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Abstract. We introduce a modular verification approach to network control plane
verification, where we cut a network into smaller fragments to improve the scal-
ability of SMT solving. Users provide an annotated cut which describes how to
generate these fragments from the monolithic network, and we verify each frag-
ment independently, using the annotations to define assumptions and guarantees
over fragments akin to assume-guarantee reasoning. We prove this modular net-
work verification procedure is sound and complete with respect to verification
over the monolithic network. We implement this procedure as Kirigami, an ex-
tension of NV [23] — a network verification language and tool — and evaluate it
on industrial topologies with synthesized policies. We observe a 2–8x improve-
ment in end-to-end NV verification time, with SMT solve time improving by up
to 6 orders of magnitude.

1 Introduction

Networks have become incredibly vast and labyrinthine systems. To determine the best
paths routers may use to forward traffic, networks typically run distributed routing
protocols. Despite advances like software-defined networking, these protocols remain
widely used. They are controlled by millions of lines of decentralized, low-level router
configuration code. Operators must individually provision, maintain and reconfigure the
network’s devices over time. This overwhelmingly complexity has led to many notable
outages [42,47,49], with at times devastating pecuniary losses. More often than not, the
culprits behind these incidents are subtle network misconfigurations.

In response, researchers have developed a variety of verification tools and tech-
niques to catch errors before outages occur. Some [4,31,33–35,39,41,44] have targeted
the network data plane, which is responsible for forwarding traffic from point A to
point B. This work has produced scalable and performant methods for modeling the
data plane and checking properties of how packets traverse it.

The data plane is produced by the network’s control plane, which uses the afore-
mentioned routing protocols to decide which routes to use. Occasionally, these proto-
cols may update their choice of routes — e.g., following a device failure — and recom-
pute new paths. When this happens, the data plane is regenerated, and the user must
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repeat any data plane analysis. Obscure control plane faults can lead to further issues,
and manual verification by a human operator is an effort in locating what may be a
minuscule typo within a gargantuan morass of router configurations.

To address this problem, researchers have developed another suite of tools to an-
alyze the control plane [1, 6–8, 14, 16, 19, 21, 23, 50]. Control plane analyses consider
what routes will be used by the data plane in given network environments, and check
properties of the network in such environments. These tools can uncover bugs in real
networks, but unfortunately tend not to scale as well as their data plane counterparts.

One branch of control plane verification, starting from Minesweeper [6], encodes
a network as a Satisfiability Modulo Theories (SMT) formula and then asks an SMT
solver [5] to check properties of the encoded network. While SMT-based verification
has advantages over other approaches, such as its expressivity or applications in au-
tomated network repair [18], it nonetheless suffers from scalability issues. Prior work
has explored using abstractions to resolve this problem, e.g., using symmetries in net-
work topologies to compress networks [7,21]. These abstractions offer some relief, but
cannot always handle arbitrary non-symmetrical networks.

This paper offers another path forward in scaling SMT-based control plane verifi-
cation, by being the first to leverage the inherent modularity of the control plane to cut
a monolithic network into multiple fragments to be verified independently. Building on
prior work on assume-guarantee verification of modular programs [20,30], we present a
novel technique for modular verification of control planes and implement it as Kirigami,
an extension to the NV [23] network verification language and tool.

In a typical assume-guarantee verification approach, one can verify a safety property
P over a system of concurrent processes, by verifying each process independently, using
assumptions over the environment in which it runs and guarantees over how it modifies
this environment. The relationships between assumptions and guarantees (formulated
as assume-guarantee rules) are then checked, which allows one to conclude that if all
checks pass, then P holds for the monolithic system. Our verification technique mirrors
this idea: we verify a property over fragments (cf. processes) of the control plane, given
assumptions over the rest of the network and guarantees over our fragments, to conclude
that the monolithic network respects the property.

We start from an existing general model for distributed routing, the Stable Routing
Problem (SRP) model [7]. In an SRP, each node of the network exchanges routes with
its neighbors to compute a locally-stable solution. Like other work in control plane
verification [1, 8, 19, 40], we focus on networks (i.e., SRPs) with unique solutions. We
develop an SRP extension called “open SRPs”, in which a network receives routes
along a set of input nodes and sends out routes along a different set of output nodes.
We identify the solutions of our input nodes as our open SRP’s assumptions, and the
solutions of our output nodes as its guarantees. We present a procedure CUT which,
given an interface — a mapping from a cut-set of edges to routes — cuts an open
SRP S into two smaller open SRPs T1 and T2 covering S, and where each cut edge is
replaced by a route assumed in one SRP and guaranteed in the other. Interfaces can
follow a network’s natural boundaries, e.g., a data center network interface might be cut
according to its levels or hierarchy [2, 28, 29].
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As with the traditional (closed) SRP, we can check that an open SRP satisfies a
given safety property P by verifying that P holds for the SRP’s solutions. We prove
that if P holds on T1 and T2’s solutions, then it holds on S’s. This is the basis for our
modular network verification technique. Starting from a network S, an interface I, and
a safety property P, we use CUT(S, I) to obtain a set of N open SRPs T1, . . . ,TN that
are verified independently. We verify P and Ti’s guarantees for each open SRP Ti: if
either the property or interface’s guarantees do not hold, we return a counterexample
demonstrating the solution that does not satisfy P or I. We believe this to be the first
work to present a proven-correct general theory for automated modular verification of
arbitrary properties, and where we check the correctness of the given interface: prior
work on modular network verification like [31] considered specific architectures and
properties without any guarantee of correctness.

As SMT-based verification time typically grows superlinearly with the size of the
network [6], by verifying P on each of the N smaller open SRPs Ti, we can verify
P in a fraction of the time it takes to do so directly over the monolithic network S.
Our experiments demonstrate that this modular verification technique works well for a
variety of data center, random and backbone networks, with significant improvements
in SMT solve time: we show for one set of fattree [2] benchmarks that verifying the
fattree pod-by-pod cuts SMT time from 90 minutes to under 2 seconds; verifying every
node individually reduces SMT time to around a hundredth of a second. Overall, while
we are working on improving the engineering in NV for carving out partitions, we
already see a 2–8x speedup in end-to-end NV verification time. We also observe that a
modular approach assists in producing more localized errors and debugging feedback
in the cases when verification fails.

In summary, we make the following contributions:

A Theory of Network Fragments We develop an extension of the Stable Routing Prob-
lem (SRP) model [7] for network fragments. Our extension provides a method to
cut monolithic SRPs into a set of fragments. We define interfaces to cut SRPs and
map the cut edges to annotations which then define assumptions and guarantees
of our fragments. We prove that under these assumptions, if these guarantees hold,
then a property that holds in every fragment also holds in the monolithic network.

A Modular Network Verification Technique We present a technique to decompose a
monolithic network verification problem into multiple subproblems. We start from
an SRP S, an interface I and a property P, and cut S into a set of fragments. We
check each fragment’s guarantees and the given P independently and report whether
P holds for S, or if P or I fail to hold. This enables a novel, modular approach to
control plane verification based on assume-guarantee reasoning.

Fast, Scalable and Modular SMT Verification We implement Kirigami, a tool based
on this theory, as an extension for NV, a network verification language and tool [23].
Using Kirigami, we improve on NV verification in terms of scalability and perfor-
mance. SMT solve time using Kirigami is up to six orders of magnitude faster for
a selection of NV benchmarks.
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pod 0 pod 1 pod 2 pod 3
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(a) A fattree topology.

1 type attribute = int
2 let nodes = 20 (* topology *)
3 let edges = {
4 0=4; 0=6; 0=8; 0=10;(*...*)
5 10=18; 10=19; 11=18; 11=19;
6 }
7

8 let merge node x y = if x < y
then x else y

9 let trans edge x = x + 1
10 let init node = if node = 19n

then 0 else NULL

(b) An NV program fat.nv representing
Figure 1a.

1 include "fat.nv"
2

3 (* map each node to its solution (stable route) *)
4 let sol = solution { init = init; trans = trans; merge = merge; }
5 (* check a property [route <= 4] of every node's solution *)
6 assert foldNodes (fun node route acc -> acc && route <= 4) sol true

(c) An NV program asserting that every node can reach 19n in at most 4 hops.
Fig. 1: A fattree network S and its representation in NV. Node d (19n in NV)1propagates
an initial route to itself to the rest of the network.

2 Overview

The Stable Routing Problem. A network is a graph with nodes V representing routers
and edges E representing the links between them. A distributed control plane uses rout-
ing protocols to determine paths to routing destinations. Each router deploys its own
local rules to broadcast routing announcements (or routes) and select a “best” route: the
form of these rules varies with the protocol, but generally protocols focus on minimiz-
ing routing costs.

