
A Fault-Tolerant P2P-based Protocol for Logical Networks Interconnection

Jaime Lloret1, Juan R. Diaz2, Fernando Boronat3 and Jose M. Jiménez4
Department of Communications, Polytechnic University of Valencia (Spain)

1jlloret@dcom.upv.es; 2jrdiaz@dcom.upv.es; 3fboronat@dcom.upv.es; 4jojiher@dcom.upv.es

Abstract

TCP/IP protocol suite application layer allow

grouping nodes into logical networks according to
similar characteristics, functionalities or social trends.
Sometimes, it is useful, or necessary, to find a way to
join those autonomous logical networks. This paper
describes how a group of nodes, with the same role in
a network, will establish logical connections with other
nodes from other groups. This architecture allows
sharing data, content and resources between different
groups. The topology of logical connections, between
nodes from different groups, changes depending on
their processing, the number of connected nodes or
node failures. It is scalable and fault-tolerant. The
protocol and its management are described in detail.
Simulation results for some cases are shown. The
architecture has been developed to be applied to
multiple types of logical networks (P2P file-sharing,
distributed computing, CDNs and so on).

1. Introduction

Logical network group nodes using the same
application layer protocol. All nodes use that protocol
to share their resources (e.g. content, files, computing,
etc.) with others and to reach other nodes in the
network. Let’s suppose a scenario where there are
several logical networks. All nodes in the same
network have the same role in the network. Application
layer protocols running in each network can be
translated to other protocols. So, the protocol shouldn’t
be encrypted using signatures or private keys.
Examples of networks with these are some P2P file-
sharing networks, content delivery networks,
distributed computing networks, and so on.

Researchers in this topic focus their work in a
centralized manner, e.g. using a central point of data
delivering between logical networks. But this solution
suffers from three main drawbacks: (1) All protocols
have to be running in the server at the same time, so it
will need many resources. (2) There is a single point of

failure and a bottleneck. (3) Every time a new network
is joined, the central point has to be upgraded.

We propose the use of a common protocol to join
nodes from different networks. Every node knows the
protocol of its network and the protocol for the
interconnection (only two protocols). Nodes in a
network could have connections with nodes from other
networks based on some parameters such as available
capacity, available number of connections, and so on.
This architecture allows several layers to organize node
connections. When a new network joins the
interconnection system, those new nodes will use the
proposed protocol to have connections with nodes
from other networks instead of upgrading all networks’
nodes. The proposed architecture allows node’s self-
organization and it is scalable. Moreover, fault-
tolerance and load balancing could be implemented.

This paper is structured as follows. Section 2
describes the architecture. Section 3 explains the
protocol operation. Algorithms to recover node failures
and leavings are described in section 4. Simulations for
some cases are shown in section 5. Finally, in section
6, the conclusions are summarized.

2. Architecture description

The architecture uses some nodes from existing
logical networks to interconnect them. When a node
looks for some information, first it will try to get it
from its network. In case of no result, the search is sent
to other networks using the proposed protocol. If it is
found, the information can be downloaded. Once the
node has the information, it will act as a cache for its
network, sharing this information.

We have defined 3 types of node roles. A node
could run all them simultaneously.
• Dnode: They have connections with Dnodes from

other networks. Dnodes are used to send searches
and data transfers between networks as a hub-and-
spoke.

• Level-1 Onodes: They organize Dnodes in zones to
have a scalable architecture.

• Level-2 Onodes: They have connections with
Level-2 Onodes from other networks. Level-2
Onodes organize connections between Dnodes
from different networks.
Onodes maintain and manage the architecture.

Every new Onode must authenticate with other Onodes
from its network and/or from others networks
(depending on the Onode). When a new node joins the
proposed architecture, it starts with its upstream and
downstream bandwidth, its maximum number of
supported connections from other nodes and its
maximum % of CPU load used for joining the
architecture by the desktop application. All nodes have
a unique node identifier (nodeID), first node in the
network will be Dnode, level-1 Onode and level-2
Onode and it will have nodeID=1. Then, it will assign
nodeIDs sequentially to new nodes in its network. All
networks have a network identifier (networkID) and all
nodes in the same network have the same networkID.

We define λ parameter as the node’s capacity. It
depends on node’s bandwidth (in Kbps), its number of
available connections, its maximum number of
connections and its % of available load. It is used to
determine the best node to have connections with.

