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Abstract—Understanding link-level performance is key to as-
suring the quality of cloud-based and OTT services, optimal
path selection, robust network operations and beyond. However,
direct measurement of each link not only incurs high overhead
at the Internet-scale but also is infeasible due to lack of access
to network measurement information beyond AS boundaries
and functional limitations at relay nodes. Although network
tomography is well suited, existing approaches are insufficient
due to their unrealistic assumptions with respect to stability, con-
trollability, and visibility. Motivated by this, we propose PAINT,
an online iterative algorithm that estimates and refines link-
level performance metrics based on path-level measurement. In
PAINT, the link metrics are iteratively estimated by minimizing
their least square error (LSE) and calibrated based on the
comparison of weight between the estimated shortest paths (SPs)
and best-known paths from end-to-end path measurements. The
key insight is that when there is inconsistency between these
paths, then weights of links on the estimated SP are likely mis-
estimated, triggering a further round of estimation to refine the
estimated link metrics. Evaluation of PAINT, focusing on link
delay estimation, using four different real network topologies and
two real-world measurement datasets (including one we collected)
shows that relative to existing approaches, it yields up to 3x gain
in absolute link delay estimation accuracy and improves decisions
dependent on link delay estimation by up to 5x in relative error.

I. INTRODUCTION

Recent years have witnessed cloud service providers ex-
panding their footprint to the edge with their private wide
area networks that peer with the public Internet and connect-
ing to a large number of Autonomous Systems (ASs) (e.g.,
Internet Service Providers (ISPs)) [1], [2]. Similarly, Over the
Top (OTT) vendors are delivering their services via overlay
networks of their own (e.g., Zoom, Agora SD-RTN™ [3]) and
interconnecting with other ASs. These infrastructures serve
millions of users every day making user experience and appli-
cation performance critical concerns for the service providers.
To this end, having insight into link-level performance is key.
It enables service quality assurance and maintaining robust
network operations via traffic engineering (path selection,
multi-path load balancing), network troubleshooting (fault
identification and localization) and so on (e.g., [4]).

However, directly measuring each link through active prob-
ing is not a viable option. At Internet scale, it would cause
enormous overhead. Moreover, many administrative entities
involved prevent exchanging and accessing operational in-
formation across AS boundaries. Some relay nodes also do

not allow link measurement. A case in point is the selective
forwarding unit (SFU), a key building block to realize real-
time communication (RTC) for multiplexing video streams
across users at a global scale, that only implements the
forwarding functionality [5], [6]. Thus, reliable link metric
estimation methods are needed that scale well and cope with
limited scope of active in-network measurements.

Network tomography [7]–[9] is a paradigm well suited for
this purpose as it allows inferring link-level performance with
a limited number of end-to-end path measurements. Specifi-
cally, link metrics can be estimated with network tomography
through a system of linear equations (SLE) between path mea-
surements and link-level metrics, provided there are sufficient
number of independent path measurements (elaborated further
in §II-A). However, existing approaches from the network
tomography literature (e.g., [10]–[14]) are insufficient as they
make certain assumptions contrary to the characteristics and
constraints of our target setting: 1) unstable: link metrics vary
with changes in the choice of peering and intra-domain traffic
engineering in third-party AS; 2) uncontrollable: monitors (the
entities that send and receive measurements) cannot be freely
placed on any node and the measurement path cannot be
predetermined; 3) invisible: intra-domain routes may not be
accessible, making the cause of link metric variations latent
to the measurement/estimation process.

Motivated by the above, we propose a novel online iterative
network tomography algorithm termed “PAINT” that takes a
top-down approach, leveraging an application-oriented view
for estimating the latent link metrics. Our approach is guided
by the following key observation: estimating link metrics is an
essential prerequisite for optimal path selection not only with
conventional shortest path (SP) algorithms [15] for choosing
paths for each node pair but also for more sophisticated traffic
engineering with load balancing. We leverage this observation
in the design of PAINT: given that computation of optimal
paths is a key application scenario for link metric estimation,
it can be brought in as a constraint for optimizing the error
in the estimation of link metrics. In that sense, the degree to
which end-to-end (E2E) SPs are correctly estimated can aid
in the link metric estimation process by augmenting the base
SLE with additional SP guided equations.

Concretely, PAINT consists of three modules in a closed
loop iterative procedure (Fig. 3): estimation, validation and
calibration. The estimation module computes link metric es-
timates through optimization with twin objectives: i) estimate978-1-6654-8234-9/22/$31.00 ©2022 IEEE



absolute values of link metrics by minimizing least square er-
ror (LSE); ii) minimize the difference between estimated short-
est paths and known shortest paths from measurements. The
validation module checks for inconsistencies by comparing
the estimated shortest paths to current best-known path from
input path measurements. The difference between estimated
SP and observed SP weights are then fed to the calibration
module, which identifies links whose metric estimates need to
be adjusted and labels them underestimated or overestimated.
These labels serve as a guide for link metric estimation in
the next round. The above three-step process is repeated until
there is no need to adjust any link metric estimates.

We evaluate PAINT against a range of existing approaches
(discussed in §II-B) in terms of their relative accuracy and
runtime complexity, considering delay as the link metric. We
also assess PAINT with respect to these baselines from the
perspective of two downstream use cases: (i) pairwise SP
estimation leveraged within PAINT; and (ii) estimation of
minimal spanning tree (MST) that is commonly employed for
cost efficiency. A unique aspect of our evaluation (§IV) is the
use of four different real-world network topologies and two
link delay measurement datasets. One of these measurement
datasets is publicly available while we have collected the other
through a cloud service provider from its different vantage
points (across multiple continents).

