, “Automatic test
packet generation,” in CoNEXT, 2012.

[58] D. Lebrun, S. Vissicchio, and O. Bonaventure, “Towards test-driven
software defined networking,” in NOMS, 2014.

[59] M. A. Chang, B. Tschaen, T. Benson, and L. Vanbever, “Chaos monkey:
Increasing sdn reliability through systematic network destruction,” in
SIGCOMM, 2015.

https://www.agner.org/optimize/instruction_tables.pdf
http://www.routeviews.org/

[60] S. K. Fayaz, T. Yu, Y. Tobioka, S. Chaki, and V. Sekar, “BUZZ: Testing
context-dependent policies in stateful networks,” in NSDI, 2016.

[61] R. Beckett, X. K. Zou, S. Zhang, S. Malik, J. Rexford, and D. Walker,
“An assertion language for debugging SDN applications,” in HotSDN,
2014.

[62] C. Scott, A. Wundsam, B. Raghavan, A. Panda, A. Or, J. Lai, E. Huang,
Z. Liu, A. El-Hassany, S. Whitlock, H. Acharya, K. Zarifis, and
S. Shenker, “Troubleshooting blackbox SDN control software with
minimal causal sequences,” in SIGCOMM, 2014.

[63] T. Nelson, A. D. Ferguson, and S. Krishnamurthi, “Static differential
program analysis for software-defined networks,” in FM, 2015.

[64] J. Miserez, P. Bielik, A. El-Hassany, L. Vanbever, and M. Vechev,
“SDNRacer: Detecting concurrency violations in software-defined net-
works,” in SOSR, 2015.

[65] R. May, A. El-Hassany, L. Vanbever, and M. Vechev, “BigBug: Practical
concurrency analysis for SDN,” in SOSR, 2017.

[66] H. Hojjat, P. Rümmer, J. McClurg, P. Černỳ, and N. Foster, “Optimizing
Horn solvers for network repair,” in FMCAD, 2016.

[67] A. Gember-Jacobson, A. Akella, R. Mahajan, and H. H. Liu, “Automat-
ically repairing network control planes using an abstract representation,”
in SOSP, 2017.

[68] Y. Wu, A. Chen, A. Haeberlen, W. Zhou, and B. T. Loo, “Automated
bug removal for software-defined networks.” in NSDI, 2017.

[69] R. Beckett, R. Mahajan, T. Millstein, J. Padhye, and D. Walker,
“Don’t mind the gap: Bridging network-wide objectives and device-level
configurations,” in SIGCOMM, 2016.

[70] A. El-Hassany, P. Tsankov, L. Vanbever, and M. Vechev, “Network-wide
configuration synthesis,” in CAV, 2017.

[71] R. Birkner, D. Drachlser-Cohen, L. Vanbever, and M. Vechev, “Net2Text:
Query-Guided Summarization of Network Forwarding Behaviors,” in
NSDI, 2018.

[72] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford,
A. Story, and D. Walker, “Frenetic: A network programming language,”
in ICFP, 2011.

[73] C. Schlesinger, M. Greenberg, and D. Walker, “Concurrent NetCore:
From policies to pipelines,” in ICFP, 2014.

[74] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen,
C. Schlesinger, and D. Walker, “NetKAT: Semantic foundations for
networks,” in POPL, 2014.

[75] H. Kim, J. Reich, A. Gupta, M. Shahbaz, N. Feamster, and R. J. Clark,
“Kinetic: Verifiable dynamic network control.” in NSDI, 2015.

[76] A. Kheradmand and G. Rosu, “P4K: a formal semantics of P4 and
applications,” CoRR, vol. abs/1804.01468, 2018.

[77] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker,
“Abstractions for network update,” in SIGCOMM, 2012.

[78] L. Vanbever, J. Reich, T. Benson, N. Foster, and J. Rexford, “HotSwap:
Correct and efficient controller upgrades for software-defined networks,”
in HotSDN, 2013.

