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Abstract—This position paper presents ThothSP, a Semantic
Programming framework with the aim of lowering the coding
effort in building smart applications on the Device-Edge-Cloud
continuum by leveraging semantic knowledge. It introduces a
novel neural-symbolic stream fusion mechanism, which enables
the specification of data fusion pipelines via declarative rules,
with degrees of learnable probabilistic weights. Moreover, it
includes an adaptive federator that allows the 𝑇ℎ𝑜𝑡ℎ⊲𝑟𝑢𝑛𝑡𝑖𝑚𝑒 to
be distributed across multiple compute nodes in a network, and
to coordinate their resources to collaboratively process tasks
by delegating partial workloads to their peers. To demonstrate
ThothSP’s capability, we report a case study on a distributed
camera network to show ThothSP’s behaviour against a tradi-
tional edge-cloud setup.

Index Terms—edge computing, autonomous system, distributed
AI, semantic computing

I. Introduction and Motivation

The rapid advancements in machine learning, particularly
deep neural network (DNN), have led to a significant increase
in the volume of multi-modal stream data that can be pro-
cessed with remarkable accuracy. However, the integration
of closed-loop ”Smart-X” systems, such as Smart Factories,
Smart Junctions, and Advanced Driving Assistant Systems
(ADAS) in the SmartEdge project [1] cannot afford the latency
associated with cloud-based data ingestion and processing.
Additionally, the sheer magnitude of multi-modal streaming
data, such as camera and lidar data, makes the conventional
approach economically infeasible, even with advancements in
GPU/CPU and storage technology.

Fig. 1: Device-Edge-Cloud Continuum.

This has motivated our endeavor to tackle the pressing
challenge on how to design, program and implement a highly
distributed network of device-edge-cloud continuum that takes

part in dynamic information flows driven by unprecedented
application logic. Our approach aims to facilitate the au-
tonomous collaboration of edge devices operating in a dynam-
ically changing environment. To accomplish this, significant
enhancements are required to support the DataOps, NetOps
and MLOps across the entire Device-Edge-Cloud continuum,
illustrated in Figure 1. To enable this approach, we propose a
Semantic Programming framework, ThothSP, that leverages
semantic knowledge to lower effort in programming DataOps,
NetOps and MLOps agnostic to hardware and infrastructure.

For DataOps, ThothSP employ Semantic Streams [2] pow-
ered by RDF stream processing (RSP) engines like CQELS
engine [3] to solve the data integration problem across IoT
systems. Semantic Streams facilitates the semantic interoper-
ability among autonomous systems via shared formal seman-
tics under standardized ontologies and vocabularies such as
OGC/W3C Semantic Sensor Network Ontology (SSN) [4] and
W3C WoT Thing Description (TD) Ontology [5].

Towards a seamless integration with DDN and multimodal
stream data in MLOps, ThothSP integrates a number of
streaming data types, such as camera video streams and
LiDAR point clouds, as well as supporting additional hardware
platforms, such as ARM and mobiles [6], [7]. Moreover,
ThothSP also supports DNN-based data fusion operations [8],
[9]. Thus, ThothSP is designed to accommodate a DNN-
based data stream fusion operations, which internally gen-
erates semantic stream that can be subsequently processed
by the 𝑇ℎ𝑜𝑡ℎ ⊲ 𝑟𝑢𝑛𝑡𝑖𝑚𝑒 in a unified data model, i.e. RDF-
star [10]. To support semantic interoperability in realtime,
𝑇ℎ𝑜𝑡ℎ⊲𝑟𝑢𝑛𝑡𝑖𝑚𝑒 uses CQELS-QL, an extension of standadized
query language SPARQL with advanced query patterns such
event query patterns [11], [12] and probabilistic reasoning [8],
[9] so that device, edge and cloud can coordinate a single
query interface and language. Semantic streams also pave the
way to unify NetOps with the semantic programming paradigm
following the vision of semantic communications [13].

II. Semantic Programming In ThothSP
This section introduces Semantic Programming (SP)

paradigm for fusing multimodel data that draws inspiration
from the human brain’s semantic and episodic memory systems
[14]. The semantic memory refers to our brain’s repository of
general world knowledge and episodic memory refers to our
“episodic memory system”, which encodes, stores, and allows979-8-3503-0322-3/23/$31.00 ©2023 IEEE
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Fig. 2: Semantic representation of multimodal data stream.

access to “episodic memories”, e.g. recollection of personally
experienced events situated within a unique spatial and temporal
contexts. By incorporating the principles of these cognitive
processes into programming, SP aims to lower coding effort by
exploiting semantic knowledge paired with human cognition.
In this paradigm, programs are designed to manipulate and
understand information based on its semantic symbols rather
than relying solely on rigid algorithms or explicit instructions.