In summary, we make the following key contributions:
• By associating the network tomography problem of link

delay estimation from path measurements with the appli-
cation needs of finding pairwise best quality paths, we
propose PAINT (§III), a novel online iterative solution that
simultaneously minimizes estimation errors for link metrics
as well as pairwise shortest paths. Crucially, inferred link
metrics with PAINT are more generally applicable beyond
just shortest path computation.
• PAINT constitutes a unique and significant contribution

to the network tomography literature (§II-B). Compared
to statistical inference approaches like [10], [11], PAINT
does not make any assumptions on the stability of link
metrics nor does it need to know link metric distributions.
In contrast with algebraic and graphical approaches (e.g.,
[12], [14], [16]), we achieve robust and accurate link metric
estimations while avoiding the requirements for controllable
measurements and intra-domain route visibility.
• Unlike any prior related work, we use two large real-

world measurement datasets and four different real network
topologies to conduct evaluations of PAINT (§IV). Our
results show that compared to the baselines PAINT achieves
1.5–3x gain in mean absolute error (MAE) and yields 2–
5x gain in quality for the typical downstream applications
considered.

II. BACKGROUND

A. Problem Statement

We model the network topology as a directed graph G =
(V,E,w), where V, E and w, respectively, refer to the sets
of nodes, links and link weights in the graph. Depending on

TABLE I: Summary of notation. Bold symbol represents
matrix or vector.

Symbol Meaning
G, V , E, w graph G with V nodes, E links and w link weights

m,n number of nodes, links in G
|A| number of elements in set A

R,p,w binary routing matrix R (observed), path measure-
ments p (observed), link weights w (unknown)

γ The number of path measurements (rows in R)
A, Â true, estimated value of variable A
P (vi, vj) path in G between (vi, vj) ∈ V2

Pw(vi, vj) w weighted shortest path between (vi, vj) ∈ V2

the target scenario, links E can be physical or overlay links in
the network, and can belong to the public Internet or private
wide area network (WAN) of cloud/OTT service providers.
Let m := |V| be the number of nodes and n := |E| be the
number of links in G. Table I summarizes the notation used
in this paper (following the convention in [17], [18]).

The problem we consider is essentially the estimation (infer-
ence) of link weights given a set of end-to-end path measure-
ments. Here the weight of a link corresponds to the metric of
interest (e.g., delay, loss rate). Each end-to-end measurement
over a path P in G (e.g., round-trip delay) provides a measure-
ment of the path weight W(P ) =

∑
wk,∀ek ∈ P where wk’s

are unknown and to be estimated. Multiple measurements over
the same path are aggregated through averaging. We assume
that paths considered for measurements (both end-nodes as
well as paths between those end-nodes) are randomly chosen.
We further make the following two common and reasonable
assumptions as in the network tomography literature [16], [19]:
1) network topology is known and does not change during the
measurement and link metric inference process; 2) measured
paths are all simple paths (without cycles) in G; Crucially,
note that we do not make any assumptions on the knowledge
of distributions from which link weights come from.

We can formally state the problem through a system of
linear equations (SLE) relating path measurements with the
link weights to be inferred, as in Eq. (1):

p = Rŵ (1)

Here p denotes the column vector of all observed path
measurements, whereas R = (Rij) is a γ × n binary routing
matrix, indicating whether link ej is in the path Pi. Further-
more, row Ri· is a sparse representation of Pi, as illustrated
in Fig. 1. In this example, a set of path measurements over the
network (on top left) are shown (on top right) along with the
corresponding binary routing matrix R (bottom). For instance,
the path P1(B,G) that goes through links (BD, DE, EF, FG)
induces a binary row vector in R. Other chosen paths are
similarly represented in R.

With this formulation, resolving our problem of inferring
link metrics from path measurements translates to computing
ŵ = R−1p. This requires the matrix R to be full rank, i.e.,
rank(R) = n, where each row in R represents a simple path
measurement that is linearly independent from other paths
in G. Having the rank of R less (greater) than n results in
an under-determined (over-determined) SLE with infinitely
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P1(B,G) 0 1 0 0 1 1 1
P2(B,G) 0 1 1 1 0 0 1
P3(A,G) 1 0 0 1 0 0 1
P4(A,B) 1 1 1 0 0 0 0


Fig. 1: Example network with relay nodes (C,D,E,F) through
which end-nodes (A,B,G) are connected. Each end-node can
be an AS or grouped IP prefix. Link labels represent their
true delay (in ms). Selected path measurements (between end-
nodes) over this network are shown on the top right.
many (no) solutions [11], [12], [20]. It is, however, non-
trivial to ensure a full-rank R, since n linearly independent
measurement paths may not exist or can be difficult to discover
with randomly chosen paths for measurements.

Going back to the example in Fig. 1, there are 7 variables
(link weights) to solve but only 4 equations. In this case,
rank(R) = 4, which means SLE is rank deficient and so has
infinitely many solutions (i.e., no unique solution.). Even when
every path between end-nodes is measured in this example,
there are still 6 equations for 7 variables, leading to an under-
determined linear system. This illustrates the difficulty of
finding a straightforward algebraic solution for ŵ.

B. Related Work

Network tomography generally aims at recovering perfor-
mance metric of links from end-to-end path measurements for
general topologies [7]. By establishing a functional relation
between link metrics and path measurements, links metrics
are approximated by evaluating the inverse of the function,
as outlined in §II-A. As illustrated in Fig. 2, existing analog
tomography (real numbered estimation of link metrics) ap-
proaches fall into three major categories: statistical, algebraic
and graphical. Statistical approaches typically assume prior
knowledge of link metric distribution to approximate the
solution. Algebraic approaches use matrix properties and apply
linear algebra methods to obtain an exact solution. Graphical
approaches adopt spanning tree and connectivity properties to
construct independent measurement paths, to enable algebraic
solutions.

Statistical approaches have two major threads: 1) estimating
values of link metrics (e.g., [10]); 2) estimating distribution
parameters of link metrics (e.g., [11]). Bu et al. [10] have first
brought discretized modeling to Expectation–Maximization
(EM) for model simplification and run-time optimization.
Liang and Yu [21] apply the idea of divide and conquer on

Fig. 2: Taxonomy of the network tomography literature. Color
transparency indicates the onward development of algorithms
(from dark to light). Dashed line circles indicate different
categories of approaches. References for each (sub-)category
shown as labels.
Maximum Likelihood Estimation (MLE) with latent variable
by solving smaller sub-problems. Later, Chen et al. [11] target
heterogeneous metrics with an adaptive model and distribution
approximation in Fourier domain using General Method of
Moments (GMM). Deng et al. [22] take spatial dependency
of multicast tree into consideration for estimating distribution
parameters.