[79] S. Vissicchio, L. Vanbever, L. Cittadini, G. G. Xie, and O. Bonaventure,
“Safe update of hybrid SDN networks,” IEEE/ACM Transactions on

Networking, vol. 25, no. 3, Jun. 2017.
[80] T. D. Nguyen, M. Chiesa, and M. Canini, “Decentralized consistent

updates in SDN,” in SOSR, 2017.
[81] H. Zeng, S. Zhang, F. Ye, V. Jeyakumar, M. Ju, J. Liu, N. McKeown,

and A. Vahdat, “Libra: Divide and conquer to verify forwarding tables
in huge networks,” in NSDI, 2014.

[82] E. Al-Shaer, W. Marrero, A. El-Atawy, and K. El-Badawi, “Network
configuration in a box: towards end-to-end verification of network
reachability and security,” in ICNP, 2009.

[83] K. Jayaraman, N. Bjørner, G. Outhred, and C. Kaufman, “Automated
analysis and debugging of network connectivity policies,” Microsoft
Research, Tech. Rep., 2014.

[84] G. D. Plotkin, N. Bjørner, N. P. Lopes, A. Rybalchenko, and G. Vargh-
ese, “Scaling network verification using symmetry and surgery,” in
POPL, 2016.

[85] R. Beckett, A. Gupta, R. Mahajan, and D. Walker, “Control plane
compression,” in SIGCOMM, 2018.

[86] P. Lapukhov, A. Premji, and J. Mitchell, “Use of BGP for routing in
large-scale data centers,” RFC 7938, Aug. 2016.

[87] ISO, International Standard ISO/IEC 14882:2017(E) Programming Lan-
guage C++, 2017.

APPENDIX A

WORST-CASE COMPLEXITY

Here we prove results about the theoretical worst-case

complexity of #PEC’s underlying model counting method.

Given a pair 〈x, Y 〉 where x is an element (recall § III-B)

and Y is a finite set of elements, define PEC〈x, Y 〉 ,

x −
⋃

y∈Y y to be the set of packet headers in x that are

not included in the union of elements in Y . Without loss

of generality, we make the simplifying assumptions that all

elements in Y are a subset of x, and every element in Y is

maximal with respect to subset inclusion. Both conditions can

be satisfied through a preprocessor that runs in polynomial

time. For example, if Y contains the ternary bit vectors ‘101’

and ‘10∗’, we can remove the former because 101 ⊆ 10∗.

Define the PEC-emptiness problem as follows: given a pair

〈x, Y 〉 where x is an element and Y is a set of elements, is

PEC〈x, Y 〉 empty? In an analogous way, PEC-cardinality is

defined to be the number of packet headers in PEC〈x, Y 〉.

Theorem (PEC-emptiness complexity). The problem of decid-

ing whether a PEC is empty or not is coNP-complete.

Proof. To show that the PEC-emptiness problem is coNP, it

suffices to prove that deciding the non-emptiness of a PEC is

NP, which requires only a packet header as witness. To prove

coNP-hardness, we proceed as follows.

Let TAUT be the problem of deciding whether a given

propositional logic formula in disjunctive normal form (DNF)

is a tautology, a coNP-complete problem. To show that the

PEC-emptiness problem is coNP-complete, we reduce from

TAUT. For this reduction, recall that a DNF formula is a

disjunction of clauses, each of which is a conjunction of

literals of the form x or ¬x for some Boolean variable x. Let

φ be a DNF formula over the Boolean variables x1, x2, . . . ,

xn. For each clause ck in φ, we can construct in polynomial

time a ternary bit-vector vk = 〈y1, y2, . . . , yn〉 where each

ternary bit yi for 1 ≤ i ≤ n satisfies the following:

yi =











1 if ℓi ∈ φ and ℓi = xi,

0 if ℓi ∈ φ and ℓi = ¬xi,

∗ if φ contains no literal ℓi.