These elements — nodes and edges, a set of routes, and a set of rules to initialize,
compare and broadcast them — form the basis for our control plane routing model,
the SRP [7]. In a well-designed network, this exchange of routes eventually converges
to a stable state, where no node may improve on its current best route by selecting
another offered by a neighbor. A mapping from nodes to these stable routes is called a
solution L to the SRP. While it is possible for routing to diverge (i.e., have no solution)
or converge to multiple solutions, many typical networks have unique solutions (e.g.,
when routing costs strictly increase with distance to the destination [19,40]): we restrict
our focus in this paper to such networks, like other work [1, 8, 19, 40].

1 NV numbers nodes starting from 0n: our example numbers Figure 1a from left to right, i.e., 0n
is c0, 4n is a0, 12n is e0 and so on. “0=4” refers to a bidirectional edge between 0n and 4n.
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An Example SRP. Let’s consider an SRP instance S of a familiar fattree [2] data cen-
ter network, as shown in Figure 1a. Routing in fattree networks typically follows a Λ

shape: traffic that starts from an edge switch (e0, . . . ,e6,d) travels up along a link to an
aggregation switch (a0, . . . ,a7), then ascends from the pod to a core switch (c0, . . . ,c3)
in the spine before descending back down into another pod. For this example, our routes
will simply be the number of hops to some routing destination d. Initially d will know
a route with 0 hops to itself; the rest of the network starts with no route to d. Each
node broadcasts its route to d to all of its neighbors, incrementing the route by one
hop. Nodes will then compare each received route with their current choice and select
the one with the fewest hops. The unique solution LS(u) of a node u in S is thus the
best route between u’s initial route and the transferred solutions of each of u’s neigh-
bors. This toy policy elides the complexities of real routing protocols, which may have
dozens of fields, each with particular semantics, but demonstrates all the basic elements
of an SRP.

Verifying SRPs with NV [23]. We can verify properties of S’s solution to confirm our
beliefs about S’s behavior. For instance, we may wish to check that every node’s route
to d is at most 4 hops. One verification tool we can use to do so is NV [23]. NV is a
functional programming language for modeling control planes with an associated SMT
verification engine. An NV program’s components map onto those of an SRP: it has a
topology (nodes and edges); a type of routes (attribute); a function init to initialize
routes; a function trans to broadcast routes; and finally a function merge to compare
routes. Figure 1b presents a condensed NV program for Figure 1a.

Figure 1c demonstrates how to verify a safety property P in NV, where P holds
iff ∀u. L(u) ≤ 4. We define the solution (line 4) using init, trans and merge from
Figure 1b. We then assert (line 6) that P is true of this solution. When we supply Fig-
ure 1c to NV’s verification engine, NV encodes S and P as an SMT query, and confirms
that P holds for LS. Encoding the network to SMT lets us reason about network states
symbolically, avoiding state explosion when analyzing properties like fault tolerance or
reasoning about routes arriving from outside the network.

Scaling Up SRP Verification. SMT-based verification is expressive, but has issues
when it comes to scalability. Our evaluation in §7 shows that SMT verification scales
superlinearly for larger fattrees with more complex policies: from 0.03 seconds for a
20-node network, to 1.41 seconds for an 80-node network, and 1833.66 seconds for
a 320-node network! To verify the tens of thousands of switches in industrial fattree
networks [31], we must find a way to scale this technique.

Suppose then that we took a large network and cut it into fragments (defined for-
mally in §4), in order to verify a safety property P on each fragment independently.
In other words, if P holds for every node in every fragment, then it holds for every
node in the monolithic network; and otherwise, we want to observe real counterexam-
ples as in the monolithic network. To achieve this goal, our cutting procedure must also
summarize the network behavior external to each fragment.

We incorporate these summaries into the traditional SRP model by generalizing it
to open SRPs. Open SRPs extend the SRP model by designating some nodes as input
nodes and some others as output nodes. Input and output nodes are annotated with
routes representing solutions assumed on the inputs and guaranteed on the outputs. We
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e0

a0

e1

a1

c0 c1 c2 c3

22 2 2

(a) SRP fragment Tp0

a0 a1 a2 a3 a4 a5 a6 a7

c0 c1 c2 c3

33 1 133 3 3

(b) SRP fragment Tspines

Fig. 2: SRP fragments Tp0 and Tspines, with input nodes in blue, output nodes in yellow
and assumptions written in red.

express these annotations using an interface: a mapping from each cut edge to a route
annotation. Given an open SRP S and an interface I, we cut S into open SRP fragments,
where each fragment identifies assumptions on its inputs and guarantees on its outputs.

Cutting Down Fattrees. We will now move on to demonstrating this idea for Figure 1.
Let’s cut each pod of our network into its own fragment Tp0 through Tp3, leaving the
spine nodes as a fifth fragment Tspines. Figures 2a and 2b show pod 0 and the spines
of Figure 1 as open SRPs Tp0 and Tspines, respectively. In Tp0, we assume routes from
the spines and check guarantees on a0 and a1. An assumption in one fragment will be
guaranteed by another (and vice-versa): we assume a0 has a route of 3 hops in Tspines
and check that it has a route of 3 hops in Tp0.

Verifying Network Fragments. In modular verification, we perform an independent
verification query for each fragment: we encode the open SRP and property, along with
an assumptions formula assuming a state of the inputs and a guarantees formula to
check on the state of the outputs. We then submit every query to our solver and ask if
the network has a solution where, under the given assumptions, either the property is
false (as before) or the guarantees formula does not hold. Our solver then searches for
a counterexample demonstrating a concrete violation of the property or our guarantees.
Guarantee violations provide evidence of possible bugs in our network implementation
or mistakes in our beliefs, in the same way that property violations do.

Let us consider our fattree network again. Suppose we misconfigured a6 to black
hole (silently drop) traffic, leading nodes a0, a2 and a4 to re-route via the other nodes
a1,a3,a5 in their respective pods. Our interface maps c0a0 to 2, so we check that
Lspines(c0) = 2 when verifying Tspines. Due to our bug, this check fails and our solver
returns a counterexample: because c0 must reroute, Lspines(c0) = 6. We can then modify
our network configuration to fix the bug, and re-run verification to confirm that our guar-
antees and property hold for all fragments. We prove in §4 that this implies that P holds
for the monolithic network. Our guarantees can thus be thought of as a specification of
the desired network behavior along its cut points, in addition to P.

Verifiable Network Cutting with Kirigami. As part of our work, we implemented an
extension Kirigami to NV for cutting and verifying networks. Figure 3 shows an NV
file with two new functions, partition and interface. partition assigns each node
to a fragment, while interface adds assertions that check that a route x along a cross-
fragment edge is equal to the specified annotation, e.g., that the route from 0n to 4n is 2
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1 include "fat.nv"
2

3 let partition node = match node with
4 | 0n | 1n | 2n | 3n -> 0 (* spines *)(*...*)
5 | 10n | 11n | 18n | 19n -> 4 (* p3 *)
6

7 let interface edge x = match edge with
8 | 0~_ | 1~_ | 2~_ | 3~_ -> x = 2
9 | 4~_ | 5~_ | 6~_ | 7~_ | 8~_ | 9~_ -> x = 3

10 | 10~_ | 11~_ -> x = 1
11

12 let sol = solution { init = init; trans = trans; merge = merge;
interface = interface }

13 assert foldNodes (fun node route acc -> acc && route <= 4) sol true

Fig. 3: An NV program which cuts Figure 1 into pods (some node and edge cases not
shown).

hops. Under the hood, we cut the network using partition to generate our fragments,
and then annotate the cuts using interface; verification can then proceed as described.

A Cut Above the Rest. Pod-based cuts suit our high-level understanding of fattrees,
but we can consider many other cuts. We could cut Figure 1 so that every node is in
its own fragment. Verifying a single node in SMT is extremely cheap, and hence leads
to significant performance improvements. The corresponding NV program resembles
Figure 3, except every node maps to its own fragment and we annotate every edge.

Next Steps. The rest of the paper proceeds as follows. §3 presents prior work formal-
izing SRPs, and §4 presents our extensions for cutting SRPs, with proofs of soundness
and completeness of our procedure. We present our SMT checking procedure in §5, and
the implementation of our theory in §6 as Kirigami, an extension of NV. We evaluate
Kirigami in §7. We discuss related work in §8, and future work in §9.

3 Background on the Stable Routing Problem

We summarize prior work [7] on the Stable Routing Problem (SRP) network model.
Many components of this model resemble routing algebras used for reasoning about
convergence of routing protocols [11,26,48], but SRPs also include a network topology
for reasoning about properties such as reachability between nodes.