Within algebraic approaches, broadly there exist two kinds
of methods: 1) solve SLE using numerical matrix approxima-
tion, i.e., Moore–Penrose inverse (pseudoinverse) (e.g., [14]);
2) solve SLE directly when it has full rank. The problem of
finding pseudoinverse is well studied and is often solved by
matrix factorization. Chen et al. [23] propose a QR decompo-
sition based solution for general topologies. Considering the
sharing of links between paths, Chua et al. [24] apply singular
value decomposition (SVD) to the same problem and use it
in a monitoring system. Song et al. [14] apply both the above
algorithms to measurement system for path selection.

On the other hand, the sub-category of graphical approaches
within algebraic approaches aim at obtaining a full rank
SLE. As that is an NP-hard problem under uncontrollable
routes [25], graphical approaches introduce controllability to
simplify the problem [26]. Specifically, the goal here is to
maximize the rank of SLE under two distinct scenarios: 1)
given full controllability, producing full rank system using
minimal number of monitors and measurement paths (e.g.,
[12]); 2) given only path controllability, use minimal number
of paths to achieve tighter estimation bounds for unidentifiable
links (e.g., [16]). Bejerano et al. prove that identifying all links
with uncontrollable routes is an NP-hard problem [25] so they
simplify the problem by using controllable route as hybrid ap-
proach leveraging both graph information (e.g., spanning tree,
connectivity) and SLE properties (value positiveness, reduced
form of matrix). Ma et al. [12] resolve that problem efficiently
using fully controllable monitor placement and routes. Feng
et al. [16] estimate the value bound for unidentifiable links
given a fixed set of monitors and tighten bound with random
new monitor placements. Li et al. [13] provide tighter value
bounds for unidentifiable links with more carefully designed
monitor placement.

While the above discussed approaches each represent an
advance in the network tomography literature, they have



three main shortcomings when applied for monitoring and
optimizing quality of cloud and OTT services today:
• Stability: To estimate distribution parameters, statistical

approaches (e.g., [22]) assume that link metrics exhibit
stable behavior for the duration of path measurement col-
lection. Graphical approaches, on the other hand, rely on
the assumption of symmetric link metrics. Such conditions
typically do not hold in practice, since paths may be
changed due to traffic engineering and for load balancing,
causing fluctuations and asymmetries in link metrics (e.g.,
delay).
• Controllability: For constructing linearly independent

measurement paths, graphical approaches usually require a
single entity that can control all measurements, e.g., using
source routes [12], [16]. Such requirement may not be
possible to meet due to operational constraints and security
concerns. In addition, monitor placement in the data plane
might be unavailable on UDP oriented forwarding nodes, a
common scenario for real-time communication.
• Visibility: Some statistical approaches require prior

knowledge of metric distribution for each link in the net-
work (e.g., [21]). On the other hand, the measurement
methodology for algebraic approaches [14] relies on tracer-
oute but this tool is often blocked by network providers to
keep their routing strategy confidential.

In contrast, PAINT (as shown in Fig. 2) is a hybrid approach
retaining only the best aspects of both statistical and algebraic
(graphical) approaches. Compared to statistical approaches,
PAINT does not make any assumption on the prior knowledge
of link metric distribution nor on the link metric fluctu-
ation. With respect to algebraic and graphical approaches,
PAINT relaxes the requirements for symmetric link metrics,
controllability and visibility. PAINT can work with arbitrary
path measurements, obviating the need for full controllability
of paths and monitors. Moreover, shortest path (SP) based
regularization in PAINT has better conditioning as SP has
greater tolerance to link delay fluctuations. Moreover, prior
works from the path-to-link network tomography literature
discussed above, although they obtain a unique solution under
their respective frameworks, tend to suffer from distribution
drift from measurements and also not leverage / correlate with
performance for downstream tasks.

While we leverage optimal path selection as a key ap-
plication of path-to-link network tomography in designing
PAINT, the path-to-link network tomography has several other
applications. Generally speaking, it can help overcome the
restrictions for active measurements to indirectly expand the
coverage and granularity of measurement to all links [25].
Path-to-link tomography can also enable efficient estimation
of link metrics even when there are no such restrictions [26],
[27]. BeCAUSe [28] is an interesting recent work that uses
path-to-link tomography to reveal the deployment of route flap
damping in BGP routers. Network troubleshooting (identifying
and locating faults) is yet another application. For example,
BlameIt [29] identifies network segment with faults based on

Fig. 3: Schematic representation of PAINT with yellow colored
boxes representing its main components.

passive end-to-end measurements.

III. PAINT ALGORITHM

In this section, we present our proposed path aware iter-
ative network tomography (PAINT) algorithm that estimates
shortest paths in tandem by way of optimizing the error in
estimating link metrics. For concreteness, we focus on delay as
the link metric to be inferred, considering that user experience,
especially for interactive and immersive applications, depends
on low end-to-end (E2E) latency [29]–[31]. However, the
approach we take in PAINT is equally applicable to other link
metrics (e.g., loss rate), as we discuss later in this section.

A. Overview

In a nutshell, PAINT estimates link metrics from end-to-end
path measurements with the help of graphical regularization,
driven by the intuition that solely minimizing the error in
fitting SLE is in general insufficient (as elaborated in §II-A)
and also may not be beneficial for downstream applications.
Specifically, we propose a shortest path (SP) based regu-
larization that considers the relative magnitude among link
metrics estimations, besides the typical optimization focusing
on estimating the absolute value of link weights. It is indeed
quite natural to couple the link metric estimation algorithm
with the key application scenario of finding optimal paths, so
that decision quality concerning SP benefits from the higher
accuracy in network tomography based link weight estimation
and vice versa.

While our intuition may seem simple, translating this into
a solution is far from trivial. To see this, note that accurate
estimations of link metrics are a prerequisite for deciding best
(shortest) paths (SPs) for every end-to-end node pair. In our
context, SP refers to minimum weight (e.g., delay) path, where
path weight is the sum total of weights of links making up
the path. The fact that link metrics are latent with respect to
available end-to-end path measurements makes it impossible
to calculate actual SPs.