To ground programming elements to semantic symbols
understandable for both human and machine, we present
sensory streams in RDF-star [10]. As illustrated in Figure 2,
ThothSP fuses the video data stream observed by a camera (as
a 𝑆𝑒𝑛𝑠𝑜𝑟) as a stream of symbolic observations representing
these video frames. These frames are represented as instances of
the class 𝐼𝑚𝑎𝑔𝑒2𝐷 that inherits from the generic 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛

class of SSN ontology [4]. The detection of a video frame or a
tracklet are represented as SSN 𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔, which are processed
by a DNN model or a CV algorithm represented as a Procedure.

Fig. 3: Data model of Semantic Streams based on SSN Ontology.

1 //time point/frame 2
2 <<:image2 a :Image2D>> a sosa:Observation;
3 sosa:madeBySensor :cam1; sosa:resultTime 2.
4 //RDF-star descriptions of detection 1 and 3
5 <<:det1 :det :b1>> a :Detection; sosa:resultTime 2;
6 sosa:hasSimpleResult ’car’; :score ’0.8’;
7 :isDetectionOf :image2; sosa:usedProcedure :Yolo.
8 <<:det3 :det :b3>> a :Detection; sosa:resultTime 2;
9 sosa:hasSimpleResult ’car’; :score ’0.7’;

10 :isDetectionOf :image2; sosa:usedProcedure :Yolo.
11 //RDF-star descriptions of tracking 1 and 2
12 <<:trk1 :trk :b2>> a :Tracklet; sosa:resultTime 2;
13 sosa:usedProcedure :KalmanFilter.
14 <<:trk2 :trk :b4>> a :Tracklet; sosa:resultTime 2;
15 sosa:usedProcedure :KalmanFilter.

Listing 1: A Snapshot of Semantic Stream serialized with RDF-star.

For example, Listing 1 presents a snapshot of semantic stream
data in Figure 2 where the red boxes are detected bounding

boxes and the yellow boxes are tracked bounding boxes. Line 5
denotes that the detection model generates an output consisting
of a bounding box 𝑏1, object type 𝑐𝑎𝑟 , and confidence score
0.8. Line 13 denotes that the bounding box 𝑏2 is predicted by a
Kalman filter and is tracked by tracklet 1.

Based on several theoretical and empirical studies of human
perception considering ”perception as hypotheses”,e.g [15],
[16], a Semantic Stream Reasoning (SSR) program is formulated
as a set of rules representing hypotheses from semantic streams
above. Such rules can be written in CQELS-RL (an extension
from CQEL-QL and SHACL) syntax. The formal semantics
of SSR is specified in [8]. In essence, there are two types
of rules, hard rules and soft rules. The hard rule is used for
background knowledge given by (non-monotonic) common-
sense and domain knowledge that is regarded as ”always true”.
The soft rules expresses association hypotheses with weights
corresponding to probability degrees of these rules. Listing 2
illustrates how a soft rule is written in CQELS-RL syntaxs
based on the input stream illustrated in Listing 1. This rule can
be interpreted in plain English as ”a vehicle enters a field of
view if a bounding box of it has been detected first time in the
last 5 seconds”.
ssr:rule_w_1 a sh:NodeShape;
sh:rule [
a sh:CQELSRule ;
sh:prefixes ssr: ;
sh:construct """
CONSTRUCT {<<?O :enters <ssr:FoV>> @ ?T.}
WHERE { STREAM <:ssr>
{ <<?Dt :det ?B >> @ ?T; :score ?S.
?B sosa:isSampleOf ?O ; a :car.
FILTER (?S > 0.8) }
NAF STREAM <:ssr> window[5 sec]
{?O :inFOV ssr:FoV.} }
""" ;

] ;

Listing 2: Soft rule to detect vehicles entering the Field of View.