An SRP instance S is a 6-tuple (V,E,R, init,⊕, trans), defined as follows.

Topology. V is a set of nodes and E ⊆V×V is a set of directed edges between them. We
write uv for an edge from node u to node v. Edges may not be self-loops: ∀v∈V. vv /∈ E.

Routes. R is a set of routes that describe the fields of routing messages. For example,
when modeling BGP, R might represent a tuple of an integer local preference, a set of
community tags, and a sequence of AS numbers representing the AS path [9, 46].
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a
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(a) An open SRP S

a
b

c

d

e

(b) An open SRP T

a
b

d

e

(c) An open SRP U
Fig. 4: A series of successive cuts which produce open SRPs S, T and U . Base nodes
are shown in grey, input nodes in blue and output nodes in yellow. Cuts between input
and non-input nodes are shown in red.

Node Initialization. The initialization function init : V →R describes the initial route of
each node. When modeling single destination routing, init may map a destination node
d to some initial route rd , and all other nodes to a null route; in multiple destination
routing, we may have many initial routes.

Route Update. The merge function ⊕ : R×R→ R defines how to compare and merge
routes. ⊕ represents updates of a node’s selected route: we assume ⊕ is associative and
commutative, i.e., the order in which a sequence of routes are merged does not matter.

Route Transfer. The transfer function trans : E×R→R describes how routes are modi-
fied between nodes. Given an edge uv and a route r from node u, trans(uv,r) determines
the route received at v.

Solutions. A solution L : V → R is a mapping from nodes to routes. Intuitively, a solu-
tion is defined such that each node is locally stable, i.e., it has no incentive to deviate
from its currently chosen neighbors. Nodes compute their solution via message ex-
change, where each node in the SRP advertises its chosen route to each of its neighbors.
Formally, an SRP solution L satisfies the constraint:

L(v) = init(v)⊕
⊕
uv∈E

trans(uv,L(u)) (1)

where
⊕

is the sequence of⊕ operations on each transferred route trans(uv,L(u)) from
each neighbor u of v. These received routes are merged with v’s initial value init(v).

A solution may determine an SRP’s forwarding behavior or another decision-making
procedure, as shown in [7]. We omit discussing forwarding behavior in this work to fo-
cus on a general SRP definition without restricting ourselves only to forwarding.

4 Cutting SRPs

We now introduce our original contributions, starting with open SRPs. We define a frag-
ment relation between a smaller open SRP and a larger one, and define a CUT procedure
to decompose one open SRP into a partition of two fragments. We prove soundness and
completeness of partition solutions with respect to the larger SRP’s solution.

Notation. We introduce some notation in this section that may be unfamiliar. dom( f )
is the domain of the function f , and f |X is the restriction of f to X ⊆ dom( f ). We use
subscripts to specify SRP components, e.g., initS refers to SRP S’s init component.
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Open SRPs. An open SRP generalizes our earlier SRP definition to include assumptions
and guarantees. An open SRP instance S is an 8-tuple (V,E,R, init,⊕, trans,ass,guar).

The first six elements are defined exactly as for regular (closed) SRPs. The final two
elements, ass (“assumptions”) and guar (“guarantees”), are partial functions (V ↪→ R)
mapping mutually disjoints subsets V in,V out ⊆ V to routes. We use V in (input nodes)
as a shorthand for dom(ass) and V out (output nodes) as a shorthand for dom(guar). All
nodes that are neither input nor output nodes are “base nodes” V base. A closed SRP is
an open SRP where V in =V out =∅. Going forward, we assume an open SRP whenever
we write “SRP”, except when the distinction is relevant.

Input nodes must be source nodes (in-degree = 0). Hence, they act as auxiliary
nodes, indicating where a fixed incoming route “arrives” from outside the SRP, as spec-
ified by the assumptions ass. Output nodes correspondingly mark where routes “de-
part” the SRP, per the guarantees guar. We do not require any connectivity properties
of output nodes: we think of them as simply identifying an outgoing route we wish to
guarantee, but without requiring the SRP to tell us whither it is announcing that route.2

Figure 4 illustrates this concept with some example open SRPs and cuts.

Definition 1 (Open SRPs). An open SRP instance S = (V,E,R, init,⊕, trans,ass,guar)
respects the following properties:

– V =V in∪V out ∪V base and V in,V out,V base are pairwise-disjoint;
– ass : V in→ R and guar : V out→ R; and
– ∀v ∈V in. in-degree(v) = 0.

Open SRP Solutions. A mapping L is a solution to an open SRP iff :

L(u) = init(u)⊕
⊕
vu∈E

trans(vu,L(v)) ∀v /∈V in (2)

L(u) = ass(u) ∀v ∈V in (3)
L(u) = guar(u) ∀v ∈V out (4)

Note that Equations (2) and (4) both apply for all outputs v ∈ V out. Solutions for open
SRPs resemble closed SRP solutions, with the addition of constraints based on the
values of ass and guar. For any input node u, its assumption ass(u) determines the
node’s solution directly; for an output node u, its solution L(u) must be consistent
with both the right-hand side of (2) and the right-hand side of (4). Hence, if ∃u ∈
V out. init(u)⊕

⊕
vu∈E trans(vu,L(v)) 6= guar(u), there is no solution to the open SRP.

As with closed SRPs, we restrict our focus to open SRPs with unique solutions.

Fragments. We now introduce a fragment relation between two open SRPs. We may
think of an open SRP as composed of fragments of smaller open SRPs, where each
fragment represents its connection to the rest of the larger SRP with assumptions and
guarantees. Consider the series of open SRPs in Figure 4. One can think of T (Figure 4b)
as a fragment representing part of S (Figure 4a). To go from S to T , we can cut e off from

2 This is partly a design choice: we could have also attached auxiliary nodes to output nodes to
indicate where these routes are going, but we found this definition the most straightforward.
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S to obtain a network with new input nodes which summarize the rest of the network
with assumptions. One can fragment T further by cutting off b from the remaining
nodes: this produces an even smaller fragment U (Figure 4c).

Definition 2 (Fragments). Let S and T be open SRPs. T is a fragment of S when:

VT ⊆VS ET = {uv | u ∈VT ,v ∈VT ,uv ∈ ES,v /∈V in
T } (5)

RT = RS ⊕T =⊕S (6)
initT = initS|VT transT = transS|ET (7)

V in
T = (V in

S ∪{v | uv ∈ ES,u /∈VT})∩VT (8)

V out
T = (V out

S \V in
T ∪{u | uv ∈ ES,v /∈VT})∩VT (9)

∀u ∈ (V in
T ∩V in

S ). assT (u) = assS(u) (10)
∀u ∈ (V out

T ∩V out
S ). guarT (u) = guarS(u) (11)

Informally, the fragment T is made up of a subgraph of S over nodes VT , conserv-
ing all edges from ES between them, except any edges into input nodes (5). Routing
and routing functions of S are as before (6) or restricted over T ’s topology (7). Fi-
nally, T designates nodes whose neighbors have been cut as inputs (8) (summarizing
the network “outside” T ) or outputs (9) (communicating a summary to the “external”
network), while preserving any assumptions (10) and guarantees (11) inherited from S.

Interfaces and Cutting SRPs. The fragment relation leaves unspecified how a smaller
SRP’s assumptions and guarantees summarize its parent’s routes. We now consider how
to cut an SRP S into two fragments T1 and T2, where T1 and T2 cover S and replicate
its behavior with the help of their assumptions and guarantees. We do so by selecting a
cut-set C ⊆ E of edges in S and annotating each cut edge uv with a route that describes
the solution transferred from u to v. We call this annotated cut-set an interface I.

Definition 3 (Interface). Let S be an SRP and let C ⊆ E be a cut-set partitioning VS.
I : C→ RS is an interface if it maps every element uv of C to a route I(uv) in RS.

We now define a CUT procedure. Given an SRP S and an interface I, CUT(S, I)
returns a partition of two SRP fragments, T1 and T2. Nodes along the cut edges are
annotated with assumptions and guarantees. We can recursively CUT an SRP into arbi-
trarily many fragments. We elide the structural details of how CUT divides the nodes of
S between T1 and T2 for now: curious readers should see Appendix A.