To realize the above idea, as illustrated in Fig. 3, PAINT
algorithm initially takes path measurements as input to a three-
step iterative procedure, as outlined below. ( 1 ) Estimation:
this step performs optimization with twin objectives: i) es-
timate absolute values of link metrics by minimizing least
square error; ii) minimize the difference between estimated
shortest paths and known shortest paths from measurements.



( 2 ) Validation: this step validates if the estimated SPs based
on the link weight estimations from the estimation module
are optimal by comparing them against SP weights from path
measurements. Any inconsistencies found provide evidence for
the following calibration step to trigger another round of link
estimation. ( 3 ) Calibration: this step produces labels for those
links whose weights are underestimated or overestimated.
Only the labeled links are updated in the next round of link
estimation.

Fig. 4 illustrates the working of the PAINT algorithm. Note
that in the first link estimation step of PAINT, link weights are
estimated by minimizing least square error (LSE) and shortest
path error (SPE) (as in Eq. (2)). To bootstrap the operation of
the algorithm, we obtain initial link weight estimates (Fig. 4a)
using SVD [32] rather than naively assigning them to random
weights. Initial SP estimation is based on these initial link
weights. We choose SVD for initial link weight computation
as it not only has a fast runtime but also is robust in terms of
minimizing the least square error under insufficient rank [24],
[32]. Aside from this initialization aspect, note that PAINT
works with end-to-end path measurements between any set
of node pairs, even if they do not result in a full rank SLE.
This essentially makes PAINT free from the “controllability”
requirement that some prior approaches have.

The following validation step (Fig. 4b) finds the estimated
SP between A and G to be inconsistent with the observed
SP between those nodes based on path measurements (from
Fig. 1). The other estimated SPs between A and B, and
between B and G are however validated to be correct. Note
here that for validation, as the actual SPs are unknown, the
algorithm uses the best known paths from measurements as
reference and without knowledge of link metric distributions,
thereby obviating the need for “visibility”. The following
calibration step labels link CF as overestimated (Fig. 4c). This
step not only helps address the “stability” issue by adapting
to link metric fluctuations but also to efficiently handle link
metric mis-estimation by focusing on links that negatively
affect the quality of selected paths. In the subsequent round
of link estimation (Fig. 4d), the weight of link CF is adjusted
down, which results in all SPs to be correctly estimated as
well as lowering the absolute error of individual link weight
estimates.

B. Detailed Design

1) Estimation: Given the measurement {R,p}, the goal
of estimation module is to provide accurate link estimation
by minimize both LSE and SPE as in Eq. (2). The first part
of the equation is LSE: the Euclidean distance between path
measurements and the corresponding estimated path metrics.
The second part represents SPE: the sum of differences in
cost between estimated SP (PW

est ) and corresponding reference
SP (PW

ref ), denoted as ∆(vi, vj) in Eq. (2), for each distinct
node pair in p. The reference SP for a node pair is essentially
the observed shortest path for that node pair. To prevent the
optimization in Eq. (2) from falling into a false minima (e.g.,
link metrics underestimated to minimize the SPE), we scale
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(a) Estimation: Initial values
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Fig. 4: Example illustrating PAINT algorithm operation. Dou-
ble dashed (black) lines indicate actual end-to-end SP as in
Fig. 1. Labels on the links indicate estimated link metric
(delay) values. Double solid (blue) lines indicate estimated
SP. Dashed single (red) lines indicate links on which estimated
metrics should be adjusted.
SPE by λ so that the second part in Eq. (2) also influences
the optimization. Specifically, we set λ to ‖ŵ‖ /(γp̄), given
that there are γ paths in p, each with a weight p̄ on average.

min
ŵ

‖p−Rŵ‖+ λ
∑

(vi,vj)∈p

∆(vi, vj)

 , (2)

∆(vi, vj) = W
(
Pŵ

est(vi, vj)
)
−W (Pw

ref(vi, vj))

Overall, the above optimization works like gradient descent,
while selectively updating link metric estimations across it-
erations. As the ground truth SPs are latent, we only have
reference SPs (PW

ref ) from path measurements to compare with.
Our key idea here is to have reference SPs serve as regulators
to help us get closer to the ground truth in terms of SP weights.
In other words, while updating ŵ during the optimization, new
paths with a smaller (or equal) weight than the corresponding
measured paths are discovered. What is described above refers
to an iteration of the link estimation step. In the following
iteration, only a subset of the links that are identified and
labeled to be mis-estimated (respectively, by the validation
and calibration steps) are selected for metric estimation update
during the optimization.

2) Validation: Given the estimation ŵ from estimation
module and path measurements {R,p}, we need to determine
whether another iteration to update the link metric estimates
is needed. That is the task of this validation step. It is made
up of two parts: 1) check whether each link’s metric estimate
has a valid value; 2) check whether each SP weight estimate
has a valid value with respect to the corresponding reference
SP. The links that individually fail the validation check 1), or



M = RREF([R|p]) =


1 0 0 0 0 0 0 10
0 1 0 0 1 1 1 60
0 0 1 0 −1 −1 −1 −40
0 0 0 1 0 0 1 50



=⇒


w1(AC)
w2(BD)
w3(CD)
w4(CF )

 =


10
60
−40
50

−Mfwf ≥ 0,

Mf =


0 0 0
1 1 1
−1 −1 −1
0 0 1

 ,wf =

w5(DE)
w6(EF )
w7(FG)



=⇒Mfwf =


0 0 0
1 1 1
−1 −1 −1
0 0 1


w5(DE)
w6(EF )
w7(FG)

 ≤


10
60
−40
50


Fig. 5: Example {p,R} for NVB inference.

are part of mis-estimated SPs that fail the validation check 2)
need to be considered for update in the subsequent iteration.
Note that the first check ensures that links that are not covered
by the path measurements are taken into account and updated
to limit their estimation errors.