⊤ : 4

1 ∗ 1 : 1

❧❧❧❧❧❧❧❧❧❧❧
11∗ : 0 ∗10 : 1

❘❘❘❘❘❘❘❘❘❘❘

111 : 1

❋❋❋❋❋❋❋

②②②②②②②
110 : 1

❊❊❊❊❊❊❊

②②②②②②②

⊥ : 0

❉❉❉❉❉❉❉

③③③③③③③

Fig. 12: Hasse diagram and PEC-cardinalities (in bold) for the

DNF formula (x1 ∧ x3) ∨ (x1 ∧ x2) ∨ (x2 ∧ ¬x3)

Let V be the set of ternary bit vectors induced by φ, and define

⊤ to be the ternary bit vector of length n where each bit is a

wildcard, i.e., ‘∗’. Then PEC〈⊤, V 〉 is empty if and only if φ
is a tautology, proving coNP-hardness. We conclude that the

PEC-emptiness problem is coNP-complete.

Example. To illustrate the reduction in § A, consider the

following DNF formula φ: (x1∧x3)∨ (x1 ∧x2)∨ (x2 ∧¬x3).
Each element x in the associated Hasse diagram in Figure 12

is also annotated with the cardinality of PEC〈x, Cx〉 where

Cx contains all direct children of x. Note that the PEC that

is associated with the top element (⊤) is non-empty, which

means that φ is not a tautology. We remark that the clause

x1 ∧ x2 is redundant in φ in the sense that its removal does

not change the truth values of φ. This redundancy surfaces as

an empty PEC (namely, PEC〈11∗, {111, 110}〉), as denoted

by ‘11∗ : 0’ in Figure 12.

In the mode of operation where #PEC counts packet headers

in each PEC, it is not difficult to see that the produced

PEC-cardinality information can answer the following #P-hard

counting problem (#DNF): how many different variable as-

signments will satisfy a given formula in DNF? The following

proof reduces #DNF to the problem of counting the number of

packet headers that are not matched by any of the input match

conditions, proving the #P-hardness of the PEC-cardinality

problem. The quantity in the last proof step is illustrated by

the outermost gray area at outermost part of the Venn diagram

in Figure 13, where circles and differently colored regions

denote input match conditions and PECs, respectively.

Theorem (Complexity of PEC-cardinality). Counting the

packet headers in the disjunction of input match conditions

is a #P-hard problem.

Proof. The proof proceeds by reduction from #DNF:

1) on input of a DNF formula φ over n Boolean variables,

convert each clause ck in φ to a n-length ternary bit

vector vk, as defined in § A;

2) collect these n-length ternary bit vectors into set V ;

3) send V to oracle to obtain the cardinality of PEC〈⊤, V 〉;
4) subtract PEC〈⊤, V 〉’s cardinality from 2n.

Example. We continue § A. Suppose the three clauses in the

DNF formula φ represent match conditions. The number of

packet headers in the disjunction of these match conditions is

then 23 − 4 = 4, since ⊤ : 4 according to Figure 12 where

⊤ = ∗ ∗ ∗ matches any three bits.

Fig. 13: Venn diagram of three match conditions, denoted

by circles, which collectively induce eight PECs, shown as

differently shaded regions

0 10 12 16 27 MAX

begin end

Fig. 14: Internals of disjoint_ranges where the MAX

constant corresponds to the maximal upper bound of any range

APPENDIX B

IMPLEMENTATION DETAILS

In this appendix, we give more details regarding the im-

plementation of element types. Since it is easy to implement

ip_prefix, optional<T> and tbv<N> as bit vectors,

we focus our discussion on disjoint_ranges, set<T>

as well as tuple.

Firstly, disjoint_ranges internally represents bound-

aries of half-closed intervals as a sorted array of numbers.

An invariant of disjoint_ranges is that the beginning

and end of the underlying array contain the smallest (i.e.,

zero) and largest (i.e., MAX) representable number, respec-

tively. By adjusting an internal offsets for delimiting the array

bounds, this ensures that negation on disjoint_ranges

is a constant-time operation, which allows us to efficiently

represent complements of, say, arbitrary TCP/IP port range.