What is most important about CUT is that it defines T1 and T2 to have equal assump-
tions and guarantees along each cut edge. For each edge uv in our interface I, CUT(S, I)
adds a guarantee guar(u) = I(uv) in T1 and an assumption ass(u) = I(uv) in T2 (or vice-
versa). By requiring this equality, we rely on the stability of an open SRP’s solution to
avoid the issue of circularity in assumptions. The edge uv now shows a route I(uv) “ar-
riving” in T2 after “departing” from T1. As u’s solution is both assumed in one fragment
and guaranteed in the other, we refer to it as an input-output node. We illustrate this
idea in Figure 5, which shows how an interface defines assumptions and guarantees for
input-output nodes c0 and a0 from Figure 2.
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a0

c0

guar(c0) = 2

ass(a0) = 3

Tspines

a0

c0

ass(c0) = 2

guar(a0) = 3

Tp0

a0

c0

I(c0a0) = 2

I(a0c0) = 3

S

Fig. 5: A closeup of how CUT defines input-output nodes c0 and a0 from I.

Definition 4 (Input-output nodes). Let T1 and T2 be two open SRPs with a set (V in
1 ∩

V out
2 )∪ (V in

2 ∩V out
1 ) of shared nodes. A node u in this set is an input-output node iff

ass1(u) = guar2(u) or ass2(u) = guar1(u).

Because CUT produces input-output nodes, we can reason over the solutions of both
fragments separately, using the assumptions and guarantees of our input-output nodes
to confirm that the solutions coincide along our cut. We can now define a partition as a
relation between T1 and T2 and S.

Definition 5 (Partition). Let S, T1 and T2 be open SRPs. (T1,T2) is a partition of S when
(i) T1 and T2 are both fragments of S, (ii) V1∪V2 =VS and E1∪E2 = ES, (iii) every input
node in T1 or T2 that is not an input node in S is an input-output node.

We present the full definition of a partition — which includes some corner cases
for when two fragments share the same input node — in Appendix A: these details
are not required to understand our theorems. We prove that our CUT procedure always
produces a partition, and subsequently prove that if T1 and T2 are a partition of S, then
the joined solutions of T1 and T2 are a solution of S (soundness); and that if S has a
solution, then there always exists an interface I that given to CUT produces a partition
of two fragments T1 and T2 such that the solution of S is a solution (when appropriately
restricted) for T1 and T2 (completeness).

Definition 6 (CUT). Let S be an SRP and let I be an interface over S. Given S and I,
CUT(S, I) = (T1,T2), where T1 and T2 are a partition of S such that ∀uv ∈ dom(I), u is
an input-output node between T1 and T2.

Correctness. We now prove theorems on the relationships between an SRP’s solution
and the solutions of its CUT-produced fragments. By showing that the fragments’ so-
lutions are the same as the monolithic SRP’s, we can use the fragments in place of the
monolithic SRP during verification of a property P. Proofs can be found in Appendix A.

We start by proving that the solutions of the fragments T1,T2 are a solution to the
monolithic SRP S: each node of S is mapped to its fragment solution, with S’s input
nodes mapping to their expected assumptions.

Theorem 1 (CUT is Sound). Let S be an open SRP, and let I be an interface over S. Let
CUT(S, I) = (T1,T2). Suppose T1 has a unique solution L1 and T2 has a unique solution
L2. Consider a mapping LS

′ : VS→ R, defined such that:

∀v ∈V1. LS
′(v) = L1(v)

∀v ∈V2. LS
′(v) = L2(v)

∀v ∈V in
S . LS

′(v) = assS(v)
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Then LS
′ is a solution of S.

We can also always find a suitable interface I to cut S, such that T1 and T2 have the
same solution as S for each node: we simply annotate each cut edge uv with the solution
LS(u), which would be the solution transferred from u to v in S.

Theorem 2 (CUT is Complete). Let S be an open SRP, and let I be an interface over
S. Let CUT(S, I) = (T1,T2). Assume S has a unique solution LS. Assume that ∀uv ∈
dom(I). I(uv) = LS(u). Consider the following two mappings L1

′ : V1 → R and L2
′ :

V2→ R, defined such that:

∀v ∈V1. L1
′(v) = LS(v)

∀v ∈V2. L2
′(v) = LS(v)

Then L1
′ is a solution for T1 and L2

′ is a solution for T2.

Finally, our proof of soundness implies that any property that holds over the solu-
tions of our fragments will hold over the solutions of our monolithic network.

Corollary 1 (CUT Preserves Properties). Let S be an open SRP, and let I be an inter-
face over S. Let CUT(S, I)= (T1,T2). Let P1,P2 be formulas such that P1 = ∀v∈V1. Q(v)
and P2 = ∀v ∈ V2. Q(v), where Q is a predicate on L(v). Assume S has a unique solu-
tion LS, and that T1 has a solution L1 and T2 has a solution LS. Then if P1 holds on T1
and P2 holds on T2, P1∧P2 holds on S.

5 Checking Fragments in SMT

We now present our three-step modular verification methodology: (i) given an SRP S
and an interface I, produce N fragments using CUT(S, I), as defined in §4; then (ii) en-
code each fragment to SMT and check its guarantees and a safety property P under the
given assumptions; and (iii) if any guarantees fail, let the user refine I or correct net-
work bugs. By our theoretical results, when our SMT solver verifies P for these smaller
fragments, we can conclude that it would have verified P for the monolithic SRP.

Creating Interfaces. For now, we treat our interfaces as given, meaning they function
similarly to user-provided annotations in an annotation checking tool such as Dafny [37].
Hence, our checking algorithm acts as an analogous tool to verify beliefs about the net-
work. In this sense, interfaces are user-provided specifications to the verifier.

Another way to create interfaces is to infer them: starting from a small amount of
given information, say the initial route to a single destination, we could infer routes
through the rest of the network. While we do not yet consider interface inference, we
believe it is a fruitful direction for future work, and discuss doing so in §9.

The Fragment Checking Algorithm. Algorithm 1 shows how we cut an SRP and
check the three constraints on open SRP solutions (described in §4) on each of the
fragments. We start in the CHECK procedure on line 1.6. CHECK calls CUT(S, I) to cut
S into fragments, and then calls SOLVE (line 1.1) on each fragment, reporting any SAT
result it receives back from the solver. SOLVE encodes (2) on line 1.2, (3) on line 1.3
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Algorithm 1 The fragment checking algorithm.
1: proc SOLVE(fragment T , property P)
2: N← ENCODE(T ) . closed SRP LT constraints (1)
3: A←

∧
u∈V in

T
LT (u) = assT (u) . ass constraints (3)

4: G←
∧

u∈V out
T

LT (u) = guarT (u) . guar constraints (4)
5: return ASKSAT(A∧N∧¬(G∧P))

6: proc CHECK(SRP S, property P, interface I)
7: T1, . . . ,TN ← CUT(S, I)
8: for i← 1,N do
9: r←SOLVE(Ti,P)

10: if r 6= UNSAT then
11: return r
12: return UNSAT

and (4) on line 1.4. Since we are interested in knowing if G or P are ever violated, our
final formula is the conjunction of ENCODE(T ) and A with the negation of G∧P (line
1.5). ASKSAT asks our solver if this formula is satisfiable, and returns either SAT with a
model, or UNSAT. This model will be a quasi-solution LT to T where the ENCODE(T )
and A constraints hold, but ∃u ∈V out

T . LT (u) 6= guarT (u) (guarantee violation) or ∃u ∈
VT . ¬P(u) (property violation). Otherwise, if the solver returns UNSAT, then either S
has no solution or the guarantees and property always hold.

Refining Interfaces. If every fragment returns UNSAT, by Corollary 1, we conclude
that if there exists a solution to each fragment, then P and G hold and the interface is
correct. On the other hand, if any fragment returns SAT, we must determine why our
property or guarantees were violated. For example, in §2, we considered if our interface
correctly captured the intended network behaviour, but a bug in the network policy
led to a guarantee violation. If the reverse were true — the network was configured
correctly, but our interface is incorrect — we must refine our interface to correct it.

By Theorem 1, we know that any incorrect interface will not define a solution in
T1 and T2, meaning our guarantee constraint in SOLVE fails and a counterexample is
returned. This counterexample may then inform a new interface we can provide in a
successive run of CHECK. Returning to our fattree fragments in Figure 2, suppose our
interface provided the incorrect annotation I(a0c0) = 1. This generates an unattainable
guarantee guar0(a0) = 1, meaning we can reach d in one hop from a0. SOLVE(Tp0,P)
returns SAT, providing L0(a0) = 3 as a counterexample which violates this guarantee.
We can then create a new interface with I(a0c0) = 3 and re-run verification: if no further
annotations are incorrect, then SOLVE(Tp0,P) will report UNSAT.