For the first check, we verify if each link’s estimate falls
within a “natural bound”, considering that all link metrics
are positive. To this end, we define natural value bounds
(NVBs) for the estimation ŵ in Definition 1. The link weights
that violates their bounds will need further updates in later
iterations.

Definition 1. Natural value bound (NVB): In an SLE, the
natural value bound of a variable wi ∈ ŵ is the interval
B(wi) = [li, ui]. Given any set of variables assigned values
within their NVBs, the deduced values of all other variables
from SLE will always be positive. When all the variables are
in such intervals, SLE can be solved exactly or has the least
square solution.

NVB can be derived from SLE using inequalities and
Gaussian elimination. Exceeding the bound on one link may
result in negative value estimation on other links due to
LSE optimization and vice versa. We illustrate the calculation
of NVB through an example in Fig. 5 that corresponds to
path measurements in Fig 1. Firstly, the augmented matrix
{R,p} is transformed to reduced row echelon form (RREF)
via Gauss-Jordan elimination [33]. The resulting M has 1
as a leading coefficient in each row and can be seen to
be made up of three parts: an identity matrix, the reduced
coefficients Mf and the reduced p. Since all link weights
are positive, by rearranging the SLE represented by M, we
get the following inequality: Mf times corresponding link
weights wf must be less than the reduced p, where Mf

and wf are as shown in Fig. 5. From this inequality, we get
the bounds for three of the weights as w5 ∈ [0, 40], w6 ∈
[0, 40], w7 ∈ [0, 40], while we get w1 ∈ [0, 10] directly from

Algorithm 1: PAINT Algorithm
Input: Path measurements {p,R}
Output: Final estimation ŵ

1 repeat
// Estimation

2 Optimize Eq. (2) focusing on labeled links to get
ŵ, then calculate all SPs for observed node pairs.;
// Validation

3 Create empty link violation set Envb, Esp;
4 Create empty link non-violation set En = {};
5 ∀ŵi ∈ ŵ if ŵi is outside its NVB, add ei to Envb;
6 ∀(vi, vj) ∈ p if Pŵ

est(vi, vj) violates Eq. (3), add all
ei ∈ Pŵ

est(vi, vj) to Esp; else add them to En;
// Calibration

7 Ev = Envb + (Esp − En);
8 If Ev is a null set, repeat step (6) and set Ev = Esp;
9 ∀ei ∈ Ev , label ei for update during optimization in

next iteration. Estimates for all unlabeled links
remain unchanged in the next iteration.

10 until Ev is empty;

M. By substituting the value range for these 4 weights back
to the set of linear equations, we obtain the remaining bounds
as w2 ∈ [0, 30], w3 ∈ [0, 30], w4 ∈ [0, 30].

After validating against the bounds for each link as above,
we validate the estimated SP between each observed node pair
by comparing its weight against the corresponding measured
path weight. This allows us to place an additional constraint
to detect mis-estimations. While the reference SPs from mea-
surements do not reflect the ground truth SPs, they provide
a useful bound for assessing the quality of estimated SPs. As
such, we perform the check in Eq. (3) and identify the links of
all estimated SPs violating this constraint to be mis-estimated.

∀(vi, vj) ∈ p,W(Pŵ
est(vi, vj)) ≤W(Pw

ref(vi, vj)) (3)

3) Calibration: The goal of this calibration module is to
label links whose estimates need further updates. Here we
do not specifically distinguish between underestimation and
overestimation, but let the optimization in Eq. (2) to handle it
in the next iteration. Formally, the calibration module labels
the links that need updates according to the following sequence
of rules; the later rules override the former ones. First, all the
links failing the NVB validation check are labeled. Second,
links of all estimated SPs violating Eq. (3) are labeled. Third,
links of estimated SPs satisfying Eq. (3) are unlabeled. Finally,
if the set of labeled links is empty then we reapply the
second rule. These set of rules not only reduce the link metric
estimation errors with each iteration but also allow quick
convergence by labeling the fewest number of links for further
updates in the subsequent iteration.

4) Complete Workflow: PAINT combines the above de-
scribed three modules together, as listed in the pseudocode
form in Algorithm 1. During estimation (2), we run the
optimization in Eq. (2) focusing on labeled links to obtain



updated link metric estimations and compute SPs accordingly.
Note that all links are labeled to start with in the first iteration
of the algorithm. During validation ((3)–(6)), we verify the
bounds for links and SPs, and identify links whose estimates
potentially need updates. Lastly, during calibration ((7)–(9)),
we apply four rules to narrow down the set of links to be
updated and label them for consideration in the next iteration.
This whole process is repeated until there are no labeled links
from the calibration phase.

C. Algorithm Generalization and Analysis

Although we presented the PAINT algorithm using delay
as the link metric for concreteness, it is more generally
applicable to both additive and multiplicative metrics. For
example, PAINT can be used for link loss rate estimation with
the following log transformation using the complementary
Wsucc(P ):

Wsucc(P ) = 1−Wloss(P ) =
∏
ei∈P

(1−Wloss(ei))

=⇒ log (Wsucc(P )) =
∑
ei∈P

log (Wsucc(ei))

Note that with sufficiently large number of diverse path
measurements, PAINT is guaranteed to converge to a near-
optimal solution in terms of link weight estimates. This is
because: (1) such measurements will allow SLE to be full rank
and ensure a unique solution for LSE minimization in the first
part of our optimization; (2) with sufficiently large number
of path measurements, reference SPs (PW

ref ) will include the
true SPs, which will then be discovered by PAINT through
the second part of the optimization in Eq. (2). In other words,

As γ 7→ ∞,W(Pŵ
est) = W(Pw

ref) = W(Pw
gt ) (4)

In such an ideal case, the most deviation from the optimal
solution (µ(E)) can also be well characterized. Specifically,
the worst case occurs when link weight estimates differ by a
maximum amount that still ensures that SPE in Eq. (2) is zero.
This is formally stated in the following remark.