The weights of the soft rules are determined by the
Learning Agent component in the starting phase the learning
and fusion workflow illustrated in Figure 4. For the setup, the
symbolic training samples are constructed from the labeled
data and are fed to the Learning Agent component. The
Learning Agent component computes a vector of weights for
the soft rules, which are stored as rule templates, and passes them
to the Reasoning Programs Producer component. For each
training iteration, the Reasoner component returns a feedback



Fig. 4: Learning and Fusion Workflow in ThothSP.

stream of reasoning results back to Learning Agent. The
Learning Agent then adjusts the weights of the soft rules
until the answer sets, returned as a feedback streams, describe
the most likely ground truth.

The Feature Extractor component detects the features
of interest from the incoming data stream and maps them to
their symbolic representation. The feature data is described
with a neuro-symbolic stream model [8] and its semantics are
enriched via semantic knowledge graphs.

The Reasoning Programs Producer component gener-
ates SSR programmes [8], which specify the fusion pipeline
and the decision logic to choose the most likely state of the
world at each evaluation. The reasoning program is evaluated
by the Reasoner component, which employs an ASP solver.

III. Design of Semantic Programming Framework

A. Swarm Architecture

The ThothSP framework takes the input from a SSR program
described in Section II . In essence, the resultant reasoning
programs are an amalgamation of application logic and knowl-
edge graphs, which specify the semantics of the inputs, outputs,
and behavior of smart-devices in a 𝑇ℎ𝑜𝑡ℎ⋇ 𝑠𝑤𝑎𝑟𝑚. The SSR
programs are then compiled and deployed to each smart-device’s
𝑇ℎ𝑜𝑡ℎ⊲𝑟𝑢𝑛𝑡𝑖𝑚𝑒, called 𝑇ℎ𝑜𝑡ℎ·𝑛𝑜𝑑𝑒, which collectively form a
𝑇ℎ𝑜𝑡ℎ⋇𝑠𝑤𝑎𝑟𝑚 of devices collaborating to perform a common
task. To allow flexibility in deploying a 𝑇ℎ𝑜𝑡ℎ⋇ 𝑠𝑤𝑎𝑟𝑚, they
can be instantiated in one of two modes.

If the devices in the swarm and their function are known at
design time, the swarm can be predefined. This technique allows
legacy devices, smart-devices, and clouds to be integrated into
the same swarm. The characteristics of each device are stored in
a common device repository in the form of a knowledge graph,
which allows the function and connectivity of the devices to
be statically bound into the reasoning program at design time.
The reasoning programs are deployed to each smart-device’s
𝑇ℎ𝑜𝑡ℎ⊲𝑟𝑢𝑛𝑡𝑖𝑚𝑒 during swarm formation. As legacy devices do
not host the 𝑇ℎ𝑜𝑡ℎ⊲𝑟𝑢𝑛𝑡𝑖𝑚𝑒, they are integrated into the swarm
by connecting to smart-devices. Sensors on the legacy devices
are statically bound to smart-devices at design time, and their
data streams processed on the smart-devices’ 𝑇ℎ𝑜𝑡ℎ⊲𝑟𝑢𝑛𝑡𝑖𝑚𝑒.

Clouds can be passive recipients of data or semantic streams, or
actively participate in the swarm if they host a 𝑇ℎ𝑜𝑡ℎ⊲𝑟𝑢𝑛𝑡𝑖𝑚𝑒.

If the𝑇ℎ𝑜𝑡ℎ⋇𝑠𝑤𝑎𝑟𝑚 must operate dynamically, i.e., with de-
vices joining and leaving over its lifespan, the𝑇ℎ𝑜𝑡ℎ·𝑛𝑜𝑑𝑒 must
act as autonomous agents that can join or leave the swarm on
their own volition. All 𝑇ℎ𝑜𝑡ℎ ·𝑛𝑜𝑑𝑒s host a 𝑇ℎ𝑜𝑡ℎ ⊲𝑟𝑢𝑛𝑡𝑖𝑚𝑒,
which runs a basic SSR program. The 𝑇ℎ𝑜𝑡ℎ ⋇ 𝑠𝑤𝑎𝑟𝑚 is
instantiated with a single seed 𝑇ℎ𝑜𝑡ℎ · 𝑛𝑜𝑑𝑒, which acts as
the swarm coordinator (SC). The SC is running a special SSR
program whose purpose is to form and manage the swarm’s
operation. The SC then enlists free smart-devices (SDs) into the
swarm to perform its task. When the a 𝑇ℎ𝑜𝑡ℎ · 𝑛𝑜𝑑𝑒 joins
the swarm it is assigned a role in performing the task. To
enable the 𝑇ℎ𝑜𝑡ℎ ·𝑛𝑜𝑑𝑒 to perform this role, the required SSR
program is dynamically downloaded into the ThothSP-runtime
and executed. In other scenarios a free SD may request to join
a swarm to make use of its services. The SDs use messages
oriented middleware (MOM), such as DDS or V2X, and an
customized network layer that allows them to interact with other
devices in the swarm to collaborate on performing the task.