We define δ parameter as the node suitable
parameter. It depends on node’s bandwidth and its age
in the system. It is used to know which node is the best
node to have higher role. Nodes with higher bandwidth
and older are preferred to promote, so they will have
higher δ. Every β nodes in the logical network, the
node with higher δ will start Dnode role and it will
authenticate with a level-1 Onode in its network. In
order to have a scalable network, every α Dnodes, the
node with higher δ will start level-1 Onode role and it
will create a new Dnodes’ zone. α and β values depend
on the number of nodes in the network and their data
traffic. Using explanations given in [1], we have
estimated α between 64 and 96, β between 1 and 96 for
P2P File Sharing Networks, and one level-2 Onode
every 50 level-1 Onodes is enough to maintain and
manage level-1 Onodes’ network.

We have chosen SPF (Shortest Path First) routing
algorithm [2] to route information between Onodes. It
is fast and allows sending fast searches to find Dnodes
adjacencies, but it can be changed for other routing
protocol depending on the networks’ characteristics.
Both type of Onodes use SPF algorithm. Level-l
Onodes routes information inside the network using
NodeID values. Level-2 Onodes routes information
between networks. NetworkID is used to route
information in this layer. Every node runs SPF
algorithm locally and selects the best path to a
destination based on a metric described later. Level-1
Onodes only add level-2 Onodes in their network

entries and level-2 Onodes add all level-1 Onodes in its
network, so they know how to reach all level-1 Onodes
in their network. SPF routes are calculated using the
virtual-Link cost which is based on node’s capacity (λ).
The more is the node’s capacity, lower its cost is. The
metric for each route is based on the hops to a
destination and the virtual-link cost of those nodes
involved in the path. The metric is used in SFP
algorithm to know which is the best path to reach a
node is. More information about the description of this
layered architecture can be found in [1].

3. Protocol description

When the first network node joins the architecture,
it has to send a discovery message, with its networkID,
to find level-2 Onodes from other networks. If there is
not any reply in a certain period of time, it will begin
the process again. Level-2 Onodes from other networks
reply this message with their networkID and their λ
parameter. It chooses level-2 Onodes with higher λ and
sends them a connection message. Then, they reply
with a welcome message indicating that it has joined
the architecture. After that, it sends them its neighbor
list. Its neighbors add this entry to their topological
database and recalculate routes using SPF algorithm.
When they finish, they will send their database to the
new level-2 Onode to build its database. Next database
messages will be updates only. Finally, it will send
them keepalive messages periodically to indicate that it
is still alive. If it does not receive a keepalive message
from a neighbor for a dead time, it will erase this entry
from its database. Steps explained are shown in figure
6.

When new nodes join the architecture, they will be
Dnodes. At first, a Dnode sends a discovery message
with its networkID to level-1 Onodes known in
advance or by bootstrapping [3]. Only level-1 Onodes
with the same networkID will reply with their λ
parameter. Dnode will wait for a hold time and choose
the level-1 Onode with higher λ. If there is no reply for
a hold time, it will send the discovery message again.
Next, Dnode sends a connection message to the elected
level-1 Onode. This level-1 Onode will reply a
welcome message with the nodeID assigned and
information related with the backup level-1 Onode.
Then, it will add Dnode’s entry to its Dnodes’ table.
Finally, Dnode will send keepalive messages
periodically to the level-1 Onode. If the level-1 Onode
does not receive a keepalive message from the Dnode
for a dead time, it will erase this entry from its
database. Steps explained can be seen in figure 7.

Figure 6. Messages when enters a new network.

Figure 7. Messages when a new Dnode joins the architecture.

Dnodes have to send request messages to the level-1
Onode in its zone to establish connections with Dnodes
from other networks. This message contains a 0x00
value (or a destination networkID), sender’s
networkID, sender’s nodeID and its network layer
address. Level-1 Onode routes it to its nearest level-2
Onode. Level-2 Onode sends this request to other
networks (or network).