Remark 1. The worst case error (ε) between estimated and
true mean of link weights (‖ŵ − µ(E)‖) is the maximal change
in ŵ that does not yield any SPE, i.e., ε 6= 0, ŵ = µ(E) + ε,
such that ∀(vi, vj) ∈ V2,W(Pŵ

est(vi, vj)) = W(Pw
ref(vi, vj)) =

W(Pw
gt (vi, vj)).

For this case, we can also quantify the convergence speed
in terms of number of iterations, assuming a constant learning
rate α, as given in Corollary 1.1.

Corollary 1.1. With constant learning rate α, ∀ε ∈ Rn, ŵi ∈
ŵ, µei ∈ µ(E), at least the following steps will be iterated for
convergence.

1

α
max ‖ŵi − (µei + εi)‖

Proof. The most optimization steps take place in SPE part
of the optimization as it has linear descent in terms of its
gradients, which is larger than the quadratic descent in LSE

minimization. Since the optimization of all links is computed
in parallel, the link with the deepest descent determines the
required number of iterations.

IV. EVALUATION

In this section, we evaluate PAINT using real-world topolo-
gies and measurement datasets, focusing on delay as the link
metric. We aim at assessing absolute link delay estimation
error as well as relative decision quality for two downstream
use cases with PAINT in comparison with representative state-
of-the-art approaches. We also study the responsiveness of link
metric inference with PAINT relative to network dynamics.

A. Datasets

We evaluate PAINT and alternative approaches over four
real-world network topologies of different sizes that are com-
monly considered in prior studies (e.g., [34], [35]): (i) National
Science Foundation Network (NSFNET, 14 nodes, 42 links);
(ii) German Backbone Network (GBN, 17 nodes, 52 links);
(iii) European data network for the research and education
community (GEANT2, 24 nodes, 74 links); (iv) German 50
nodes backbone (Germany50, 50 nodes, 176 links).

TABLE II: Summary of measurement datasets. m and n are
number of nodes and links in the measurement graph.

m n µ (ms) σ2 (ms) samples
NLANR-AMP 142 9128 [1, 323] [0, 45897] ∼ 107

RTC-CLOUD 87 1971 [3, 365] [0, 5200] ∼ 106

The above topology datasets by themselves are unweighted
so the next step is to assign weights to links based on real-
world link delay measurement data. To this end, we use two
measurement datasets: (1) the publicly available dataset from
the National Laboratory for Applied Network Research Active
Measurement Project (NLANR-AMP) [36]; (2) a measurement
dataset we collected over one of the leading RTC cloud
platform (RTC-CLOUD). These two measurement datasets
are summarized in Table II, where µ and σ2, respectively,
represent the range of average delays and delay variances
across all links. The range of these values reflect the high
degree of diversity in terms of both link delays and link delay
fluctuations.

We randomly sample links from either the RTC-CLOUD
or the NLANR-AMP dataset and map those measurements
to links in the four topologies. We use hundreds of trials
of such sampling and report results that are averaged across
those trials. While both datasets are obtained using active
probing for link measurement, we use these measurements
in our evaluations without regard to how they are collected
(active/passive). As per the measurement paths, we pick them
through random walks over the topology in question. Note
that estimation errors reported consider links that are covered
by at least one measurement path (random walk). The above
approach to combining delay measurement datasets and real-
world topologies allow us to evaluate PAINT and baselines
across a wide range of scenarios.



(a) Delay (b) Stability
Fig. 6: Link delay distribution and stability in RTC-CLOUD.

As the NLANR-AMP dataset is well-known, here we
elaborate further on the RTC-CLOUD dataset we collected.
It consists of ping measurements (every second) on overlay
links between nodes in the dataset. The RTC-CLOUD consists
of two types of measurements: edge node to relay node
measurements and measurements between relay nodes. The
dataset is constructed with 27 relay nodes on 16 sites and 60
edge nodes across several major continents (Europe, Africa,
Asia, South America). The relay nodes are VMs in data centers
and are interconnected by tunneling through private WAN and
public Internet links. Edge nodes connect to relay nodes via
WiFi or 4G.

Fig. 6a shows the distribution of link delays in the RTC-
CLOUD dataset. We observe that links passing through the
public Internet exhibit high delays in the range of 100-500ms.
Figure 6b shows the timescales of link delay fluctuations in
the RTC-CLOUD dataset. In particular, duration over which
different link delays are stable is shown as a CDF. We observe
that link delay is stable only within a 1 second period in 50%
of the cases. This provides a guideline for how quickly the
link delay estimation needs to be done for it to be useful for
network control decisions (path selection, etc.).

B. Baselines

We evaluate PAINT in comparison with representative state-
of-the-art link metric estimation algorithms from the network
tomography literature (reviewed earlier in §II-B). We consider
5 different baseline approaches as outlined below. We consider
EM [10] and GMM [11] algorithms to represent the statisti-
cal approaches. From the algebraic approaches, we consider
SVD [24] and controllable path measurements [16]. From
the graphical approaches, we consider two cases as outlined
below. The approach requiring full controllability on both
monitors and paths yields ground truth as the answer, and
as such implicitly considered in our evaluation. Naı̈ve only
picks random values from value bounds, reflecting a graphical
approach where measurement paths are uncontrollable. Fully
Controllable Route (FCR) [16] baseline is an intermediate
approach between the above two graphical approaches, and
serves as the best upper bound for estimation accuracy and
decision quality, although impractical/unrealistic.

PAINT and baselines are run until convergence with results
shown reflecting this point. Link metric estimation is com-
puted directly for algebraic approaches (SVD) and graphical
approaches (FCR, Naı̈ve). For statistical approaches (EM and
GMM), convergence is assumed when the difference between
successive estimations falls below 10−6. The convergence of
PAINT occurs when the calibration step in an iteration does
not label any links as mis-estimated. All the algorithms are
implemented with Python NumPy and PyTorch library on

a commodity server (CPU: AMD EPYC 7453, MEM: 1000
GB, OS: Ubuntu 20.04, GPU: NVIDIA A5000). PAINT is
implemented using GPU based optimizer and matrix operators.