For example, Figure 14 shows the internals of the disjoint

set of half-closed intervals {[10 : 12), [16 : 27)}, whereas

the set {[0 : 10), [12 : 16), [27 : MAX)} corresponds to its

negation by adjusting the begin and end delimiters accord-

ingly. As expected, the cardinality of disjoint_ranges is

merely the sum of its constituent ranges.

Similar to TBVs in ddNF, we implement set<T> as

a ‘bitset’, i.e., a compact heap-allocated array of machine

words which are manipulated via bitwise operators. As a

result, set intersections, subset checks, cardinality computation

(i.e., number of set bits), and negations are performed very

efficiently. The length of set<T>’s underlying bitset is equal

to the number of distinct values of T used by all the input sets

plus an additional bit representing all values not explicitly used

in the inputs (in case at least one such value exists).

By standard point-wise extension [34], all tuples constructed

from the other element types in Figure 7 also form partially

ordered sets. For example, if x and y are 3-tuples that

represent the match conditions in Figure 5, then x ⊆ y
if and only if the following coordinate-wise subset inclu-

sions hold: (i) source(x) ⊆ source(y), (ii) destination(x) ⊆
destination(y) and (iii) protocol(x) ⊆ protocol(y).

We remark that the cardinality operator on a k-tuple is

computed by multiplying the cardinalities of all its k elements,

which can be done efficiently by using standard arbitrary-

precision integers, where folding expressions for tuples, as in

C++17 [87], allow for effective optimizations.

APPENDIX C

PROOF: MINIMALITY OF PECS

In this subsection, we give the proof of the ‘Optimality of

#PEC’ theorem in § III-F:

Proof. Recall that #PEC efficiently detects all empty PECs

using its counting method. It is easy to see that this set of

non-empty PECs computed by #PEC satisfies the first four

conditions of the definition of atomic predicates (§ III-F).
It remains to show that the set of non-empty PECs satisfies

condition 5 (minimality). We write ‘YL’ for Yang and Lam’s

Algorithm 3 in [27]. Fix M to be a set of predicates input

to YL and #PEC. Since YL generates atomic predicates [27],

which are minimal by definition, it suffices to show that the

predicates represented by every non-empty PEC produced by

#PEC is in the set of atomic predicates generated by YL.
By a simple induction on n, it is easy to show that for a set

of input predicates M = {P1, P2, ..., Pn}, each predicate of

the form φ = X1 ∧X2 ∧ ...∧Xn 6= ⊥ where Xi ∈ {Pi,¬Pi}
for 1 ≤ i ≤ n is in the set of atomic predicates generated

by YL. Therefore, due to the uniqueness of non-empty PECs

generated by #PEC (a corollary of condition 3), it suffices to

show that each non-empty PEC generated by #PEC for input

M represents a predicate of the above conjunctive form.
Let n be a DAG node whose cardinality is non-zero. This

means that n represents a PEC (i.e., PEC(n) , n.elem −
∨

c∈n.children c.elem) that is non-empty. For each DAG node

m, let A(m) be the set of its ancestors (including m) in

the DAG produced by #PEC. We claim that the predicate

represented by PEC(n) is equivalent to (written “≡”)
∧

{Pi ∈
M : ∃a ∈ A(n) : a.elem = Pi} −

∨

{Pi ∈ M : ∀a′ ∈
A(n) : a′.elem 6= Pi}, which is of the above form φ after

distributing negation through disjunction.

To prove our claim, first note that PEC(n) ≡ n.elem −
∨

d∈D(n) d.elem where D(n) is the strict subtree of n, i.e.,

D(n) contains all nodes n′ such that n′.elem ⊂ n.elem.
Second, note that for any node m, ∀a ∈ A(m) : m.elem ⊆

a.elem , since the edges in the DAG represent subset-inclusion.

So n.elem ≡
∧

a∈A(n) a.elem . But note that for any ancestor

a in A(n) such that a.elem 6∈ M (i.e., a is created as a result

of closure under intersection), we can replace a with the con-

junction of the elements of A(a), which are still in A(n). We

can repeat this (finite) process until we get a conjunction that

only comprises DAG nodes a ∈ A(n) such that a.elem ∈ M,

i.e., we can express n.elem through a conjunction of DAG

nodes whose elements are in the set of input predicates. Thus

n.elem ≡
∧

{Pi ∈ M : ∃a ∈ A(n) : a.elem = Pi}.
Now let n′ 6∈ (A(n) ∪ D(n)) be arbitrary. In other

words, n′ is a DAG node that is neither an ancestor nor

descendant of n and, by definition of A(n), n′ 6= n.