The SC maintains the primary swarm state in its dynamic
knowledge graph (DKG). It updates the swarm state when smart-
devices join or leave the swarm, or when significant events
occur. Other SDs in the swarm may maintain a partial copy
of that DKG, depending on their role in the swarm and their
computational and storage capacity. At a minimum a SD will
know the characteristics and skills it possesses, as well as basic
swarm state information, e.g., its role in the swarm.

Listing 3 illustrates a subscription message in JSON-LD
format based on the WoT TD ontology [5]. Based on the
semantic description provided by the subscribed nodes, the
parent node can carry the stream discovery patterns which use a
variable in the stream pattern, as shown in line 4 of Listing 4. The
variable ?streamURI then can be matched in other metadata. In
this example, it is used to link with the sensors that generated this
stream. Recursively, the subscription process can propagate the
stream information upstream hierarchically, and vice versa, the
discovery process can be recursively delegated to downstream
nodes via sub-queries in CQELS-QL as a simple text message.
"@context":"https://www.w3.org/2022/wot/td/v1.1",
"title":"Camera2-At-Helsinki",
"id":"urn:uuid:9489991a-7622-45b6-8437-f859835d4",
"description":"Traffic Camera at Junction....",
"properties":
{"status":
{"description":"Stream Camera Feed at 30FPS",
"type": "string",
"forms":[{"op":"readproperty",

"href":"RTSP://helsinki.fi/camera/2",
"methodName":"RTSP",
"contentType":"application/mp4" }],

"readOnly": true}}

Listing 3: Example of subscription message in JSON-LD.

To form a swarm, it would require each𝑇ℎ𝑜𝑡ℎ·𝑛𝑜𝑑𝑒 to operate
as an autonomous agent which can collaborate with other peers
to execute a distributed processing pipeline specified in CQELS-
RL. An autonomous𝑇ℎ𝑜𝑡ℎ·𝑛𝑜𝑑𝑒 can dynamically join a network
of existing peers by subscribing itself to an existing node in the
network, called a parent node, and it then notifies the parent node



about the query service and streaming service it can provide
to the network. These services can be semantically described
by using vocabularies provided by VoCaLS [17]. Hence, a
subscription can be done by sending a RDF-based message via
Websocket or DDS in ROS2.

To this end, when an autonomous 𝑇ℎ𝑜𝑡ℎ · 𝑛𝑜𝑑𝑒 joins a
network, it makes itself and its connected nodes discoverable
and queryable to other nodes of the network. Moreover, each
node can share its processing resources by executing a CQELS-
QL query on it. This will help us treat a CQELS-QL query over
𝑇ℎ𝑜𝑡ℎ⋇𝑠𝑤𝑎𝑟𝑚 as a query to a sensor network. Note that network
telemetry such as network failure, status and mirrored traffic
streams, can be modeled as semantic streams to seamlessly
integrate them into the control flow of a 𝑇ℎ𝑜𝑡ℎ⋇𝑠𝑤𝑎𝑟𝑚.

With the support of the above subscription and discovery
operations, a SSR program written in CQELS-RL can be
deployed across several sites,e.g., traffic cameras across a road
network. Each𝑇ℎ𝑜𝑡ℎ·𝑛𝑜𝑑𝑒 gives access to data streams fed from
streaming nodes connecting to it. Such stream nodes can ingest
a range of sensors, such as air radar, loop detector and camera.
When the stream data arrives, this node can partially process
the data at its processing site, and then forward the results as
tabular results or RDF stream elements to its parent node.