C. Link Delay Estimation Accuracy

We use Mean Absolute Error (MAE) as the metric to quan-
tify link delay estimation accuracy with different algorithms.
For each link, closer the estimated link delay is to the ground
truth, smaller the value will be. The outliers among MAE
across all links also provide the information on the best/worst
performance of the algorithms. Note that we calculate the
MAE for each link in every trial separately and show the
aggregate result.

Fig. 7 shows the MAE for link delay estimation across
all links over 100 random trials. We observe that PAINT
performs close to the best, similar to the impractical FCR
and significantly better compared to statistical and algebraic
baselines. We also observed that in a simple network topology,
PAINT may outperform FCR. Here we restrict the number of
monitors for FCR to make it more challenging to construct
full-rank SLE. When full-rank SLE is not available, the
unidentifiable links fall back to naive approach, which have
significant impact on accuracy.

PAINT achieves 2x to 3x accuracy gain when using
NLANR-AMP measurement dataset and 1.5x to 2x gain with
the RTC-CLOUD dataset. Comparing to SVD that is purely
a least square optimization algorithm, we note that the gain
comes mainly from the SP based regularization in PAINT.
Since the accuracy is evaluated without historical knowledge,
the statistical algorithms lack sufficient data to establish the
distribution, especially for EM that uses single distribution for
each link. Use of a set of distributions as in GMM is seen to
improve the estimation accuracy significantly.

The overall MAE with RTC-CLOUD dataset is larger
than that with NLANR-AMP. This can be attributed to the
larger link delays in RTC-CLOUD dataset as overlay links
are mostly transcontinental. If the number of possible paths
between a pair of nodes is huge, it is hard to find a shorter
path for reference within initial measurements. In addition,
regularization using SP does not pay as much attention to the
links with large delay as it is unlikely for them to appear in
SPs, leading to higher estimation error for such links.

We also observe that the accuracy of PAINT decreases
slightly when the network size becomes larger (left to right).
This is mainly because we do not scale up the number of path
measurements proportionally with the network size. So for a
larger network, coverage of measurements reduces, leading to
less regularization effect for individual links. As we will see
later in this section, using fewer path measurements for larger
networks causes little harm for downstream applications.

Besides having a low MAE, it is also desirable to have
fewer outliers in the estimation of link weights. Such outliers
may overestimate “good” links or underestimate “bad” links,
thus affect the decision quality in downstream applications
(e.g., shortest path, choosing top k best paths). To examine
the nature of outliers with PAINT, Fig. 8 shows the CDF



Fig. 7: MAE of algorithms for 4 different topologies.

Fig. 8: CDF of absolute errors across links with PAINT.

of absolute errors across links after convergence. We observe
that more links are estimated correctly on smaller network
sizes due to a higher coverage of path measurements in these
topologies. This shows the need to ensure a sufficient coverage
of links with path measurements with increasing network sizes,
especially to reduce the worst case absolute estimation errors.

D. Runtime Complexity

We evaluate the runtime complexity of the algorithms to
demonstrate their ability to adapt to network dynamics. Recall
that the link performance fluctuations in the measurement
datasets happen at the scale of seconds, whereas system-wide
control decisions, e.g., route damping prevention and choice
of best path, are usually made every few minutes or even
hours [28], [37], [38]. Algorithms with runtime faster than the
link delay dynamics will result in more traffic with “good”
performance for downstream applications.

Fig. 9 shows the longest runtime for each algorithm across
the two measurement datasets for different topologies. We see
that Naı̈ve always has the lowest runtime complexity due to
its simplistic random assignment of link weight estimates from
within value bounds. SVD also has very low runtime due to
the underlying parallel matrix computations and efficient oper-
ation over multicore processors. Methods from the statistical
approaches relatively have higher runtime complexity since
they need exhaustive search, especially for GMM that has a
higher dimensional search space than EM. We see that PAINT
scales well with different network sizes and always runs under
a second (within the time period when link delays are seen
to be stable). We further note that in these experiments the
GPU accelerator is only lightly utilized (at 16%), so there
is further potential to scale to much larger networks without
increasing the runtime. Although FCR can provide accurate
estimation when full control is possible (e.g., in a private
WAN) and when the assumption of symmetric links holds,
the search for monitor placement makes the algorithm less
scalable than others as dynamic programming used in FCR
has faster increase in runtime with network size then all other
algorithms.

Fig. 9: Runtime of algorithms for 4 different topologies.

Fig. 10: Mean SPRD of algorithms for 4 different topologies.
E. Shortest Path Quality

As noted at the outset, SP is a key application scenario for
link metric estimation, where the aim is to determine the best
paths in the network to direct traffic flows. It is typically seen
as a sub-problem in traffic engineering, load balancing and
ensuring service quality [15], [39]. For this problem, closeness
to the optimal path is typically of interest when algorithm
produces a group of possible paths satisfying service level
requirements [38], as opposed to exact match with the shortest
path. Given the above, we use SP Relative Difference (SPRD)
as a metric to evaluate the quality of estimated shortest paths,
defined as follows. For any ground truth SP PW

gt and estimated
SP PW

est , SPRD is equal to |W(PW
gt )−Ŵ(PW

est )|/|W(PW
gt )| for

each node pair.
From the results shown in Fig. 10, we observe that shortest

path quality has a similar behavior as absolute error, where
PAINT has the best performance among all algorithms using
uncontrollable routes. Compared to MAE results, PAINT
yields an even larger gain in terms of SPRD, specifically
2.5x to 4x gain with NLANR-AMP dataset and 2x to 4x
gain with RTC-CLOUD dataset. We can conclude that PAINT
simultaneously achieves near ideal MAE and SP quality, which
can be attributed to the additional regularization from SPE.
In contrast, other algorithms do not factor in the relative
difference between link weight estimations and so they can
lead to SP changes due to single estimation error. Note that
unsurprisingly FCR also has better performance of SPRD due
to its high accuracy on majority of links and bound estimation
for preserving relative delay but recall that this is meant to be
an ideal but impractical baseline.