Note that ∃dn′ ∈ D(n) : n.elem ∧ n′.elem ≡ dn′ .elem ,

because #PEC’s lattice is closed under intersection. Hence,

n.elem − dn′ .elem ≡ n.elem − (dn′ .elem ∨ n′.elem). Thus,

n.elem −
∨

d∈D(n) d.elem ≡ n.elem − (
∨

d∈D(n) d.elem ∨
∨

n′ 6∈(A(n)∪D(n)) n
′.elem) ≡ n.elem −

∨

a′ 6∈A(n) a
′.elem .

Note that for any a′ 6∈ A(n) there exists a′′ ∈ A(a′) − A(n)
such that a′′.elem ∈ M: consider b ∈ A(a′) − A(n)
such that all of its immediate parents are in A(n). Note

that such node exists because the root of the DAG is in

A(n). It must be the case that b.elem ∈ M, otherwise

b.elem ≡ p1.elem ∧ p2.elem where p1, p2 ∈ A(n) which

in turn means b ∈ A(n) (a contradiction). So we can set

a′′ = b. Note that a′.elem ∨ a′′.elem ≡ a′′.elem . By

application of this observation to all a′ 6∈ A(n) we get
∨

a′ 6∈A(n) a
′.elem ≡

∨

{Pi ∈ M : ∃a′ 6∈ A(n) : a′.elem =
Pi} ≡

∨

{Pi ∈ M : ∀a′ ∈ A(n) : a′.elem 6= Pi}.

Putting all together, PEC(n) can be re-written as n.elem −
∨

a′ 6∈A(n) a
′.elem ≡

∧

{Pi ∈ M : ∃a ∈ A(n) : a.elem =
Pi} −

∨

{Pi ∈ M : ∀a′ ∈ A(n) : a′.elem 6= Pi}.

APPENDIX D

DETAILED EXPERIMENTAL RESULTS

This section details our experimental results, including

run-time and memory usage of the different PEC-emptiness

solutions. In addition, our experiments compare #PEC to both

APV and ddNF.

Dataset Insertions PECs
Empty

PECs

Atomic

Preds.

PEC-construction

time (s)
PEC-emptiness check (s) APV (s) Memory (MB)

Z3 ddNF #PEC BDD SAT Card. BDD SAT Card. APV

REANNZ-IP 1,159 1,160 25 1,135 <1ms <1ms 0.016 0.414 <1ms 0.001 6 6 3 5

REANNZ-Full 1,170 12,783 275 12,508 0.112 0.009 2 9 0.018 3 14 26 9 10

Azure-DC 2,942 5,096,869 10,450 5,086,419 3301 121 20112 47829 30 25669 4,429 5,797 2,365 2,517

Berkeley-IP 584,944 584,945 29,813 Timeout Timeout 2709 1553 460 0.515 Timeout 302 701 227 Timeout

Stanford-IP/bbra 1,825 1,825 10 1,815 <1ms <1ms 0.019 0.657 <1ms 0.041 6 7 3 5

Stanford-IP/bbrb 1,620 1,620 8 1,612 <1ms <1ms 0.017 0.566 <1ms 0.033 6 7 3 5

Stanford-IP/boza 1,614 1,614 3 1,611 <1ms <1ms 0.018 0.582 <1ms 0.039 6 7 3 5

Stanford-IP/bozb 1,453 1,453 2 1,451 <1ms <1ms 0.017 0.521 <1ms 0.033 6 6 3 5

Stanford-IP/coza 184,909 184,909 4,840 180,069 471 334 7 82 0.122 4911 102 252 69 49