In this context, when a query is subscribed to the top-most
node, called root node, it will divide this query to sub-query
fragments and deploy at one or more sites via its subscribed
nodes. A query fragment consists of one or more operators,
and each fragment of the same query can be deployed on
different processing nodes. Recursively, a sub-query delegated
to a node can be federated to its subscribed nodes. All participant
nodes of a processing pipeline can synchronise their processing
timeline via a timing stream that is propagated from the root
node. The execution process of sub-query fragments can use
resources, i.e. CPU, memory, disk space and network bandwidth
of participant nodes to process incoming RDF graphs or sets
of solution mappings and generate output RDF graphs/sets of
solution mappings. Output streams may be further processed
by fragments of the same query, until results are sent to the
query issuer at the root node. For example, the sub-query of the
query in below Listing 4 can be sent down to the nodes closer
to the streaming nodes, then the results will be recursively sent
to upper nodes to carry out the partial COUNT query until it
reaches the root node to carry out final computation steps to
return the expected results.
SELECT ?camera (COUNT(?truck) as ?truckCount)
WHERE{
STREAM ?streamURI [RANGE 5m ON sosa:resultTime]
{
?sensor a ssr:Camera; sosa:madeObservation ?obs.
?obs sosa:hasResult ?vFrame.
?truck a :Truck; ssr:detectedIn ?vFrame.

}
?streamURI prov:wasGeneratedBy/a :TrafficCamera.
}
GROUP BY ?camera
HAVING (COUNT(?truck) > 1)
ORDER BY ?truckCount

Listing 4: Example of Federated Query accross Cameras.

This federation process can be carried out dynamically thanks
to the dynamic subscription and discovery capability above.
Moreover, the processing topology can be dynamically config-
ured by changing where and how participant nodes subscribed
themselves to the processing networks.The biggest advantage
of this federation mechanism is the ability to dynamically
push some processing operations closer to the streaming nodes
to alleviate the network and processing bottlenecks which
often happen at edge devices. Moreover, this mechanism can
significantly improve the processing throughput by adding more
processing nodes on demand.

B. Component Design
In this section, we present the design of components of the

ThothSP framework as illustrated in Figure 4. ThothSP pro-
vides a hardware-independent infrastructure to implement
ThothSP kernels for computing continuous queries expressed
in CQELS-QL. The ThothSP-runtime accepts RDF streams as
input and returns RDF streams or relational streams in the
SPARQL format as output. ThothSP allows for the creation
of RDF streams by annotating extracted features from sensor
input data streams. The output RDF streams can then be fed into
any RSP engine, and the relational streams can be used by other
relational stream processing systems.

Fig. 5: Component Design of ThothSP.

Figure 5 illustrates the component design of the
ThothSP framework. In general, ThothSP consists of three
subsystems. Subsystem 1 , the RSP processor, extends the
RSP primitives of its previous version [3] to accelerate the
grounding phase of a SSR. For example, multiway joins are
used to accelerate the incremental ground techniques [18]. The
second subsystem 2 is the SSR component as presented in
Section II. Finally, subsystem 3 is a stream adaptive federator,
which is described in the remainder of the section.

To tailor the RDF-based data processing operations on edge
devices (e.g, ARM CPU, Flash-storage), ThothSP can be
integrated with RDF4Led [6], a RISC style RDF engine for
lightweight edge devices, to build the Adaptive Federator based
on [7]. The each edge-based 𝑇ℎ𝑜𝑡ℎ ⊲𝑟𝑢𝑛𝑡𝑖𝑚𝑒 deployment is
smaller than 10MB in size and needs only 4–6 MB of RAM to
process millions of RDF triples on computationally constrained
devices, such as BeagleBone [19], Raspberry PI [20]. Therefore,
ThothSP includes an adaptive federation mechanism to enable



the coordination of different hardware resources, which in
turn enables the construction of query processing pipelines by
cooperatively delegating partial workloads to their peer agents.
For elastically scale processing load the cloud infrastructure,
ThothSP can use Apache Flink as the underlying software
stacks for coordinating parallel execution processes using the
approach in CQELS Cloud [21]. This will lay the foundation for
an integration of the adaptive optimizer with the cloud-based
stream scheduler and operation allocations.

The Adaptive Federator acts as the query rewriter, which
dynamically divides the input query into sub-queries. The
rewriter then pushes the sub-queries as close to the streaming
source device as possible by following the predicate push down
approach used in common logical optimisation algorithms. The
metadata subscribed to by the other 𝑇ℎ𝑜𝑡ℎ⊲𝑟𝑢𝑛𝑡𝑖𝑚𝑒 is stored
locally. Similar to [22], such metadata allows the endpoint
services of a 𝑇ℎ𝑜𝑡ℎ⊲𝑟𝑢𝑛𝑡𝑖𝑚𝑒 to be discovered via the Adaptive
Federator. When the Adaptive Federator sends out a sub-query,
it notifies the Stream Input Handler to subscribe and listens to
the results returning from the sub-query. On the other hand,
the Stream Output Handler sends out the sub-queries to other
devices or sends back the results to the requester.