6 Implementation

Our Kirigami extension adds partition and interface functions to the NV language:
when a user runs NV on a file that declares these functions, NV cuts the SRP into a set
of fragments as part of a partitioning step. Each fragment is generated as described by
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Definition 6 of CUT. Most of the partitioning step deals with restricting the monolithic
init and trans functions. We create N copies of the initial NV file and traverse the AST
of each to update any references to the topology. This implementation is currently not
optimized and performs redundant work, which can be improved to reduce overhead
when partitioning large policies.

Beyond assigning nodes and edges to fragments using partition and interface,
Kirigami also decomposes the properties we wish to test. Many useful end-to-end prop-
erties can be expressed as predicates over individual node solutions, including reach-
ability, path length, waypointing, black holes and fault tolerance [6]. These properties
can be decomposed into separate assertions over the nodes of each fragment: if no frag-
ment reports a property violation, we can then conclude that the property holds for the
monolithic network as well, as proven in Corollary 1.

Kirigami’s SMT encoding follows Algorithm 1, using NV’s monolithic SRP encod-
ing as the encoding function ENCODE. As discussed above, the solver returns a SAT or
UNSAT response for each fragment to the user. Any fragments that return SAT provide a
solution violating the guarantees or properties, allowing us to determine if the violation
indicates a problem with our network policy or interface.

7 Evaluation

We evaluated Kirigami on a variety of NV benchmarks representing fattree, random
and Internet topologies.3 Our questions focus on the scalability and performance of
Kirigami in comparison to NV, specifically: (i) does Kirigami improve on NV veri-
fication time across topologies and properties, and (ii) how do different cuts impact
Kirigami performance? We consider two metrics for verification time: the maximum
time reported to verify an SMT query encoding the monolithic network or fragment
using the Z3 [12] SMT solver;4 and the “total time” of NV, which is the time taken by
NV’s pipeline of network transformations, partitioning (for cut networks), encoding to
SMT and solving every query sequentially.

We ran each benchmark on a computing cluster node with a 2.4GHz processor and
up to 24GB of memory per benchmark. Each benchmark tested verification of either
the monolithic network or a cut network, and we ran each benchmark for 5 trials and
took the average time. We used two timeouts: an 8-hour timeout on NV as a whole
and a 2-hour timeout on Z3. The NV timeout prevented fragments from spending too
long partitioning or solving multiple Z3 queries, while the Z3 timeout also ensured that
benchmarks did not spend too long solving any single fragment’s SMT query.

Fattrees. To evaluate Kirigami’s performance for fattrees, we made use of the shortest
path policy SP and valley-free policy FAT described in [23], along with an original
fault-tolerance policy MAINT. MAINT extends SP by requiring that nodes avoid routing
through a non-destination node down which is currently down for maintenance: routes
advertised by down will be dropped. We encode down as a symbolic value, meaning
that we check that routing bypasses the down node for all concrete choices of down.

3 All of our benchmarks are available or adapted from those at [22].
4 We take the maximum query time as each fragment SMT query is independent of the others

and hence could be parallelized on a multi-processor platform or a cluster of servers.
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As in [23], we parameterize fattree designs by k, the number of pods: we vary the
topology size from k = 4 (20 nodes) to k = 20 (500 nodes) to assess scalability. Fur-
thermore, we consider four different cuts of our fattree networks:

– Vertical: creates 2 fragments, each with half the spines and half the pods;
– Horizontal: creates 3 fragments: the pod containing the routing destination, the

spines, and all the other pods;
– Pods: creates k+1 fragments (given k pods): the spines and each pod in their own

fragment; and
– Full: creates |V | fragments (given |V | nodes), with every node in its own fragment.

We generate interfaces automatically using shortest paths algorithms, irrespective of
the kind of cut. For SP, a standard shortest-paths computation is sufficient; for FAT,
we track the level of a route to block valleys [17, 43]; and for MAINT, we use Yen’s 2-
shortest paths algorithm [51]: this gives us the shortest and second-shortest path (taken
if down lies on the shortest path) to the destination from each node. For our interface,
we then assign a route to each cut edge depending on the value of down.

We compare the SMT verification time for monolithic benchmarks versus their cut
counterparts in Figure 6 for each of our policies. We plot the number of nodes in the
monolithic benchmark against the maximum time spent by Z3 solving the SMT queries:
for monolithic networks, there is only a single query, while for cut networks, we have
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N queries. Note that SMT time is shown on a logarithmic scale. All three policies show
extreme improvements in SMT time as the number of fragments grows. The maximum
SMT time for a full cut fragment of our largest SP network considered is six orders of
magnitude faster than the baseline monolithic time. The FAT policy’s SMT encoding is
most complex, leading to Z3 timeouts for the monolithic FAT16 and FAT20 benchmarks.

We compare total time (i.e., with no parallelization) in Figure 7 for the largest fattree
benchmarks of each of our three policies for different cuts. The relationship between
cuts is similar for the smaller benchmarks. We distinguish SMT time from non-SMT
(partitioning, encoding, etc.) time, and see that across policies, SMT time takes up the
majority of total time for the monolithic benchmarks and vertically-cut benchmarks,
but other operations then dominate for the remaining cuts. This leads the horizontal and
pods cuts to perform the best overall relative to the monolithic benchmark, completing
2–8x faster. The FAT20 full cut benchmark times out partway through solving due to the
time spent partitioning and encoding, but all other cuts complete before the NV time-
out. As mentioned above, NV’s partitioning step is under-optimized: hence, we consider
slowness outside SMT to be surmountable following improvements to Kirigami’s par-
titioning and NV’s encoding steps.

Random Networks. We also assess Kirigami on random networks. We generate topolo-
gies of N nodes using the Erdős–Rényi–Gilbert model [13,24], where each edge has in-
dependent probability p of being present. To assess scalability, we vary N and p in our
experiments according to a parameter x where N = 2x and p = 22−x for x ∈ [4,12]5. We
use a shortest-path policy based on SP for these networks. Our interfaces are generated
by a shortest paths algorithm and cut the network fully.

We show the SMT solve times for these benchmarks in Figure 8. As expected,
monolithic verification hits our Z3 timeout at N = 256; fully partitioning allows us to
verify all larger benchmarks in under 6 minutes over all SMT queries, with no individual
query taking longer than a minute.

Backbone Networks. To assess Kirigami more fully, we expand our evaluation to back-
bone network topologies from the Internet Topology Zoo [36]. We consider three net-
works: a 41-node topology B41, a 174-node topology B174 and 754-node topology
B754. B41 is an educational network with a more clustered topology: its policy uses
shortest-path routing where routes transiting [17] through AS customers or peers is
disallowed. The larger topologies are less structured and hence use standard shortest-

5 As our topologies are not always fully connected, we expect NV to return property violations
as appropriate, and otherwise for all checks to pass.
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path routing as in SP. We use a graph partitioning tool, hMETIS [32], to compute N
fragments of each topology. The computed fragments minimize the number of edges
cut between fragments, and capture clustering behavior of the topology, while keep-
ing fragments as close in graph order as possible. We consider N = 2,4,7,41 for B41,
N = 2,4,20,174 for B174, and N = 2,4,8,25,75,754 for B754.

We show that larger cuts lead to greater reductions in SMT solve time for these
benchmarks in Figure 9. As for fattrees, the lowest total times tend to be lowest for
larger non-full cuts (N = 20 for B174 and N = 75 for B754).

8 Related Work

Data Plane Analysis. Much prior work has analyzed properties of the network data
plane [4, 31, 33–35, 39, 41, 44]. These tools operate on snapshots of the data plane —
representing the global forwarding state at a single point in time — and verify that
forwarding properties are satisfied.

Our approach most closely resembles the work of Jayaraman et al. on SECGURU
and RCDC [31]. SECGURU verifies reachability using invariants it infers from specific
data center topologies: our work develops a formal theory to verify arbitrary properties
and invariants as specified by a user’s interface, provides a framework for doing so
automatically and instead focuses on the control plane.

Another relevant work is that of Plotkin et al. [44]. They demonstrate the use of
bisimulations to relate simpler networks and formulas to more complex ones, improving
verification scalability. Modular verification is recognized as a viable direction but left
as future work; we focus on using modular verification in the control plane.

Control Plane Analysis. Our open SRP model builds on prior work on formal models
of control planes: in particular, the SRP model of Bonsai [7], which presents a topol-
ogy with an attached routing algebra. Unlike other prior work [11, 25, 26], we ignore
questions of network convergence and assume a unique solution exists to our network.

Many control plane verification tools address scalability by abstracting routing be-
haviors, rather than modularizing the network. Abstraction necessarily loses precision,
which can limit the properties or networks considered. Bonsai [7] and Origami [21]
are perhaps closest to our work in that they seek to compress large concrete networks
to smaller abstract networks which soundly approximate the original. Both tools use
abstraction refinement to find abstract networks and use a similar formal model to our
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own. Compression requires similar forwarding behavior across multiple nodes of the
network; our cutting approach avoids this restriction.