Stanford-IP/cozb 183,376 183,376 4,840 178,536 465 327 15 83 0.121 4924 100 252 68 49

Stanford-IP/goza 1,767 1,767 1 1,766 <1ms <1ms 0.021 0.639 <1ms 0.045 6 7 3 5

Stanford-IP/gozb 1,669 1,669 1 1,668 <1ms <1ms 0.02 0.603 <1ms 0.041 6 7 3 5

Stanford-IP/poza 1,489 1,489 1 1,488 <1ms <1ms 0.017 0.532 <1ms 0.033 6 6 3 5

Stanford-IP/pozb 1,434 1,434 1 1,433 <1ms <1ms 0.017 0.514 <1ms 0.032 6 6 3 5

Stanford-IP/roza 1,567 1,567 2 1,565 <1ms <1ms 0.018 0.57 <1ms 0.039 6 7 3 5

Stanford-IP/rozb 1,483 1,483 1 1,482 <1ms <1ms 0.017 0.531 <1ms 0.034 6 6 3 5

Stanford-IP/soza 184,682 184,682 4,841 179,841 471 347 7 82 0.119 4951 102 251 69 49

Stanford-IP/sozb 180,944 180,944 4,841 176,103 443 315 9 83 0.12 4711 99 250 68 48

Stanford-IP/yoza 4,746 4,746 3 4,743 <1ms <1ms 0.076 2 0.002 2 8 9 4 6

Stanford-IP/yozb 2,592 2,592 1 2,591 <1ms <1ms 0.036 0.969 0.001 0.303 6 7 3 5

Stanford-IP/All 197,828 197,828 4,874 192,954 266 199 19 89 0.156 5149 122 265 85 53

Stanford-Full/bbra 918 43,450 0 43,450 2 0.361 2 20 0.049 12 39 38 20 26

Stanford-Full/bbrb 861 16,017 0 16,017 0.221 0.001 0.552 7 0.019 3 17 17 9 12

Stanford-Full/boza 316 23,230 0 23,230 0.076 <1ms 0.91 11 0.018 3 23 23 12 17

Stanford-Full/bozb 286 19,662 0 19,662 0.043 <1ms 0.719 9 0.014 2 20 20 10 15

Stanford-Full/coza 417 14,120 0 14,120 0.032 <1ms 0.547 7 0.02 2 16 18 9 12

Stanford-Full/cozb 346 9,200 0 9,200 0.029 <1ms 0.346 4 0.011 1 11 13 6 9

Stanford-Full/goza 326 26,396 0 26,396 0.149 0.016 1 12 0.021 3 26 26 14 19

Stanford-Full/gozb 306 23,202 0 23,202 0.11 0.014 1 10 0.017 2 23 22 11 17

Stanford-Full/poza 243 14,883 0 14,883 0.017 <1ms 0.532 7 0.011 1 16 16 9 12

Stanford-Full/pozb 230 13,284 0 13,284 0.002 <1ms 0.473 6 0.009 1 15 15 8 11

Stanford-Full/roza 181 7,933 0 7,933 <1ms <1ms 0.254 3 0.006 0.567 11 11 5 8

Stanford-Full/rozb 166 6,930 0 6,930 0.001 <1ms 0.216 3 0.005 0.421 10 10 5 8

Stanford-Full/soza 524 16,764 81 16,683 0.056 <1ms 0.668 9 0.024 2 18 19 10 13

Stanford-Full/sozb 355 9,238 64 9,174 0.028 <1ms 0.333 4 0.011 0.828 11 12 6 9

Stanford-Full/yoza 507 60,363 231 60,132 5 0.17 4 38 0.17 20 46 65 31 28

Stanford-Full/yozb 353 27,313 208 27,105 0.97 0.001 2 16 0.066 6 23 33 15 14

Stanford-Full/All 2,732 1,176,095 48,906 1,127,189 560 28 692 1958 4 2314 895 1,077 544 439

Fig. 15: Evaluation results for datasets that encode match conditions as ternary bit vectors

Dataset Insertions PECs
Empty

PECs

Atomic

Preds.