IV. A Case Study on Distributed Camera Network
A. Build a SSR program for Multi Object Tracking(MOT)

In computer vision, a MOT pipeline is normally programmed
in C/C++ or Python. With ThothSP, the widely used tracking-
by-detection approach [23] can be emulated as an MMOT in a
declarative fashion with rules and queries, e.g. SORT in List-
ing 5. The key operations in tracking-by-detection approaches
are as following: 1) detection of objects (using DDN-based
detector), 2) propagating object states (location and velocity)
into future frames, 3) associating current detection with existing.

Figure 2 illustrates the SORT [24] algorithm which is a simple
object tracking algorithm based on DNN detectors such as
SSD [25] or YOLO [26]. To associate resultant detections with
existing targets, SORT uses a Kalman filter [27] to predict the
new locations of targets in the current frame. At time point 2, the
red boxes 𝑏1 and 𝑏3 are newly detected, and the yellow boxes 𝑏2
and 𝑏4 are predicted by a Kalman filter based on the tracked
boxes from the previous frame. Then, the SORT algorithm
computes an associative cost matrix between detections and
targets based on the intersection-over-union (IOU) distance
between each detection and all predicted bounding boxes from
the existing tracklets. In case some detection is associated with
a target, the detected bounding box is used to update the target
state via the Kalman filter. As in frame 2, the tracklets 𝑡𝑟𝑘1 and
𝑡𝑟𝑘2 are set to the two new bounding boxex 𝑏1 and 𝑏2 which
are associated with predicted boxes 𝑏3 and 𝑏4 respectively.
Otherwise, the target state is simply predicted without correction
using the linear velocity model. For example, at time point 3,
the detector misses detecting the white car due to an occlusion,
however, the tracklet 2 is till assigned to box 𝑏7 which contains
part of the white car.

To associate a detected bounding box 𝐵 with an object 𝑂, we
use soft rules that assert the triple≪𝐵 𝑠𝑜𝑠𝑎 : 𝑖𝑠𝑆𝑎𝑚𝑝𝑙𝑒𝑂 𝑓 𝑂≫.

Such rules can be used to represent hypotheses on temporal
relations among detected objects in video frames following
a tracking trajectory. Particularly, the object’s movement is
consistent with the constant velocity model, e.g., the Kalman
filter used in SORT [24], and there is a detection associated
with its trajectory, the fact ≪ 𝐵 𝑠𝑜𝑠𝑎 : 𝑖𝑠𝑆𝑎𝑚𝑝𝑙𝑒𝑂 𝑓 𝑂 ≫ is
generated. Here, 𝑖𝑜𝑢(𝐵1, 𝐵2) states the IOU (intersection over
union) condition of the bounding boxes 𝐵1 and 𝐵2 satisfy.
1 ssr:rule_w_2 a sh:NodeShape ;
2 sh:rule [
3 a sh:CQELSRule ;
4 sh:prefixes ssr: ;
5 sh:construct """
6 CONSTRUCT { ?B1 sosa:isSampleOf ?O. }
7 WHERE { STREAM <:ssr>
8 { <<?Dt :det ?B2 >> @ ?T; :score ?S.
9 <<?Trk :trk ?B1 >> @ ?T.

10 ?Trk :trklet ?O. }
11 FILTER (?S>0.8 && iou (?B1,?B2) > 0.8)}}""" ;
12 ] ;

Listing 5: A soft rule to emulate SORT algorithm [24].

Similarly, we can also emulate DeepSORT [28] via a another
soft rule that can search for more supporting evidences to link a
newly detected bounding boxes from an occluded tracklet using
visual appearance associations, e.g. frames 2 and 4 of Figure 2.
For this, one can search for pairs of bounding boxes from recently
occluded tracklets w.r.t. visual appearance (more details in [8]).