ShapeShifter [8] checks control plane reachability by simulating the network using
abstract routes determined by abstract interpretation. They define an asynchronous net-
work semantics for routing; we instead model the network’s converged state using open
SRPs. ShapeShifter’s abstractions sacrifice precision, unlike our technique.

Our SMT encoding is inspired by Minesweeper [6], although we do not consider
packet forwarding (only routing) and Minesweeper cannot perform modular verifica-
tion. Plankton [45] uses explicit-state model checking to check a comparable set of
properties to Minesweeper and use a network semantics similar to ShapeShifter’s. They
avoid state explosion using heuristic reductions that work well for the networks con-
sidered. Our approach is more general and avoids explicitly exploring network states
by using SMT. Other control plane analyses also do not consider modularizing the
network, and many are more restrictive than our approach: either limited to specific
network properties [1, 14, 19] or to specific protocols [50].

Modular Verification. As mentioned above, our work borrows from the compositional
verification technique of assume-guarantee reasoning [3, 15, 20]. Such reasoning has
been widely used in software, hardware and reactive systems [15, 27, 30]. While [38]
applies assume-guarantee reasoning in network congestion control, assume-guarantee
appears to be under-explored in analyzing routing. Instead of modeling processes, we
model network fragments, whose shared environment is their input and output nodes.
By requiring a partition’s assumptions and guarantees to be equal, our reasoning avoids
the common pitfall of circularity by relying on the stability of an open SRP’s solution.

9 Discussion & Future Work

Choosing Cuts. This paper answers two major questions about network partitions: first,
given a network cut, can we verify properties of a monolithic network using its frag-
ments? Second, does verifying the fragments scale better than verifying the monolithic
network? We leave unanswered a third critical question: where should we cut?

As we saw in our evaluation, verification time is inversely proportional to the num-
ber of fragments. However, this introduces a tradeoff: for every edge our interface cuts,
we must supply another annotation. How easy it may be to annotate a given edge de-
pends on many factors: who manages the network (e.g., private organizations vs. the
internet), how policy is determined along the edge, etc. Nonetheless, by making these
factors explicit using interfaces, we make it easier to understand the monolithic behav-
ior of legacy networks, thereby improving their safety and long-term robustness.

Future Directions. Our theoretical framework provides a foundation for two promis-
ing avenues for future work: abstracting our interface annotations and inferring inter-
faces automatically. Using abstract annotations — annotating with a set of routes, e.g.,
I(uv) = {n | 0 ≤ n ≤ 4}, instead of a concrete route I(uv) = 4 — we could potentially
simplify the task of annotating the network by over-approximating the set of routes we
assume. Interface inference, perhaps building on our manual refinement process in §5,
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could further simplify this task: we hypothesize a viable technique might use counterex-
amples to automatically refine our initial interface as a series of verification passes [10].

Conclusion. We demonstrate that scalability in control plane verification can be achieved
by leveraging networks’ inherent modularity. We prove that we can verify a property of
a network by verifying it independently across fragments of the original, and present a
procedure to do so. We implemented this procedure in NV as Kirigami and show that it
succeeds in verifying NV benchmarks with dramatic improvements in SMT time.
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A Proofs

Cuts Form Partitions. We start by stating the formal definition of a cut from §4. For our
formal definition of CUT, we add an additional structural restriction over our interface
I to simplify some of our definitions. Essentially, we will require that, given an SRP
S, I cuts S along its base and output nodes. Formally, for an SRP S, let the input-free
graph of S be (VS \V in

S ,{uv | u,v ∈VS \V in
S }), i.e., the induced subgraph of S’s base and

output nodes. If we cut the input-free graph into (W1,W2), we then can assign the input
nodes of S to the two fragments in order to cover S: V in

S is disjoint from W1 and W2 and
VS = W1 ∪W2 ∪V in

S . Any input node u ∈ V in
S which has an edge uv to a node v in W1

(respectively W2) is also an input node u ∈ V in
1 (respectively V in

2 ). Importantly, if there
exists u,v1,v2 ∈ VS and uv1,uv2 ∈ ES, if v1 ∈W1 and v2 ∈W2, then u is a shared input
in both T1 and T2, i.e., u ∈V in

1 ∩V in
2 .

Definition 7 (CUT). Let S be an SRP. Let (W1,W2) be a cut of the input-free graph of S
where C is a cut-set of edges {uv ∈ ES | (u ∈W1∧ v ∈W2)∨ (u ∈W2∧ v ∈W1)}. Let I
be an interface over S such that dom(I) is equal to C. Then CUT(S, I) = (T1,T2) where
the following properties hold for i ∈ {1,2}:

V in
i = {u | u ∈V in

S ∧∃uv ∈ ES. v ∈Wi}∪{u | ∃uv ∈ dom(I). v ∈Wi}
V out

i = {u | u ∈Wi∧u ∈V out
S }∪{u | ∃uv ∈ dom(I). u ∈Wi}

Vi =Wi∪V in
i

Ei = {uv | u,v ∈Vi∧uv ∈ ES}
Ri = RS

initi = initS|Vi

⊕i =⊕S

transi = transS|Vi

assi(u) =

{
assS(u) if u ∈V in

S

I(uv) if uv ∈ dom(I)∧ v ∈Vi

guari(u) =

{
guarS(u) if u ∈ (V out

S \V in
i )

I(uv) if uv ∈ dom(I)∧ v /∈Vi

We now state the partition relation that summarizes the properties CUT(S, I) en-
sures.

Definition 8 (Partition). Let S, T1 and T2 be open SRPs. (T1,T2) is a partition of S
when:

– T1 and T2 are both fragments of S
– V1∪V2 =VS and E1∪E2 = ES
– Input-output constraints: every input or output that is not inherited from the parent

is an input-output node:
• V in

1 \V in
S ⊆V out

2
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• V in
2 \V in

S ⊆V out
1

• V out
1 \V out

S ⊆V in
2

• V out
2 \V out

S ⊆V in
1

• ∀v ∈ (V in
1 \V in

S ). ass1(v) = guar2(v)
• ∀v ∈ (V in

2 \V in
S ). ass2(v) = guar1(v)

– Shared input constraint: a node shared by T1 and T2 is either an input into both
fragments, or an input-output node: V1∩V2 = (V in

1 ∩V in
2 )∪ (V in

1 ∪V in
2 )\V in

S

The properties of a partition state everything we still need (beyond the properties
of open SRPs and fragments) in order to prove that our CUT procedure is correct. Our
input-output constraints state that the input-output nodes must agree on their assump-
tions and guarantees, and that these nodes make up a subset of the respective input and
output nodes in each sibling fragment (since some input and output nodes may be in-
herited from S). Our shared input constraint states that, if a node u appears in both T1
and T2, then u is either (i) an input-output node; or (ii) a shared input of both T1 and T2.

We prove that as defined, CUT(S, I) is a partition of S. This is a straightforward
proof from the definition of CUT, using some set identities to prove the properties of a
partition.

Theorem 3 (CUT Creates Partitions). Let S be an SRP, and let I be an interface over
S. Let CUT(S, I) = (T1,T2). Then (T1,T2) is a partition of S.

Proof. Consider the input-free graph of S, (VS \V in
S ,{uv | u,v ∈ VS \V in

S }), such that
C = (W1,W2) cuts the input-free graph with dom(I) as the cut-set of C.

It is trivial to see that based on the definition of CUT, T1 and T2 are both fragments
of S: we hence proceed to prove the remaining properties of the partition relation below.

V1∪V2 = (W1∪V in
1 )∪ (W2∪V in

2 ) by definition of I

= (W1∪W2)∪ (V in
1 ∪V in

2 ) by commutativity, associativity

= (VS \V in
S )∪ (V in

1 ∪V in
2 ) by definition of W1∪W2

= (VS∪ (V in
1 ∪V in

2 ))\ (V in
S \ (V in

1 ∪V in
2 )) by set identity

=VS \ (V in
S \ (V in

1 ∪V in
2 )) by V in

1 ∪V in
2 ⊆VS

=VS \∅ by V in
1 ∪V in

2 ⊇V in
S

=VS by definition of \

Then V1∪V2 =VS.

E1∪E2 = {uv | u,v ∈V1∧uv ∈ ES}∪{uv | u,v ∈V2∧uv ∈ ES} by definition of E1,E2

= {uv | u,v ∈V1∪V2∧uv ∈ ES} set identities

= {uv | u,v ∈VS∧uv ∈ ES} by V1∪V2 =VS

= ES

Then E1∪E2 = ES.
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For the input-output constraints, we show one side: the other direction is symmetri-
cal.