When a level-2 Onode receives this message from
other network, it will send a message to level-1 Onodes
in its network in order to find Dnodes with highest λ in
the network. Every request has a unique sequence
number to avoid route loops in the network. Level-1
Onodes will reply with their 2 Dnodes with highest λ.
Level-2 Onode waits replies for a certain period of
time. It chooses 2 highest λ Dnodes and sends them a
message. The highest one will be the preferred; the
second one will act as a backup. This message contains
the nodeID and the requesting Dnode’s network layer
address. When these Dnodes receive that message, they
will send a message to connect with the Dnode from
the other network. Next, they send a confirmation
message to the level-2 Onode in its network to indicate
a connection has established with other network
Dnode. If level-2 Onode does not receive this message
for a hold time, it will send a new message to the next
Dnode with highest λ. This process will be repeated
until level-2 Onode receives both confirmations. When
the requesting Dnode from other network receives
these connection messages, it will add Dnode with
highest λ as its first neighbor and the second one as the
backup. Then, it replies these connection messages to
acknowledge the connection. If the requesting Dnode
does not receive any connection from other Dnode for
a dead time, it will send a requesting message again.
Finally, both Dnodes will send keepalive messages
periodically. If a Dnode does not receive a keepalive
message from the other Dnode for a dead time, it will
erase this entry from its database. Every time a Dnode
receives a search or data transfer for other networks, it
looks up its Dnodes’ distribution table to know which
Dnode send the search, or data, to. These steps are
shown in figure 8.

When a level-2 Onode receives a new networkID in
its networkID table, it will send a message to all level-
1 Onodes in its network with a sequence number to
avoid route loops. Then, level-1 Onodes will forward
this message to all Dnodes in their zone. Subsequently,
Dnodes will begin the process to request Dnodes from
the new network as it is shown in figure 8.

When a level-2 Onode calculates that the average of
λ for all level-1 Onodes in its network accomplishes
equation 1, it will send a message to all level-1 Onodes
to request a new level-1 Onode.

ConMax
k
_

05.1 3≤λ (1)

We have considered K3=103 to get λ into desired

values. When a level-1 Onode receives that message, it
will reply with the nodeID of the Dnode with highest δ
in its zone. Level-2 Onode will process all replies and
will elect the Dnode with highest δ. Then, it will send a
message to the level-1 Onode with highest δ in its
network. This message will be routed to the chosen
Dnode. This Dnode will become a level-1 Onode and
will send a disconnection message to its level-1 Onode.
If the level-2 Onode does not receive changes for a
hold time, it will send a new request message to the
second Dnode with highest δ. If this time it fails again,
it will begin again, but avoiding those Dnodes. Steps
explained are shown in figure 9.

Level-1 Onodes must authenticate with level-1
and/or level-2 Onodes in their network. A new Onode
can establish its first connection with any Onode
known in advance or by bootstrapping [3]. First, it
sends a discovery message with its networkID. Only
level-1 Onodes with the same networkID will reply
with their λ. New level-1 Onode will wait for a hold
time and will choose the Onodes with highest λ. If
there is no reply, new level-1 Onode will send a
discovery message again. Then, new level-1 Onode
will send a connection message to the chosen level-1
Onodes. They will reply with a welcome message
indicating it is connected to the architecture and they
will become its neighbors.

D discovery ACK

Welcome D

D discovery

D connect

Dnode
Several level-1

Onodes
Level-1 Onodes
with higher λ

Wait

Keepalive D

Added to
Dnodes’ Table

Wait

Keepalive
reset to 0

O2 discovery ACK

Welcome O2

O2 discovery

O2 connect

Level-2 Onode from
a new network

Several level-2
Onodes

Wait

Keepalive O2
Wait

O2 database

O2 neignbors Added to the
topological
database.

Wait

Keepalive
reset to 0.

Level-2 Onodes
with higher λ

Figure 8. Dnode message to request connections.

Figure 9. Messages to request a new level-1 Onode.

Figure 10. Messages when enters new level-1 Onode.

Figure 11. Messages to request a new level-2 Onode

New level-1 Onode will send its neighbor list to all
of them to update their level-1 Onode network
database and all of them will recalculate new routes
using SPF algorithm and the metric aforementioned.
Then, they send their database to the new level-1
Onode in order to build its level-1 Onode network
database. Next times it will only receive updates. New
level-1 Onode will send keepalive messages to its
neighbors periodically. If the level-1 Onode does not
receive a keepalive message from its neighbor for a
dead time, it will erase this entry from its database.
Steps explained are shown in figure 10.

First level-2 Onode, that checks equation 2, will
send a message to generate a new level-2 Onode.