B. Federating a SSR Program in 𝑇ℎ𝑜𝑡ℎ⋇𝑠𝑤𝑎𝑟𝑚

Next, we report the implementation of our case study on
a distributed camera network. This network is built based on
the data provided by the AI City Challenge (AIC) [29]. The
AIC has 40 cameras spanning across 10 intersections in a
mid-sized US city. The baseline to compare the efficiency and
scalability of𝑇ℎ𝑜𝑡ℎ⋇𝑠𝑤𝑎𝑟𝑚 is the traditional device-cloud (DC)
infrastructure that ingests data from these 40 cameras connected
by 40 roadside units (RSU) into a centralized server (the red node
as shown in Figure 6(b)). The red node is a powerful server (2
Intel Xeon Silver 4114 Processors, 1TB RAM, V100 GPU cards
with 16GB) representing for a cloud infrastructure. In this setup,
the red node will handle all workload of the above MMOT

program including its SORT and DeepSORT algorithms. An
RSU runs on a Raspberry Pi 3 Model B which is used only for
encoding/decoding video streams from its attached camera in
this baseline. To simulate camera streams, we used these RSUs
to replay the recorded data from AIC at a speed of 10 frames
per second (fps) for each camera.

Then, 𝑇ℎ𝑜𝑡ℎ⋇𝑠𝑤𝑎𝑟𝑚 setup adds 8 Jetson Nanos (JNs) [30]
to DC setup for offloading heavy processing load of DNN-based
object detections the DC setup, called device-edge-cloud (DEC).
We use the Yolov5 pre-trained model for both DC and DEC
setups. A group of RSUs will be connected to a JN via a wired
network if they are geographically collocated to an intersection.

When a MMOT is registered to the red node of the
𝑇ℎ𝑜𝑡ℎ⋇ 𝑠𝑤𝑎𝑟𝑚, it delegates some subtasks to the blue nodes
reprenting for Jetson Nano devices. For examples, subtasks on
object detections and tracking are specified as in line 9 and line
10 of Listing 5. As we can see in Figure 6(c), when the number
of RSUs increases to more than 10, 𝑇ℎ𝑜𝑡ℎ⋇ 𝑠𝑤𝑎𝑟𝑚 starts to



perform better than a DC counterpart in terms of latency. Note
that, even DEC has more processing power than DC, but adding
one more communication hop to the network topology will add
more delay if the red node is not overloaded in terms processing
or bandwidth. However, for the most heavy operation Yolov5,
a V100 can process 100-250 fps, while each Jetson nano can
process 10-25 fps. Consequently, the benefit of having edge
node is getting clearer when having more processing load and
network demand, i.e. streaming from more than 10 cameras.
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Fig. 6: Scaling behaviour of𝑇ℎ𝑜𝑡ℎ⋇𝑠𝑤𝑎𝑟𝑚 vs. device-cloud approach.

V. Conclusion and Outlook
The paper introduces the ThothSP framework, aiming to

materialize the SP paradigm, wherein developers can concen-
trate solely on the semantic symbols abstracting away the com-
plexities of DataOps, NetOps, and MLOps on multimodal data
streams. Hence, ThothSP simplifies the development process
with declarative queries and rules composed from such symbols.
An initial implementation was presented, accompanied by a
case study on a distributed camera network showing that a
𝑇ℎ𝑜𝑡ℎ⋇ 𝑠𝑤𝑎𝑟𝑚 can dynamically offload the processing load
to the edge devices closer to the sensing devices.

While the initial implementation of ThothSP within the
context of the Horizon Europe project, SmartEdge, has shown a
promising scaling behavior and improved programability, there
are several exciting and challenging endeavors we are eager to
explore to ensure ThothSP works robustly in SmartEdge use
cases, such as Smart Factories, Smart Traffic, and ADAS. The
first challenge is effectively managing the dynamicity of the
𝑇ℎ𝑜𝑡ℎ⋇𝑠𝑤𝑎𝑟𝑚 when a 𝑇ℎ𝑜𝑡ℎ·𝑛𝑜𝑑𝑒 joins or leaves the peer-to-
peer network (e.g., V2X or mobile robots) without disrupting
any services that do not rely on it. Addressing this issue is crucial
to maintain smooth operations in dynamic environments.

The second challenge involves developing optimization algo-
rithms to adaptively optimize the federated computing pipeline
on distributed streams of multi-modal data. This is essential to
ensure optimal performance and resource utilization in the face
of constantly changing data patterns and processing demands.
Finally, we aim to automate the process of building SSR

programs using both semantic knowledge and large language
models amid the current rapid development of AI technologies.
Automating this process will expedite program development
and enhance the efficiency of ThothSP in handling complex and
diverse data and deployment scenarios.
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