V in
1 \V in

S = {u | ∃uv ∈ dom(I). v ∈W1} by definition of V in
1

= {u | ∃uv ∈ dom(I). u ∈W2} since dom(I) is a cut-set

⊆V out
2 by definition of V out

2

V out
1 \V out

S = {u | ∃uv ∈ dom(I). u ∈W1} by definition of V out
1

= {u | ∃uv ∈ dom(I). v ∈W2} since dom(I) is a cut-set

⊆V in
2 by definition of V in

2

Then V in
1 \V in

S ⊆V out
2 and V out

1 \V out
S ⊆V in

2 . The other directional is symmetrical, swap-
ping 1 and 2. Then the input-output constraints hold.

Finally, we can determine that the shared input constraint holds as follows:

V1∩V2 = (W1∪V in
1 )∩ (W2∪V in

2 ) definition of V

= (W1∩W2)∪ (W1∩V in
2 )∪ (V in

1 ∩W2)∪ (V in
1 ∩V in

2 ) distributivity

=∅∪ (W1∩V in
2 )∪ (V in

1 ∩W2)∪ (V in
1 ∩V in

2 ) disjointness of Ws

= (V in
1 ∩V in

2 )∪ (V in
2 \ (W2∪V in

S ))∪ (V in
1 \ (W1∪V in

S )) commutativity, rewrite Ws

= (V in
1 ∩V in

2 )∪ (V in
2 \W2 \V in

S )∪ (V in
1 \W1 \V in

S ) set identity

= (V in
1 ∩V in

2 )∪ (V in
2 \V in

S )∪ (V in
1 \V in

S ) by V in∩W =∅
= (V in

1 ∩V in
2 )∪ (V in

2 ∪V in
1 )\V in

S factoring

Then all the partition relation constraints hold, so T1,T2 is a partition of S.

Correctness. We now continue with a series of lemmas we will use in our proofs of
soundness and completeness. As a reminder to readers, our theorems of soundness and
completeness focus on demonstrating that the solutions of an open SRP’s fragments are
the solution of the parent SRP (or vice-versa): we prove these theorems by making use
of case analysis over the cases of an open SRP’s solution, as presented in §4. Loosely
speaking, like the three subsets of an SRP’s nodes, these cases can be divided into
(a) base node solutions (cf. closed SRP solutions); (b) input node solutions (equality
to ass); and (c) output node solutions (the closed SRP solution plus equality to guar).
It is straightforward by the definitions of fragments that, if fragments inherit input and
output nodes from their parent, then their solution will also be a solution in the parent;
the more difficult cases involve using the closed SRP solution, and reasoning over input-
output nodes between the two fragments after a parent edge was cut.

Our three following lemmas help us through these difficult cases by proving proper-
ties of the nodes which are in both fragments of a partition. Lemma 1 starts by proving
that any node in both fragments of a partition must be either an input node or an output
node.

Lemma 1 (Shared nodes are either inputs or outputs). Let S,T1,T2 be open SRPs
such that (T1,T2) is a partition of S. Then V1∩V2 ⊆V in

1 ∪V out
1 and V1∩V2 ⊆V in

2 ∪V out
2 .
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Proof. T1 case. V1∩V2 ⊆V in
1 ∪V out

1

V1∩V2 = (V in
1 ∩V in

2 )∪ (V in
1 ∪V in

1 )\V in
S by shared node division constraint

= (V in
1 ∩V in

2 )∪ (V in
1 \V in

S )∪ (V in
2 \V in

S ) distribute \ over ∪
⊆ (V in

1 ∩V in
2 )∪V in

1 ∪ (V in
2 \V in

S ) by definition of ⊆,\
⊆ (V in

1 ∩V in
2 )∪V in

1 ∪V out
1 by V in

2 \V in
S ⊆V out

1

⊆V in
1 ∪V in

1 ∪V out
1 by definition of ⊆,∩

⊆V in
1 ∪V out

1 by ∪ idempotence

T2 case. Similar to the T1 case.

We next prove an additional lemma about shared input nodes in Lemma 2: if a node
is an input to both fragments, then it is also an input of the parent SRP.

Lemma 2 (Shared Inputs are Inherited). Let T1,T2,S be open SRPs such that (T1,T2)
is a partition of S. Then V in

1 ∩V in
2 ⊆V in

S .

Proof.

V in
1 ∩V out

1 =∅ by definition of open SRPs

⇒V in
1 ∩ (V in

2 \V in
S ) =∅ by input-output constraints

⇒(V in
1 ∩V in

2 )\V in
S =∅ by A∩ (B\C) = (A∩B)\C

⇒V in
1 ∩V in

2 ⊆V in
S by A\B =∅⇒ A⊆ B

We will use Lemma 2 in the following proof which now moves on to considering
open SRP solutions directly by proving that, if the two fragments have solutions, then
the solutions are equal for shared nodes.

Lemma 3 (Shared Nodes have the Same Solutions). Let T1,T2,S be open SRPs such
that (T1,T2) is a partition of S. Assume T1 has a solution L1 and T2 has a solution L2.
Then ∀v ∈ (V1∩V2). L1(v) = L2(v).

Proof. We want to show that ∀v ∈ (V1 ∩V2). L1(v) = L2(v). Recall the shared node
division constraint:

V1∩V2 = (V in
1 ∩V in

2 )∪ (V in
1 ∪V in

2 )\V in
S

Then, by substitution, we want to show:

∀v ∈ ((V in
1 ∩V in

2 )∪ (V in
1 ∪V in

2 )\V in
S ). L1(v) = L2(v)

which we can split into two separate conjuncts:

(∀v ∈ (V in
1 ∩V in

2 ). L1(v) = L2(v))∧ (∀v ∈ ((V in
1 ∪V in

2 )\V in
S ). L1(v) = L2(v))

Case 1: (∀v ∈ (V in
1 ∩V in

2 ). L1(v) = L2(v)). Consider an arbitrary v in V in
1 ∩V in

2 . By
Lemma 2, v ∈ (V in

1 ∩V in
2 )→ v ∈ V in

S . Then v ∈ V in
1 ∩V in

2 ∩V in
S . Then by the definition
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of a fragment, ass1(v) = assS(v) and ass2(v) = assS(v). By transitivity and the defini-
tions of L1 and L2, we then have L1(v) = assS(v) and L2(v) = assS(v). Then, again by
transitivity, L1(v) = L2(v).

Case 2: (∀v ∈ ((V in
1 ∪V in

2 )\V in
S ). L1(v) = L2(v)). Recall that by the input-output con-

straints, we have the following:

V in
1 \V in

S ⊆V out
2 (12)

V in
2 \V in

S ⊆V out
1 (13)

∀v ∈ (V in
1 \V in

S ). ass1(v) = guar2(v) (14)

∀v ∈ (V in
2 \V in

S ). ass2(v) = guar1(v) (15)

We also have the following by the definition of L :

∀v ∈V in
1 . L1(v) = ass1(v) (16)

∀v ∈V in
2 . L2(v) = ass2(v) (17)

∀v ∈V out
1 . L1(v) = guar1(v) (18)

∀v ∈V out
2 . L2(v) = guar2(v) (19)

Using the relationships between the sets, we can then substitute the equalities over
solutions into Equations (14) and (15) to get the desired statement.

Since V in
1 \V in

S ⊆V out
2 by (12), and V in

1 \V in
S ⊆V in

1 by set identities, we can substitute
L2 for guar2 (per (19)) and L1 for ass1 (per (16)) in Equation (14) to get a statement
over solutions:

∀v ∈ (V in
1 \V in

S ). L1(v) = L2(v)

We can use the same reasoning with Equation (13) and Equations (18) and (17) to
get another statement from Equation (15):

∀v ∈ (V in
2 \V in

S ). L2(v) = L1(v)

We can then rearrange the ground formulas by commutativity and conjoin the two
statements to obtain:

(∀v ∈ (V in
1 \V in

S ). L1(v) = L2(v))∧ (∀v ∈ (V in
2 \V in

S ). L1(v) = L2(v))

Finally, we can rewrite the conjunction to instead be one formula over (V in
1 \V in

S )∪
(V in

2 \V in
S ): factoring out the set difference gives us: (∀v ∈ ((V in

1 ∪V in
2 )\V in

S ). L1(v) =
L2(v)), which was what was required.