1

_2___
_1__

≥
−•

−
OnodeslevelofnumberConMax

Onodeslevelofnumber (2)

This message will be sent to the level-1 Onode with

highest δ. When the level-1 Onode receives that
message, it will begin to use level-2 organization layer
functionalities. Then it sends a message to its
neighbours to inform them about it. If the level-2
Onode initiating this process does not receive changes
in its level-1 Onode’s table for a hold time, it will send
a new request message to the second level-1 Onode
with highest δ. Then, new level-2 Onode will proceed
with the same manner as it has been explained in figure
6. Figure 11 shows steps explained.

4. Leavings and Fault Tolerance

Every level-2 Onode sends its backup information

to the highest δ level-1 Onode in the network

periodically. When a level-2 Onode leaves the
architecture voluntarily, it will send a message to the
highest δ level-1 Onode announcing it. The level-1
Onode becomes a level-2 Onode and acknowledges
that message. Then, level-2 Onode leaves the
architecture sending a disconnection message to its
neighbors. If that level-2 Onode does not receive the
acknowledgement, it will begin the process with the
second highest δ level-1 Onode. Next, new level-2
Onode sends a message to its neighbors to advertise it
has changed its level. It will try to have the same
neighbors as the old one using the backup data. Then,
it will begin its functionalities as it has been explained
in figure 6. Figure 14 shows the algorithm.

When a level-2 Onode fails, it will be detected by
its level-1 Onodes neighbors because the lack of
keepalive messages for a dead time. First level-1
Onode detects this failure, updates its level-1 Onodes’
database and propagates it through the network. When
the highest δ level-1 Onode receives this update, it will
use the backup information and it will start level-2
Onode functionalities.

Every level-1 Onode has a table with all Dnodes in
its area and information related with its level-1 Onode
neighbor closest to the level-2 Onode. They will use
this table to know their δ and λ. Dnode with highest δ
will be the level-1 Onode backup Dnode and it will
receive level-1 Onode backup data by incremental
updates. This information is used in case of level-1
Onode failure. Level-1 Onode sends keepalive
messages to the backup Dnode periodically.

When a level-1 Onode leaves the architecture, it
will send a message to its closest level-2 Onode with
information about the level-1 Onode backup Dnode.

DDB request

Network 1
Dnode

Network 1
level-1
Onode

Network 2
level-2
Onode

DDB request
DDB request

DDB request

Network 2
Dnode

Find Dnode

Found DnodeWait

Elected Dnode Ack

Wait

DD Welcome

 DD connect

Keepalive DD

Keepalive DD

Keepalive
reset to 0

Wait

Elected Dnode

All level-1
Onodes from

Network 2

Network 2
level-1
Onode

Network 1
level-2
Onode

O2 Conversion

Highest δ level-
1 Onode

Highest δ level-1
Onode neighbors Level-2 Onode

O1 database

Change level Wait for
topology
changes

O1 discovery ACK

Welcome O1

O1 discovery

O1 connect

New level-1
Onode

Some Level-l
Onodes

Highest λ level-1
Onodes

Wait

Keepalive O1 Keepalive
reset to 0

O1 database

O1 neignbours
Added to level-1
Onodes’ Table

Wait

O1 request

All level-1
Onodes

Level-1 Onode with
higher δ Dnode

Leve-2
Onode

O1 reply Wait
O1 conversion

O1 conversion Wait for
topology
changes

D diconnect

Dnode with
higher δ

Figure 14. Recovery algorithm when a level-2 Onode leaves.

Figure 15. Recovery algorithm when a level-1 Onode leaves.

This level-2 Onode will reply it with the failed O1
ACK message, and then, level-1 Onode will send a
disconnection message to its neighbors and leave the
architecture. Next, level-2 Onode proceeds as shown in
figure 9, but using the received backup data. The level-
1 Onode will send a disconnection message to its level-
1 Onode, and then, it will connect with the backup
Dnode to have the backup data and start level-1 Onode
functionalities as shown in figure 10. Then, new level-
1 Onode sends a message to Dnodes in its zone. If the
level-2 Onode does not receive changes for a hold
time, it will send a new request message to the second
Dnode with highest δ. If the backup Dnode does not
receive this message for a hold time, it will become the
new level-1 Onode. Figure 15 shows steps explained.