PEC-construction

time (s)
PEC-emptiness check (s) APV (s) Memory (MB)

BDD SAT Card. BDD SAT Card. APV

Diekmann/A 45 66 6 60 0.003 0.006 0.418 <1ms 0.004 5 11 2 4

Diekmann/B 51 58 3 55 0.002 0.005 0.215 <1ms 0.003 5 12 2 4

Diekmann/C 31 92 0 92 0.001 0.005 0.333 <1ms 0.008 5 12 1 4

Diekmann/D 262 3,630 0 3,630 0.048 0.568 14 0.014 1 14 23 11 8

Diekmann/E 98 344 0 344 0.004 0.021 1 0.002 0.039 6 13 2 4

Diekmann/F 5,317 888,652 40 888,612 64 408 4799 11 2988 7,436 7,448 7,517 608

Diekmann/G 5,321 889,646 40 889,606 39 413 4729 10 2385 3,843 3,854 3,924 608

Diekmann/H 5,463 919,353 56 919,297 40 424 5005 11 2547 3,911 3,923 3,995 628

Diekmann/I 5,426 908,849 56 908,793 40 417 4799 11 2478 3,865 3,877 3,948 622

Diekmann/J 6,004 1,058,897 56 1,058,841 71 486 5654 13 2936 4,558 4,573 4,656 700

Diekmann/K 3,242 400,911 257 400,654 18 157 2084 3 732 1,997 2,006 2,031 233

Diekmann/L 3,724 433,399 198 433,201 19 174 2284 3 921 2,200 2,209 2,236 262

Diekmann/M 136 426 0 426 0.009 0.021 1 0.003 0.028 5 12 2 4

Diekmann/N 136 418 0 418 0.006 0.021 1 0.002 0.027 5 12 2 4

Diekmann/O 569 314,160 0 314,160 30 100 1149 2 345 912 921 937 245

Diekmann/P 578 492,378 4 492,374 47 168 1837 4 635 1,563 1,573 1,606 324

Diekmann/Q 307 4,626 38 4,588 0.087 0.763 17 0.016 0.94 21 29 18 7

Diekmann/R 36 85 0 85 <1ms 0.006 0.311 <1ms 0.013 5 12 1 4

Diekmann/S 332 792 0 792 0.014 0.023 3 0.004 0.167 7 14 4 4

Diekmann/T 2,343 8,878 0 8,878 0.132 0.341 33 0.076 11 48 55 46 8

Diekmann/U 73 93 0 93 0.002 0.004 0.334 <1ms 0.002 5 12 2 5

Diekmann/V 43 65 0 65 0.001 0.005 0.236 <1ms 0.007 5 12 2 4

Diekmann/W 35 34 0 34 0.001 0.003 0.125 <1ms 0.002 5 11 1 4

Diekmann/X 92 78 0 78 0.002 0.006 0.265 <1ms 0.008 5 12 2 4

Fig. 16: Evaluation results for iptables rule-sets

	I Introduction
	II Background and Motivation
	II-A Background: Formal Network Analysis
	II-B Challenge: Expressiveness
	II-C Challenge: Precision and Minimality of PECs

	III Lattice-theoretical Framework
	III-A Technical Approach
	III-B Representation of Match Conditions via Element Types
	III-C *pec-representation as a DAG
	III-D Algorithm for Computing *pec
	III-E Answering Operator Questions via *pec-based Queries
	III-F Minimality of *pec

	IV Evaluation
	IV-A Implementations
	IV-A1 Three *pec-emptiness checking procedures
	IV-A2 Implementation of APV, ddNF and #PEC

	IV-B Datasets
	IV-C Case Study
	IV-D Performance Evaluation
	IV-D1 PEC-construction
	IV-D2 PEC-emptiness checking
	IV-D3 Comparison with Veriflow

	IV-E Discussion: Importance of Empty *pec

	V Related Work
	VI Concluding Remarks
	References
	Appendix A: Worst-case Complexity
	Appendix B: Implementation Details
	Appendix C: Proof: Minimality of PECs
	Appendix D: Detailed Experimental Results