We now move onto the proof of soundness of CUT, which states that if CUT(S, I) =
(T1,T2), which have respective solutions L1 and L2, then there is a solution to the parent
SRP S which is equal to both fragment solutions over all relevant nodes. We define this
solution in the theorem statement, and then prove it satisfies the solution constraints for
any node in S, regardless of whether it is an input, an output or a base node.
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Theorem 4 (CUT is Sound). Let S be an open SRP, and let I be an interface over S. Let
CUT(S, I) = (T1,T2). Suppose T1 has a unique solution L1 and T2 has a unique solution
L2. Consider a mapping LS

′ : VS→ R, defined such that:

∀v ∈V1. LS
′(v) = L1(v) (20)

∀v ∈V2. LS
′(v) = L2(v) (21)

∀v ∈V in
S . LS

′(v) = assS(v) (22)

Then LS
′ is a solution of S.

Proof. Preliminaries. By Theorem 3, we have that (T1,T2) is a partition of S. Consider
a mapping LS

′ : VS → R, defined as stated above. Even though none of the cases are
over VS, this defines LS

′ over all VS, since V1 ∪V2 = VS. No case is ever in conflict:
by Lemma 3, ∀v ∈ V1 ∩V2. L1(v) = L2(v), so Equations (20) and (21) both apply for
all shared nodes; by Lemma 2 and the definition of fragments, if v ∈ V in

1 ∩V in
2 , then

ass1(v) = ass2(v) = assS(v), so Equation (22) holds for any shared inputs.
Our goal is to show that LS

′ is a solution for S as stated in §4. We proceed by
considering an arbitrary node u, and show that, for each node subset u could belong to
(u /∈V in

S ,u ∈V in
S ,u ∈V out

S ), LS
′(u) is a solution for u.

u /∈V in
S Case. Then we want to show that our mapping implies that LS

′(u) = init(u)⊕⊕
vu∈ES

trans(vu,LS
′(v)). We have two cases to consider here, depending on if u is in a

single fragment (V1	V2, meaning either V1 or V2, the symmetric difference of V1 and
V2), or whether u ∈ (V1∩V2)\V in

S .

u ∈ (V1	V2)\V in
S Sub-Case. Suppose w.l.o.g. that u ∈V1. Then since T1 has a solution

L1, we have that L1(u) = init(u)⊕
⊕

vu∈E1
trans(vu,L1(v)), since u must be either a

base node or an output node in V out
S .

In either such case, we then also know that u has the same neighbors in T1 as in S,
so {vu | vu ∈ E1}= {vu | vu ∈ ES}. By (20), we have that LS

′(u) = L1(u) that for each
neighbor v, LS

′(v) =L1(v), so we then can substitute LS
′ for L1 and the set of neighbors

in ES for the set of neighbors in E1, giving LS
′(u) = init(u)⊕

⊕
vu∈ES

trans(vu,LS
′(v)).

Then this sub-case holds.

u ∈ (V1 ∩V2) \V in
S Sub-Case. By the shared input constraint, (V1 ∩V2) \V in

S = (V in
1 \

V in
S )∪ (V in

2 \V in
S ). In other words, since u /∈V in

S , it is an input-output node.
Suppose w.l.o.g. that u ∈ V in

1 \V in
S . Then u ∈ V out

2 by the input-output constraints.
Then since T1 and TS have solutions, we have that

L1(u) = ass1(u) (23)

L2(u) = init(u)⊕
⊕

vu∈E2

trans(vu,L2(v)) (24)

L2(u) = guar2(u) (25)

By these equations and the input-output constraints, we then have that L1(u)= ass1(u)=
guar2(u) = L2(u), so L1(u) = L2(u). By (20) and (21), we also have that LS

′(u) =
L1(u) = L2(u).
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Now we wish to show that LS
′ is a solution for u: since u is not in V in

S , we must
show the non-input case LS

′(u) = init(u)⊕
⊕

vu∈ES
trans(vu,LS

′(v)) (we defer the out-
put constraint LS

′(u) = guarS(u) to the end of the proof).
As above, we start by observing that u has the same in-neighbors in S as in T2, and

that this encompasses all of its in-neighbors since u ∈ V in
1 , so it has no in-neighbors in

T1. Then {vu | vu ∈ E2}= {vu | vu ∈ ES}.
Next, by (21), we can substitute LS

′ for L2 in (24). By the reasoning above, we can
also substitute the set of in-neighbors of u in ES for the set of in-neighbors of u in E2,
leaving us with LS

′(u) = init(u)⊕
⊕

vu∈ES
trans(vu,LS

′(v)).
Then this case holds as well, and we have that LS

′(u) is a solution for u /∈V in
S .

u ∈V in
S Case. Since LS

′(u) = assS(u) by (22), this case immediately holds.

u ∈V out
S Case. By the definition of a fragment, L1(u) = guarS(u) if u ∈V1 and L2(u) =

guarS(u) if u ∈V2. Since LS
′(u) = L1(u) by (20) in the former case and LS

′(u) = L2(u)
by (21) in the latter case, we have that LS

′(u) = guarS(u), so this case holds.
Then for all three cases, LS

′ is a solution for S.

This concludes our proof of soundness: we now know that the solutions of the frag-
ments constitute a solution of the parent SRP. We now also prove completeness, mean-
ing that any solution to the parent SRP is also a solution to the fragments, so long as
the fragments’ inputs and outputs are annotated with assumptions and guarantees that
match the parent SRP’s solution. The form of the proof is also by solution cases, this
time over the fragment solution.

Theorem 5 (CUT is Complete). Let S be an open SRP, and let I be an interface over
S. Let CUT(S, I) = (T1,T2). Assume S has a unique solution LS. Assume that ∀uv ∈
dom(I). I(uv) = LS(u). Consider the following two mappings L1

′ : V1 → R and L2
′ :

V2→ R, defined such that:

∀v ∈V1. L1
′(v) = LS(v)

∀v ∈V2. L2
′(v) = LS(v)

Then L1
′ is a solution for T1 and L2

′ is a solution for T2.

Proof. By Theorem 3, we have that (T1,T2) is a partition of S. Furthermore, by the
definition of CUT and the assumption that every cut edge is annotated with the solution
in S, we have the following equalities on T1 and T2’s inputs and outputs:

∀u ∈V in
1 .ass1(u) = LS(u) (26)

∀u ∈V in
2 .ass2(u) = LS(u) (27)

∀u ∈V out
1 .guar1(u) = LS(u) (28)

∀u ∈V out
2 .guar2(u) = LS(u) (29)

As the two cases are symmetric, w.l.o.g., we proceed by considering an arbitrary
node u in T1. Then we have three cases to show, based on the three cases of L1

′(u).

u /∈V in
1 Case. By the fragment constraints, if u∈V in

S then if u∈V1, then u∈V in
1 . Then by

the contrapositive, if u /∈V in
1 , then u /∈V in

S . Then LS(u)= init(u)⊕
⊕

vu∈ES
trans(vu,LS(v)).
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By the fact that T1 is a fragment, {vu | vu ∈ E1} = {vu | vu ∈ ES}. Then, by our
definition of L1

′(u), we can substitute L1
′(u) for LS(u) to obtain: L1

′(u) = init(u)⊕⊕
vu∈E1

trans(vu,L1
′(v)). Then this case holds for u.

u ∈ V in
1 Case. Then by (26), we have LS(u) = ass1(u). Then by substitution, we have

L1
′(u) = ass1(u). Then this case holds for u.

u ∈V out
1 Case. Then by (28), we have LS(u) = guar1(u). Then by substitution, we have

L1
′(u) = guar1(u). Then this case holds for u.
Then T1 has a solution L1

′. By a symmetric proof using (27) and (29), T2 has a
solution L2

′.

An important corollary of our theorem of soundness is that, since the solutions of
the fragments are a solution to the parent SRP, any property over solutions that holds
on the fragments will also hold on the parent SRP.

Corollary 2 (CUT Preserves Properties). Let S be an open SRP, and let I be an inter-
face over S. Let CUT(S, I)= (T1,T2). Let P1,P2 be formulas such that P1 = ∀v∈V1. Q(v)
and P2 = ∀v ∈ V2. Q(v), where Q is a predicate on L(v). Assume S has a unique solu-
tion LS, and that T1 has a solution L1 and T2 has a solution L2. Then if P1 holds on T1
and P2 holds on T2, P1∧P2 holds on S.

Proof. By Theorem 4, ∀u∈V1. L1(u) = LS(u) and ∀u∈V2. L2(u) = LS(u). Assume P1
holds on T1 and P2 holds on T2. Consider w.l.o.g. a node u in V1. Then Q(u) holds in T1.
Since L1(u) = LS(u), Q(u) holds in S as well. Then since V1∪V2 =VS, ∀v ∈VS. Q(v),
and therefore P1∧P2 holds on S