When a level-1 Onode fails, backup Dnode will
check it because the lack of keepalive messages for a
dead time. Then, it sends a message to the failed level-
1 Onode neighbor. It will be the helper to replace the
failed level-1 Onode. Helper level-1 Onode will send a
message to its closest level-2 Onode to request a new
level-1 Onode. Then, the process will begin as shown
in figure 9. When a Dnode leaves the architecture
voluntarily, it will send a disconnection message to the
level-1 Onode in its zone and to all its adjacent Dnodes
from other networks. They will delete this entry from
its Dnode’s database and adjacent Dnodes will replace
it with a new Dnode as explained in figure 8. When a
Dnode fails down, level-1 Onode and adjacent Dnodes
will ckeck it because they do not receive a keepalive
message for a hold time. They will delete this entry
from their Dnodes’ database and adjacent Dnodes will
request a new Dnode for this network.

5. Simulations

We have modeled the architecture as a function of
the number of messages sent to the network when a
new Dnode joins the architecture and the time needed
to converge. Let’s consider n interconnected logical
networks.

5.1. Time to converge

Given figure 8 and taking tp as the average

propagation time between nodes, we obtain equation 3.

TD-D = (4+d1+d2+diameter3+2•d3)•tp (3)

We have supposed computer-processing time closer

to 0 because it is very low compared with the tp. d1, d2,
d3 are the number of hops from level-1 Onode to level-
2 Onode in the first network, from the first network
level-2 Onode to the second network level-2 Onode
and from level-2 Onode to level-1 Onode in the second
network, respectively, and diameter3 is the second
level-1 Onodes network topology diameter.
5.2.1. Study case 1. There are 2 logical networks
interconnected (d2=1). They have one level-2 Onode
and several level-1 Onodes. The worst case is when the
requesting Dnode is at the edge of the first network
(d1) and the chosen Dnode is at the edge of the second
network (d3). The delay is given by equation 4.

TD-D=(5+d1+3•d2)•tp (4)

Let’s consider one network with 20 level-1 Onodes
and the other with 60 level-1 Onodes and their average
number of neighbors is between 2 and 3, so the largest
path is 28 hops. We consider 2 cases: (1) Requesting
level-1 Onode varies from 1 to 28 hops from the level-
2 Onode and destination level-1 Onode is 10 hops from
the level-2 Onode. (2) Requesting level-1 Onode is 10
hops from the level-2 Onode and destination level-1
Onode varies from 1 to 28 hops from the level-2
Onode. In figure 12 a), we observe that delay is higher
when the number of hops to destination level-1 Onode
increases, but it is less significant when the requesting
level-1 Onode number of hops increases.
5.2.2. Study case 2. In this case, there are several
logical networks interconnected. They have one level-2
Onode and several level-1 Onodes. Requesting and
destination Dnode are at the edge of their networks.
Both networks diameter are equal (diameter1=
diameter2= d). Its delay is shown in equation 5.

All level-1
Onodes

Level-1 Onode
with highest
δDnode

Closest level-2
Onode Highest δ

Dnode

O1 reply
Wait

O1 replace O1 replace

Leaving level-
1 Onode

O1 request

O1 connect

Leaving level-1
Onode’s Dnodes

Welcome D

Keepalive D

Failed O1

Leaving level-1 Onode
highest δDnode

New O1

Welcome O1

Backup O1

Leaving level-1
Onode neighbours

O1 diconnect

D disconnect

Failed O1 ACK

Wait

Backup O2

New level-2
Onode

neighbours
Some level-2

Onodes

Level-2
Onode

neighbours

Change level

O2 connect

Leaving
level-2
Onode

Highest δ
level-1
Onode

O2 disconnect

Wait

Failed O2 ACK Wait

O2 Discovery

Failed O2

0

5

10

15

20

25

30

0 20 40 60 80 100 120
TD - D

Diameter

Source Network
Destination network

Number of hops

0

5

10

15

20

25

30

0 20 40 60 80 100 120 140
TD-D

Level-1 Onodes netw ork

Level-2 Onodes netw ork

Figure 12 a) & b). Delay to connect 2 Dnodes in cases 1 & 2.