Fig. 11 takes a closer look at the SP estimation error for
each individual node pair. The first observation is that the
tail (95%) error of PAINT is at the same level of baselines
average, confirming a consistent gain in terms of SPRD for any
given node pair. The overall trend across different topologies
is degraded compared to absolute link estimation error since
link level errors accumulate when estimating SPs. The long tail
is caused by the underestimation of links not on true SP and
overestimation of links on true SP, resulting in estimated SPs
deviating to higher delay routes. For PAINT, some node pairs
may not have a better reference to validate against, especially
in larger topologies leading to more error for paths between
such node pairs.



Fig. 11: CDF of SPRD across links with PAINT.

(a) NLANR-AMP (b) RTC-CLOUD
Fig. 12: Mean MSTIR of algorithms for 4 different topologies.

F. Minimal Spanning Tree Quality

Here we show that our PAINT algorithm featuring SP based
regularization can also yield improvements for other down-
stream use cases besides SP by considering MST estimation.
Note that MST is a subroutine for several problems, such
as travelling salesman problem and maxflow-mincut problem,
that are widely applied to improve cost-efficiency for net-
works [40], [41]. Spanning tree problem is also widely applied
for constructing multicast tree for applications with high
performance requirements [42], [43]. The correct classification
of links plays an important role in MST for applications that
need cost optimization and extracting the optimal sub network
topology (e.g., [27]).

We use MST Identification Rate (MSTIR) as the metric
to evaluate the accuracy for correct categorization of MST
links, indicating the quality of graph cuts. We evaluate how
a set of links with minimal weights are captured comparing
to true MST. The accuracy alone is not sufficient to conclude
that the quality of MST meets the need of applications, as
mis-classification may lead to huge difference in delay perfor-
mance. So we additionally consider MST Relative Difference
(MSTRD) to calculate the relative difference between total
weights of estimated MST and true MST. To compute these
metrics, MST is generated from estimated link delays and
compared against true MST on the same graph but with ground
truth link weights.

In Fig. 12, we first examine the MST classification accuracy
with different algorithms. PAINT has over 90% classification
accuracy and improves by at least 6% and upto 9% compared
to the best baseline. Such high accuracy can be attributed to
link labeling and tuning, since MST contains with a close
approximation the set of links with minimal delay. Although
classification from all algorithms contain outliers, the least
accurate outlier of PAINT is still better than the rest of the
baselines with uncontrollable measurements (i.e., all except
FCR), demonstrating the robust performance of PAINT. The
fact that Naı̈ve also has relatively good classification accuracy
shows that values bounds from SLE can reflect the relative
weight difference between links.

Fig. 13: Mean MSTRD of algorithms for 4 different topolo-
gies.

We make further comparison with respect to the relative
error of estimated weight of MST (MSTRD). As shown in
Fig. 13, PAINT provides 2x to 3x improvement with NLANR-
AMP dataset and 2x to 5x improvement with RTC-CLOUD
dataset. The performance of PAINT is within 2% of FCR,
latter making the impractical assumption of full controllability
of path measurements. Together with Fig. 12, these results
show that PAINT yields an accurate approximation to resolve
MST related problem in networks. Since statistical baselines
do not have any regularization on the numerical order of link
delay, the relative error and classification error of EM and
GMM is close to Naı̈ve. SVD has a relatively more accurate
estimation since it performs a linear projection between lower
dimensional space and the solution space, during which the
principle components (the top K most frequently appeared
links in the observation) can be estimated with high accuracy.

V. CONCLUSIONS

In this paper, we have studied the problem of inferring link
metrics from a limited set of end-to-end path measurements
under the framework of network tomography. We examine the
problem from a path selection perspective and bring insights
from shortest path estimation to accurate estimation of link
metrics. Concretely, we have proposed PAINT, an online
iterative algorithm that utilizes shortest path estimations to
inform the estimation and refinement of link performance
metrics. Evaluations using real-world topologies and mea-
surement datasets focusing on link delays show that PAINT
achieves 1.5x to 3x reduction in link delay estimation error
relative to existing approaches while performing similarly to
an impractical approach that needs fully controllable routes. In
addition, PAINT achieves 2x to 5x improvement on shortest
path and minimal spanning tree decision quality.

Recall that PAINT is designed to overcome the limitations
of prior network tomography methods concerning the stability,
controllability and visibility requirements. While our evalua-
tions using real-world latency measurement datasets demon-
strate that PAINT yields link metric estimates faster than the
observed link quality fluctuations, further validation through
real-world deployment is needed. Moreover, even though the
PAINT design relaxes the requirement for monitor and path
controllability, further evaluations modeling limited control
are needed to demonstrate this capability. Finally, knowledge
of link metric distribution or topology (i.e., visibility) is
not required for PAINT but highlighting this feature through
evaluations is an issue for future work. Note that lack of
visibility manifests as greater link instability and reduced
monitor/path control, both of which PAINT can cope with.
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Padmanabhan, M. Schröder, M. Calder, and A. Krishnamurthy,
“Zooming in on wide-area latencies to a global cloud provider,”
in Proceedings of the ACM Special Interest Group on Data
Communication, SIGCOMM 2019, Beijing, China, August 19-23, 2019,
J. Wu and W. Hall, Eds. ACM, 2019, pp. 104–116. [Online].
Available: https://doi.org/10.1145/3341302.3342073

[30] K. Chen, C. Huang, P. Huang, and C. Lei, “Quantifying skype user
satisfaction,” in SIGCOMM. ACM, 2006, pp. 399–410.

[31] N. Q. M. Khiem, G. Ravindra, and W. T. Ooi, “Towards understanding
user tolerance to network latency in zoomable video streaming,” in ACM
Multimedia. ACM, 2011, pp. 977–980.

[32] G. H. Golub and C. Reinsch, “Singular value decomposition and least
squares solutions,” in Linear algebra. Springer, 1971, pp. 134–151.

[33] K. Kuttler, Linear Algebra, Theory And Applications. The Saylor
Foundation, 2012.

[34] S. Knight, H. X. Nguyen, N. Falkner, R. A. Bowden, and
M. Roughan, “The internet topology zoo,” IEEE J. Sel. Areas
Commun., vol. 29, no. 9, pp. 1765–1775, 2011. [Online]. Available:
https://doi.org/10.1109/JSAC.2011.111002
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