TD-D=(4+d2+4•d)•tp (5)

We consider 2 cases: (1) Distance between

networks is fixed to 10 hops and diameter for both
networks varies from 1 to 28 hops. (2) Diameter of
both networks is fixed to 10 hops and distance between
networks varies from 1 to 28 hops. In figure 12 b), we
can observe that the delay is higher when the number
of hops in the networks increases, but it is less
significant when distance between networks increases.

5.2. Number of messages

When a Dnode sends a request to have adjacencies
with Dnodes from other networks, it will proceed as it
has been explained in figure 8. Let’s suppose it needs d
hops to arrive to the L-2 Onode, so there will be d
messages. L-2 Onode topology uses the Reverse Path
Forwarding algorithm [4], so there will be n messages.
Let’s consider nj nodes in the j network, so there will
be nj messages to request message to know the highest
λ Dnodes in that network. Considering 2 highest λ
Dnodes at dj1 and dj2 hops, there will be dj1+dj2
messages. Finally, it will proceed as it is in figure 8.
All interconnected networks will do this process.
Equation 6 gives the number of messages.

∑ ∑
= =

+++++⇒
n

j

n

j
jjj ddnndMessages

1 1
21)(·2·1 (6)

Figure 13 a) shows the number of messages

generated when a Dnode requests an adjacency with
other Dnodes in the worst case (requesting and
destination Dnodes are at the edge), depending on the
number of networks, for several number of L-1
Onodes. The worst case is simulated for 86400 nodes
(30 nets x 30 L-1 Onodes per net x 96 Dnodes per L-1
Onode). Figure 13 b) shows the number of messages
sent through the L-1 Onodes’ network over the time
when L-1 Onodes have 2, 3, 4 and 5 connections. We
observe that the lower number of connections between
L-1 Onodes is, higher the time with messages in the
network is. However, when the number of connections
between L-1 Onodes is higher, the number of messages
in the network per time unit increases.

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

0 5 10 15 20 25 30
Number of networks

Messages
10 Level-1 Onodes 20 Level-1 Onodes 30 Level-1 Onodes

0

1

2

3

4

5

6

7

0 5 10 15
Propagation time

Queries

2 connections
3 connections
4 connections

5 connections

Figure 13 a) & b). Number of messages.

6. Conclusions

We have presented a fault-tolerant architecture, and
its protocol, to join logical networks. Their nodes have
to share the same type of resources. The protocol
organizes Dnodes in zones, allows to join all networks
helping to establish connections between Dnodes, and,
once Dnodes connections are established, permits to
send searches and data transfers between networks. We
have defined several parameters to know the best node
to promote to higher roles or to connect with.
Simulations demonstrate that delay to connect Dnodes
is quite higher when the number of hops inside the
networks increases than when distance between
networks increases. The number of messages in the
network when there is a new Dnode, in the worst case,
is low compared with the number of nodes in the
whole architecture. We have adapted this architecture
to CDNs [5] and to sensor networks [6] taking
excellent results. Future works will study keepalive
time intervals to reduce convergence times. Now, we
are developing it for P2P filesharing networks.

7. References

[1] J. Lloret, F. Boronat, C. Palau, M. Esteve, “Two Levels
SPF-Based System to Interconnect Partially Decentralized
P2P File Sharing Networks”, International Conference on
Autonomic and Autonomous Systems International
Conference on Networking and Services. October 2005.
[2] J. M. McQuillan, I. Richer & E. C. Rosen. “The New
Routing Algorithm for the ARPANET”. IEEE Trans. on
Communications. Vol.28. Pp.711-719. 1980.
[3] C. Cramer, K. Kutzner, and T. Fuhrmann. “Bootstrapping
Locality-Aware P2P Networks”. The IEEE International
Conference on Networks, Vol. 1. Pp. 357-361. 2004.
[4] Yogen K. Dalal y Robert M. Metcalfe, “Reverse path
forwarding of broadcast packets”, Communications of the
ACM. Volume 21, Issue 12. Pp: 1040 – 1048. 1978.
[5] J. Lloret, C. Palau, M. Esteve. “A New Architecture to
Structure Connections between Content Delivery Servers
Groups”. 15th IEEE High Performance Distributed
Computing. June, 2006.
[6] J. Lloret, F. J. Sanchez, J. R. Diaz and J. M. Jimenez, “A
fault-tolerant protocol for railway control systems”. 2nd
Conference on Next Generation Internet Design and
Engineering. April 2006.

